-->

Arithmetic Progressions

Question
CBSEENMA10007580

In an AP
Given a = 5, d = 3, a=50, find n and Sn.

Solution

Here a = 5, d = 3, an = 50
We know that, an = a + (n – 1 )d
⇒ 50 = 5 + (n – 1) x 3
⇒ 50 – 5 = 3 x (n – 1)
⇒ 45 = 3 x (n – 1)
rightwards double arrow space space straight n space minus space 1 space equals space 45 over 3 equals 15
rightwards double arrow space space straight n space equals space 15 space plus space 1 space equals space 16
And comma space space space space space straight S subscript straight n space equals space straight n over 2 left square bracket 2 straight a space plus space left parenthesis straight n minus 1 right parenthesis straight d right square bracket
therefore space space space straight S subscript 16 equals 16 over 2 left square bracket 2 cross times 5 plus left parenthesis 16 minus 1 right parenthesis cross times 3 right square bracket
space
      = 8 x [ 10 + 15 x 3]
      = 8 x 10 + 45
      = 8 x 55 = 440
Hence,   n = 16
and       S=S16 = 440