Sponsor Area

Triangles

Question
CBSEENMA10007116

In the given fig, ABD is a triangle right angled at A and AC ⊥ BD. Show that
(i) AB2 = BC .BD
(ii) AC2 = BC. DC
(iii) AD2 = BD . CD

Solution

Proof : (i) In ∆BAC and ∆BDA,
∠BAC = ∠BDA    ...(i)
In right triangle ABC, we have
∠BAC + ∠CBA = 90°    ...(ii)
In right triangle ABD, we have
∠BDA + ∠CBA = 90°    ...(iii)
Comparing (ii) and (iii), we get
∠BAC = ∠BDA
And,    ∠ACB = ∠DAB
[Each equal to 90°]
∴    ∆BAC ~ ∆BDA
[Using AA similar condition]
∴                      BA over BD equals BC over BA
[∵ Corresponding sides of two similar triangles are proportional]
⇒    BA2 = BC . BD
⇒    AB2 = BC . BD.

(ii) In right triangle ACB and DCA,
∠ACB = ∠DCA = 90°
∠BAC = ∠ADC
∴    ∆ACB ~ ∆DCA
[Using AA similar condition]
∴                 AC over DC equals BC over AC
[∵  Corresponding sides of two similar triangles are proportional]
⇒    AC2 = BC × DC.

(iii) In right triangle ADB and ∆CDA,
∠DAB = ∠DCA = 90°
∠BDA = ∠ADC (common)
∴    ∆ADB ~ ∆CDA
[Using AA similar condition]
∴                       AD over CD equals BD over AD

[∵ Corresponding sides of two similar triangles are proportional]
⇒    AD2 = BD × CD.

Some More Questions From Triangles Chapter