-->

Fractions And Decimals

Question
CBSEENMA7000742

Find the perimeters of (i) ΔABE (ii) the rectangle BCDE in this figure. Whose perimeter is greater?

Solution

(i) Perimeter of ΔABE = AB + BE + EA

=52+234+335=52+114+185=5×102×10+11×54×5+18×45×4=50+55+7220=17720=181720cm

(ii)

Perimeter of rectangle = 2 (Length + Breadth)

Perimeter of rectangle = 2114+76                                         = 211×34×3+7×26×2=233+1412                                         = 2×4712=476=756cm

Perimeter of ΔABE =17720cm

Changing them to like fractions, we obtain

17720=177×320×3=53160436=43×106×10=43060

As 531 > 430,

17720>436

Perimeter (ΔABE) > Perimeter (BCDE)

Some More Questions From Fractions and Decimals Chapter