Sponsor Area

Probability

Question
CBSEENMA9003681

A semi-circular sheet of metal of diameter 28 cm is bent to form an open conical cup. Find the capacity of the cup.

Solution
When a semi-circular sheet is bent to form an open conical cup, the radius of the sheet becomes the slant height of the cup and the circumference of the sheet becomes the circumference of the base of the cone.

therefore space space space space space space space space space space space space l italic space equals 28 over 2 space cm space equals space 14 space cm

Let the base radius of the cup be r cm. Then,
2nr = π x 14
rightwards double arrow space space space space space space 2.22 over 7. straight r equals 22 over 7.14
rightwards double arrow space space space space space space space space space space space space space space straight r equals 7 space cm
Let the height of the cup be h cm. Then\
             l2 + r2 + h2
rightwards double arrow space space space space space space space space space space space space left parenthesis 14 right parenthesis squared equals left parenthesis 7 right parenthesis squared plus straight h squared
rightwards double arrow space space space space space space space space space space space space space space straight h equals 7 square root of 3 space cm
therefore  Capacity of the cup
              equals 1 third πr squared straight h
equals 1 third.22 over 7. left parenthesis 7 right parenthesis squared.7 square root of 3
equals 1078 over 3 square root of 3
equals 1078 over 3 cross times 1.732
equals 622.36 space cm cubed

Sponsor Area