-->

Probability

Question
CBSEENMA9003560

The volume of a right circular cone is 9856 cm3. If the diameter of the base is 28 cm, find

(i)     height of the cone,
(ii)    slant height of the cone,
(iii)    curved surface area of the cone.

Solution
(i) Diameter of the base = 28 cm
therefore    Radius of the base (r) = 28 over 2 space cm space equals space 14 space cm
Let the height of the cone be h cm.
Volume = 9856 cm3
rightwards double arrow space space space space space space space space space space space space space space 1 third πr squared straight h space equals space 9856
rightwards double arrow space space space space space space space space space space space space space space space 1 third cross times 22 over 7 cross times left parenthesis 14 right parenthesis squared cross times straight h equals 9856
rightwards double arrow space space space space space space space space space space space space space straight h space equals space fraction numerator 9856 cross times 3 cross times 7 over denominator 22 cross times left parenthesis 14 right parenthesis squared end fraction
rightwards double arrow space space space space space space space space space space space space space straight h space equals space 48 space cm space
Hence, the height of the cone is 48 cm.
(ii)   r = 14 cm
       h = 48 cm
therefore space space space space space straight l space equals space square root of straight r squared plus straight h squared end root equals square root of left parenthesis 14 right parenthesis squared plus left parenthesis 48 right parenthesis squared end root
space space space space space space space space space space equals square root of 196 plus 2304 end root equals square root of 2500
space space space space space space space space space space equals space 50 space cm

Hence, the slant height of the cone is 50 cm.
(iii) r = 14 cm
I = 50 cm
∴ Curved surface area = πrl
equals 22 over 7 cross times 14 cross times 50 equals 2200 space cm squared

Hence, the curved surface area of the cone is 2200 cm2.