-->

Areas Of Parallelograms And Triangles

Question
CBSEENMA9002591

ABC is a triangle in which ∠B = 2∠C. D is a point on side BC such that AD bisects ∠BAC and AB = CD. Prove that ∠BAC = 72°.
[Hint. Take a point P on AC such that BP bisects ∠B. Join P and D.]

Solution

Construction: Take a point P on AC such that BP bisects ∠B. Join P and D.
Proof: In ∆ABC,
∵ BP bisects ∠ABC

therefore space angle ABP equals angle PBC equals 1 half angle straight B equals 1 half left parenthesis 2 angle straight C right parenthesis equals angle straight C
In APBC,
∴ ∠PBC = ∠PCB (= ∠C)
∴ PB = PC    ...(2)
| Sides opposite to equal angles of∆PBC In ∆APB and ∆DPC,
AB = CD    | Given
PB = PC    | From (2)
∠ABP = ∠DCP (= ∠C)
∴ ∆APB ≅ ∆DPC    | SAS Axiom
∴ ∠BAP = ∠CDP (= ∠A)    ...(3)
| C.P.C.T.
and    AP = DP    ...(4) | C.P.C.T.
In ∆APD,
∵ AP = DP    | From (4)
therefore space angle PDA equals angle PAD equals fraction numerator angle straight A over denominator 2 end fraction
therefore space angle DPA equals straight pi minus open parentheses fraction numerator angle straight A over denominator 2 end fraction plus fraction numerator angle straight A over denominator 2 end fraction close parentheses equals straight pi minus angle straight A space space space space space space space space space space space space space space space space... left parenthesis 5 right parenthesis

Again from ∆DPC,
∠DPC = π - (∠A + ∠C)
∴ ∠DPA = π - ∠DPC = π - {π - (∠A + ∠C)} = ∠A + ∠C    ...(6)
From (5) and (6),
π - A = ∠A + ∠C ⇒ 2∠A + ∠C = π ...(7)
Again,
∠A + ∠B + ∠C = π
| ∵ The sum of three angles of ∆ABC = π ⇒ ∠A + 2∠C + ∠C = π | ∵ ∠B = 2∠C
⇒    ∠A + 3∠C = π    ...(8)
Multiplying (7) by 3, we get
6∠A + 3∠C = 3π    ...(9)
Subtracting (8) from (9), we get
         space space space space space space space space space space space space space space 5 angle straight A equals 2 straight pi
rightwards double arrow space space space space space space space space space space angle straight A equals fraction numerator 2 straight pi over denominator 5 end fraction equals 2 over 5 cross times 180 degree equals 72 degree
rightwards double arrow space space space space space space space space space space angle BAC equals 72 degree