-->

Lines And Angles

Question
CBSEENMA9002418

In the figure, AD and CE are the angle bisectors of ∠A and ∠C respectively. If ∠ABC = 90° then find ∠AOC.


Solution

Given: AD and CE are the angle bisectors of ∠A and ∠C respectively. ∠ABC = 90°
To Determine: ∠AOC
Determination: In ∆ABC,
∠A + ∠B + ∠C = 180°
| Angles sum property of a triangle
⇒ ∠A + 90° + ∠C = 180°
⇒    ∠A + ∠C = 90° ...(1)
In ∆AOC,
∠OAC + ∠OCA + ∠AOC = 180°
| Angle sum property of a triangle
rightwards double arrow space space space space 1 half angle straight A plus 1 half angle straight C plus angle AOC equals 180 degree
space space space space space space space space space space space space space left enclose table row cell because space AD space and space CE space are space the space angle space bisectors end cell row cell space Of space angle straight A space and space angle straight C space respectively end cell end table end enclose
rightwards double arrow space space space space space space 1 half left parenthesis angle straight A plus angle straight C right parenthesis plus angle AOC equals 180 degree
rightwards double arrow space space space space space space 1 half left parenthesis 90 degree right parenthesis plus angle AOC equals 180 degree
rightwards double arrow space space space space space space space 45 degree plus angle AOC equals 180 degree
rightwards double arrow space space space space space space space angle AOC equals 180 degree minus 45 degree equals 135 degree