-->

Lines And Angles

Question
CBSEENMA9002416

In figure, the bisectors of ∠ABC and ∠BCA intersect each other at the point O. Prove that  angle BOC equals 90 degree plus 1 half angle straight A

Solution
∵ BO is the bisector of ∠ABC.
therefore space angle OBC equals 1 half angle ABC equals 1 half angle straight B space space space space space space space space space space space space space space space.... left parenthesis 1 right parenthesis

∵ CO is the bisector of ∠ACB
therefore space space angle OCB equals 1 half angle ACB equals 1 half angle straight C space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis

In ∆OBC, ∠BOC + ∠OBC + ∠OCB = 180°
| ∵ The sum of the three angles of a ∆ is 180°
rightwards double arrow space space space space angle BOC plus 1 half angle straight B plus 1 half angle straight C equals 180 degree
| From (1) and (2)
rightwards double arrow space space angle BOC equals 180 degree minus 1 half left parenthesis angle straight B plus angle straight C right parenthesis space space space space space space space space space space.... left parenthesis 3 right parenthesis

In ∠ABC, ∠A + ∠B + ∠C = 180°
| ∵ The sum of the three angles of a triangle is 180°
rightwards double arrow space space angle straight B plus angle straight C equals 180 degree minus angle straight A

rightwards double arrow 1 half left parenthesis angle straight B plus angle straight C right parenthesis equals fraction numerator 180 degree minus angle straight A over denominator 2 end fraction equals 90 degree minus 1 half angle straight A space space space space space space space space space space space space space space... left parenthesis 4 right parenthesis
From (3) and (4), we have
angle BOC equals 180 degree minus left parenthesis 90 degree minus 1 half angle straight A right parenthesis equals 90 degree plus 1 half angle straight A.