-->

Introduction To Euclid's Geometry

Question
CBSEENMA9002130

5. If x = –2, y = 6 is solution of equation 3ax + 2by = 6, then find the value of b from 2(a – 1) + 2(3b – 4) = 4.

Solution

If x = –2, y = 6 is solution of equation
3ax + 2by = 6, then
      3a(-2) + 2b(6) = 6
rightwards double arrow     -6a + 12b = 6
rightwards double arrow       -a + 2b = 1                        ...(1)
                             | dividing throughout by 6
Also
       2(a - 1) + 2(3b - 4) = 4
rightwards double arrow  2a - 2 + 6b -8 = 4
rightwards double arrow      2a + 6b = 14
rightwards double arrow       a + 3b = 7                        ....(2)
                         | Dividing throughout by 2
Adding (1) and (2), we get
       5b = 8    rightwards double arrow         b = 8 over 5
Putting   b = 8 over 5  in (1), we get
negative straight a plus 2 open parentheses 8 over 5 close parentheses equals 1
rightwards double arrow space space space space space space space space space space straight a space equals space 16 over 5 minus 1 equals 11 over 5
Hence comma space space space space straight a space equals space 11 over 5 comma space space straight b space equals space 8 over 5