-->

Visualising Solid Shapes

Question
CBSEENMA8003335

A dodecahedron is having 20 vertices and 30 edges. How many faces are there?

Solution

Here:
  Number of vertices (V) = 20
     Number of edges (E) = 30
Let the number of faces are F. Then using Euler's formula, we have
                  F + V = E + 2                                                      ...(1)
∴         Substituting the values of V and E in (1), we get
                   F + 20 = 30 + 2
rightwards double arrow              F + 20 = 32
rightwards double arrow                     F = 32 - 20
rightwards double arrow                     F = 12
   Thus, the required number of faces = 12.