-->

The Solid State

Question
CBSEENCH12011334

If 'a' stands for the edge length of the cubic system:simple cubic , body centred cubic and face centred cubic, then the ratio of radii of the spheres in these systems will be repsectively,

  • 1 half a semicolon space fraction numerator square root of 3 over denominator 4 end fraction a colon space fraction numerator 1 over denominator square root of 2 end fraction a
  • 1 half a space colon space square root of 3 space a space colon thin space fraction numerator 1 over denominator square root of 2 end fraction straight a
  • 1 half a space colon thin space fraction numerator square root of 3 over denominator 2 end fraction straight a space colon space fraction numerator square root of 2 over denominator 2 end fraction straight a
  • 1 straight a space colon space square root of 3 straight a end root colon space square root of 2 straight a

Solution

A.

1 half a semicolon space fraction numerator square root of 3 over denominator 4 end fraction a colon space fraction numerator 1 over denominator square root of 2 end fraction a

For simple cubic, 
a = 2r
r = a/2
For body centred cubic,
straight a space equals space fraction numerator 4 straight r over denominator square root of 3 end fraction
straight r space equals space fraction numerator square root of 3 straight a end root over denominator 4 end fraction
For space face space centred space cubic comma
space straight a space equals space 2 square root of 2 straight r
straight r space equals space fraction numerator straight a over denominator 2 square root of 2 end fraction
Hence, the ratio of radii in simple cubic, body centred cubic and face centred cubic is 
1 half a semicolon space fraction numerator square root of 3 over denominator 4 end fraction a colon space fraction numerator 1 over denominator square root of 2 end fraction a