-->

Thermodynamics

Question
CBSEENCH11006229

What is Born-Haber cycle? How can we obtain lattice enthalpy of a solid with its help? 

Solution

In 1919, Born and Haber proposed a method in which lattice enthalpy of an ionic crystal is related to certain thermodynamic parameters. The formation of ionic crystal from its elements by applying different thermochemical quantities is called Born-Haber cycle.
Consider the enthalpy change during the formation of ionic solid MX from its elements M and X.
straight M left parenthesis straight s right parenthesis space plus space 1 half straight X subscript 2 left parenthesis straight g right parenthesis space space rightwards arrow space space space MX left parenthesis straight s right parenthesis
Formation of ionic solid MX may be done by two different methods:
(A) Indirect method      
(B) Direct method
(A) Indirect method:
The various terms are
left parenthesis straight i right parenthesis space increment straight H subscript 1 superscript 0 space equals space Enthalpy space change space for space sublimation space of space
space space space space space space space space space space space straight M left parenthesis straight s right parenthesis space rightwards arrow space space straight M left parenthesis straight g right parenthesis
Since energy is required for the process (endothermic), therefore, increment straight H subscript 1 superscript 0 is taken as a positive quantity.
left parenthesis ii right parenthesis space increment straight H subscript 2 superscript 0 space equals space Enthalpy space change space for space dissociation space of
space 1 half straight X subscript 2 left parenthesis straight g right parenthesis space rightwards arrow space space space straight X left parenthesis straight g right parenthesis
The space process space is space endothermic comma space space therefore space increment straight H subscript 2 superscript 0 space is
space taken space as space positive space quantity.
space
left parenthesis iii right parenthesis space increment straight H subscript 3 superscript 0 space equals Enthalpy space change space for space ionization space of space
space space space straight M left parenthesis straight g right parenthesis space space rightwards arrow space space space straight M to the power of plus left parenthesis straight g right parenthesis space plus space straight e to the power of minus
space space space space space space space space space space space space space space
Since the process is endothermic, therefore ionisation enthalpy is taken as a positive quantity.
left parenthesis iv right parenthesis space increment straight H subscript 4 superscript 0 space equals space Enthalpy space change space for space electron space gain space by
space space space space space space straight X left parenthesis straight g right parenthesis space plus space straight e to the power of minus space space rightwards arrow space space space straight X to the power of minus left parenthesis straight g right parenthesis
Since the process is exothermic, therefore electron gain enthalpy is taken as negative quantity.
left parenthesis straight v right parenthesis space increment straight H subscript 5 superscript 0 space equals space Enthalpy space change space for space lattice
space space straight M left parenthesis straight g right parenthesis space plus space straight X to the power of minus left parenthesis straight g right parenthesis space space rightwards arrow space space space MX left parenthesis straight s right parenthesis
Energy is released in this process i.e. process is exothermic, therefore increment straight H subscript 5 superscript 0 is always taken as negative quantity.
Direct method:   Let increment subscript straight f straight H to the power of 0 be the enthalpy of formation of 1 mol of MX(s) from its constituent species. 
                  straight M left parenthesis straight s right parenthesis space plus space 1 half straight X subscript 2 left parenthesis straight g right parenthesis space space rightwards arrow space space space MX left parenthesis straight s right parenthesis
therefore space space space increment subscript straight f straight H to the power of 0 space equals space increment straight H subscript 1 superscript 0 space plus increment straight H subscript 2 superscript 0 space plus space increment straight H subscript 3 superscript 0 space plus space increment straight H subscript 4 superscript 0 space plus space increment straight H subscript 5 superscript 0
or space
increment straight H subscript 5 superscript 0 space plus space increment subscript straight f straight H to the power of 0 space minus space increment straight H subscript 1 superscript 0 space minus space increment straight H subscript 2 superscript 0 space minus space increment straight H subscript 3 superscript 0 space minus space increment straight H subscript 4 superscript 0
where increment straight H subscript 5 superscript 0 is the enthalpy change for lattice formation from,
                    straight M to the power of plus left parenthesis straight g right parenthesis space plus space straight X to the power of minus left parenthesis straight g right parenthesis space space rightwards arrow space space MX left parenthesis straight s right parenthesis
The reverse of the above equation is
   space MX left parenthesis straight s right parenthesis space rightwards arrow space space straight M to the power of plus left parenthesis straight g right parenthesis space plus space straight X to the power of minus left parenthesis straight g right parenthesis space defines space the space lattice space enthalpy space
of space MX.
Thus by using the Born-Haber cycle, one can determine the lattice enthalpy of an ionic compound.

According to Hess’s law, the enthalpy of formation of one mole of ionic solid MX should be the same irrespective of the fact whether it takes place directly in one step (Direct method) or through a number of steps (Indirect method).
space space therefore space space space
increment subscript straight f straight H to the power of 0 space equals space increment straight H subscript 1 superscript 0 plus increment straight H subscript 2 superscript 0 space plus space increment straight H subscript 3 superscript 0 space plus increment straight H subscript 4 superscript 0 space plus space increment straight H subscript 5 superscript 0
or space
space increment straight H subscript 5 superscript 0 space equals space increment subscript straight f straight H to the power of 0 space minus space increment straight H subscript 1 superscript 0 space minus space increment straight H subscript 2 superscript 0 space minus space increment straight H subscript 3 superscript 0 space minus space increment straight H subscript 4 superscript 0