-->

Thermodynamics

Question
CBSEENCH11006171

Derive a relationship between Cand Cv for an ideal gas.

Solution
Heat (q) at constant volume is given as
                straight q subscript straight v space equals space straight C subscript straight v increment straight T space equals space increment straight U
Heat (q) at constant pressure is given as
                    straight q subscript straight p space equals space straight C subscript straight p increment straight T space equals space increment straight H
But          
 H = U + PV
 and PV = RT [for one mole of an ideal gas]
 therefore space space space space straight H space equals space straight U space plus space RT
therefore space space increment straight H space equals space increment straight U space plus space increment left parenthesis RT right parenthesis
or space space space space space increment straight H space equals space increment straight U space plus space straight R increment straight T
or space space increment straight H space minus space increment straight U space equals space straight R increment straight T space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis

Substituting the values of ∆H and ∆U in eq. (1), we get,
Cp∆T – Cv ∆T = R∆T or Cp – Cv = R (for one mole of an ideal gas)
Thus Cp is greater than Cv by the gas constant R i.e. approximately 2 calories or 8.314 Joules.