-->

Structure Of Atom

Question
CBSEENCH11005292

What transition in the hydrogen spectrum would have the same wavelength as the Balmer transition n = 4 to n = 2 of He+ spectrum?

Solution
space space space space space For space He to the power of plus semicolon space space space space 1 over straight lambda space equals space RZ squared open square brackets 1 over 2 squared minus 1 over 4 squared close square brackets
space space For space space space space space space space space straight H semicolon equals space 1 over straight lambda space equals straight R open square brackets fraction numerator 1 over denominator straight n subscript 1 superscript 2 end fraction minus fraction numerator 1 over denominator straight n subscript 2 superscript 2 end fraction close square brackets
space Since space straight lambda space is space same
therefore space space space 2 squared open square brackets 1 over 2 squared minus 1 over 4 squared close square brackets space equals space open square brackets fraction numerator 1 over denominator straight n subscript 1 superscript 2 end fraction minus fraction numerator 1 over denominator straight n subscript 2 superscript 2 end fraction close square brackets
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets because space space straight Z space equals 2 space for space He to the power of plus close square brackets
therefore space space space space open square brackets 1 over 1 squared minus 1 over 2 squared close square brackets space equals space open square brackets fraction numerator 1 over denominator straight n subscript 1 superscript 2 end fraction minus fraction numerator 1 over denominator straight n subscript 2 superscript 2 end fraction close square brackets
Therefore, n1 = 1 and n2 = 2