NEET physics

Sponsor Area

Question
CBSEENPH11020887

A car of mass 1000 kg moves on a circular track of radius 20 m. If the coefficient of friction of 0.64. The maximum velocity with which the car can be moved is

  • 11.2m/s

  • 112m/s

  • 0.64×201000×100m/s

  • 100064×20m/s

Solution

A.

11.2m/s

   Vmax=μrg=0.64×20×9.8 where,μ-coefficient of friction Vmax=11.2 m/s

Sponsor Area

Question
CBSEENPH11020888

The angle through which a cyclist bends when he covers a circular path of 34.3 m circumference in 22 sec is (g=9.8 m/s)

  • 150

  • 300

  • 600

  • 450

Solution

D.

450

.Given:-Speed of particle V=St=34.322

         radius        r=S2π=34.32π

tanθ=V2rg=(34.3)2(22)234.32π×9.8=34.3×2×22722×9.8=68.668.6=1

tanθ = 1  .....(tan450=1)

Question
CBSEENPH11020889

The radius of earth is 6400 km and g = 10 m/s2. In order that a body of 5 kg weight is zero at the equator, the angular speed is

  • 1800rad/sec

  • 11600rad/sec

  • 1400rad/sec

  • 180rad/sec

Solution

A.

1800rad/sec

Given:- radius of earth=6400km=6400×103, g=10m/s2

g'=0, m=0(weight is Zero at equator)

g=Rω2  ω2=gR

Angular speedω=gR=106400×103=1800rad/sec

Question
CBSEENPH11020890

The escape velocity for the earth is 11.2 km/sec. The mass of another planet 100 times mass of earth and its radius is 4 times radius of the earth. The escape velocity for the planet is

  • 56.0 km/sec

  • 280 km/sec

  •  112 km/sec

  •  56 km/sec

Solution

A.

56.0 km/sec

Escape velocity of earth Ve=11.2km/sec

vescape=2GMRMR

Hence,VPVe=MpRPMeRe=MPRp×ReMe

OrVpVe=100×14=25=5

Vp= 5×Ve=5×11.2 =56km/sec

Question
CBSEENPH11020891

A wheel rotates with constant acceleration of 2.0 radian/sec2 .If the wheel starts from rest the number of revolution it makes in the first ten second, will be approximately

  • 32

  • 24

  • 16

  • 8

Solution

C.

16

Angular acceleration= 2 rad/s2

Time interval t= 10sec

Angular displacement θ = ?

Now by θ =ωt+12αt2             ....(i)It is an equation of angular variables of motion corresponding to the linear variable based equations ss=ut+12αt2(i)  θ = 0+12αt2θ =αt22=2×1002=100n=θ2π=1002×3.14=15.92 16