NEET physics

Sponsor Area

Question
CBSEENPH11026356

The displacement x of a particle varies with time t as x = ae-αt + beβt where a, b, α and β are positive constants. The velocity of the particle will

  • decrease with time

  • be independent of α and β

  • drop to zero when α = β

  • increase with time

Solution

D.

increase with time

Given:- 

        x = a e-αt + beβt

We know that

   velocity v = dxdt

              v  =  d dt ae-αt + beβt 

                  = -aα e-αt + bβ eβt

              v = -a αe-αt +  eβt

               v = A + B

where A = - aα e-αt , B = bβ e-βt

The value ot term A = -aα e-αt increases and of term B = bβ e-βt increases with time. As a result velocity goes on increasing with time. 

Sponsor Area

Question
CBSEENPH11026359

If A + B = C and that C is perpendicular to A. What is the angle between A and B, if A = B

  • π4 rad

  • π2 rad

  • 3 π4 rad

  • π rad

Solution

C.

3 π4 rad

Given:-

      A + B = C

Since, B = C - A

Also

   C  A

    B2 = 2 A2

⇒   B = 2 A

Now

    A2 + B2 + 2A B cosθ = C2 = A2

∴          cos θ = - 12

This gives

       θ = 3π4 rad

Question
CBSEENPH11026360

A body is whirled in a horizontal circle of radius 25 cm. It has an angular velocity of 13 rad/s. What is its linear velocity at any point on circular path?

  • 2 m/s

  • 3 m/s

  • 3.25 m/s

  • 4.25 m/s

Solution

C.

3.25 m/s

Given:- r = 25 cm =  m

  ω = 13 rad/s

   Linear speed  = Radius × angular speed

            V = rω

          = 0.25 × 13

        3.25 m/s

Question
CBSEENPH11026363

Two wires are stretched through same distance. The force constant ofsecond wire is half as that of the first wire. The ratio of work done to stretch first wire and second wire will be

  • 2 : 1

  • 1 : 2

  • 3 : 1

  • 1 : 3

Solution

A.

2 : 1

As W = 12 kx2

If both wires are stretched through same distance, then   

     W ∝ k

    W1W2 = k1k2

            = k1k12

            = 21

     W1W2 = 2 : 1

Question
CBSEENPH11026366

A particle slides down on a smooth incline of inclination 30°, fixed in an elevator going up with an acceleration 2 m/s2. The box of incline has a length 4m. The time taken by the particle to reach the bottom will be

   

  • 89 3 s

  • 98 3 s

  • 43 32s

  • 34 32s

Solution

C.

43 32s

               

In the frame of elevator, 

a = acceleration of the particle with respect to the elevator

      m sin30 ( g + 2) = ma

                    a  = ( g + 2 ) sin30o

                        = ( 10 + 2 ) 12

                         = 6 m/s2

The distance travelled by the particle from the top to the bottom

     d = 4cos 30o 

        = 432

   d = 8 33 m

Using kinematic equation

   s = ut + 12 at2

   8 33 = 0 × t + 12 at2

⇒     t216 33 × 6s

⇒     t = 16183

⇒    t = 169 × 23

⇒  t =  43 32s