NEET physics

Sponsor Area

Question
CBSEENPH11026319

The angle between two linear transmembrane domains is defined by following vectors a = i^ + j^ - k^ and  b = i^ - j^  +  k^

  • cos-1 13

  • cos-1 -13

  • sin-1 -13

  • sin-1 13

Solution

B.

cos-1 -13

The angle between two vectors is given by

       cosθ = a.bab

               = 1 - 1 - 13 × 3

⇒      cosθ = -13

⇒     θ = cos-1 -13

Sponsor Area

Question
CBSEENPH11026320

The distance x (in µm) covered by a molecule starting from point A at time t = 0 and stopping at another point B in given by the equation  x = t2 2 - t3 The distance between A and B ( in μm) is closed to

  • 10.7

  • 20.7

  • 40.7

  • 50.7

Solution

A.

10.7

Given that distance

         x = t2 2 - t3

On differentiating

        dxdt = 4t - t2

For x to be maximum,

         dxdt = 0

⇒     4t - t2 = 0

⇒            t = 4

∴ Maximum distance

      xmax42  2 - 43 

              = 16 × 6 - 43

              = 16 × 23

    xmax = 10.7

Question
CBSEENPH11026321

A tangential force acting on the top of sphere of mass m kept on a rough horizontal place as shown in figure

                  

If the sphere rolls without slipping, then the acceleration with which the centre of sphere moves, is

  • 10 F7 m

  • F2 m

  • 3 F7 m

  • 7 F2 m

Solution

A.

10 F7 m

Let a be the acceleration of centre of sphere. The angular acceleration about the centre of the sphere is α = θr, as there is no slipping.

For the linear motion of the centre

   f + F = ma                  .....(i)

and for the rotational motion about the centre

  Fr - fr = I α

            = 25 mr2 ar

 ⇒  F - f = 25 ma           ....(ii)

From Eqs. (i) and (ii)

   2F = 75 ma

 ⇒  a  = 10 F7 m

Question
CBSEENPH11026322

The density of a rod having length l varies as ρ = c + dx, where x is the distance from the left end. The centre of mass is     

  • 3 cl + 2 D l23  2c + D l 

  • 2 cl + 3D I22  4c + 8I 

  • 2 cl + 3 DI23 2c + I

  • cl + DI22  2 c + DI 

Solution

A.

3 cl + 2 D l23  2c + D l 

Let the cross-sectional area is α. The mass of an element of length dx located at a distance x away from the left end is (C + Dx)α dx.  The x-coordinate of the centre of mass is given by

         Xcm =  x cm dm

               = 0lxC + Dx  α dx0l C + Dx  α dx

Where limit is from 0 to l.

              = C l22+ D l3Cl + D l22 

             Xcm3 CI + 2 DI23 2C + DI

Question
CBSEENPH11026323

One end of a massless spring of constant 100 N /m and natural length 0.5 m is fixed and the other end is connected to a particle of mass 0.5 kg lying on a frictionless horizontal table. The spring remains horizontal. If the mass is made to rotate at angular velocity of 2 rad/s, then elongation of spring is

  • 0.1 m

  • 10 cm

  • 1 cm

  • 0.01 cm

Solution

C.

1 cm

For the circular motion acceleration towards the centre is v2r.

The horizontal force on the particle is I due to the spring and kl,

 where, l is the elongation 

           k is spring constant of spring.

     kl = mv2r

         = mω2 r

     kl = mω2 ( lo + l )

⇒  kl - mω2 ( lo + l ) = 0

⇒ ( k - mω2) l = mω2 lo

⇒             l = 2 lok - 2 

Putting tle values l = 0.5 × 4 × 0.5100 - 0.5 × 4

                           = 198m

                            = 0.010 m

                         l = 1 cm

Hence elongation(l) in spring is 1 cm.