NEET physics

Sponsor Area

Question
CBSEENPH11026212

The potential energy of particle varies with distance x fixed a origin as v = Axx + B; where A and B are constants. The dimensions of AB are

  • [ M L5/2 T-2 ]

  • [ M L2 T-2 ]

  • [ M3/2 L3/2 T-2 ]

  • [M L7/2 T-2 ]

Solution

D.

[M L7/2 T-2 ]

Given;- v = A xx + B             .... (i)

Dimensions of v = dimensions of potential energy

                         = [ M1 L2 T-2 ]

From equqtion (i) 

Dimensions of B = Dimensions of x = [Mo L1 To ]

∴ Dimensions of A =dimension of v × dimensions of x + Bdimensions of x

                            = M1 L2 T-2 Mo L1 ToM1 L12 To

                             = [ M1 L5/2 T-2 ]

Hence dimensions of AB 

                            = [ M1 L5/2 T-2 ] [ Mo L1 To ]

                            = [ M L7/2 T-2 ]

Sponsor Area

Question
CBSEENPH11026213

A weightless thread can bear tension upto 37 N. A stone of mass 500 g is tied to it and revolved in a circular path of radius 4 min a vertical plane. If g = 10 ms-2,  then the maximum angular velocity the stone will be

  • 2 rad s-1

  • 4 rad s-1

  • 8 rad s-1

  • 16 rad s-1

Solution

B.

4 rad s-1

According to second law,  the force f provding the acceleration is 

            F = mv2R

where m is the mass of the body. This force directed towards the centre is called the centripetal force. For a stone rotated in a circle by a string, the centripetal force is provided by the string.

Maximum tension in the thread is given by 

           Tmax = mg + mv2r

⇒         Tmax = mg + mrω2               (  v = r ω )

              ω2Tmax - mgmr

Given

         Tmax = 37 N,   m = 500 g = 0.5 kg,

          g = 10 ms-2,    r = 4 m

∴              ω2 = 37 - 0.5 × 100.5 × 4

                ω2 = 37 - 52

⇒              ω2 = 16

⇒              ω = 4 rad s-1

Question
CBSEENPH11026214

Two spherical bodies of masses M and SM and radii R and 2R respectively are released in free space with initial separation between their centres equal to 12 R. If they attract each other due to gravitational force only, then the distance covered by the smaller body just before collision,

  • 1.5 R

  • 2.5 R

  • 4.5 R

  • 7.5 R

Solution

D.

7.5 R

Let at O there will be a collision. If smaller sphere moves x distance to reach at O, then bigger sphere will move a distance of ( 9R - x )

          

          F = GM × 5M12 R - x2

          asmall FM

          asmallG × 5M12 R - x2

           abig F5M

           abigGM12R-x 2

            x = 12asmall t2                     

             x =12G × 5M12 R - x2 t2             .....(i)

    ( 9R - x ) = 12abig t2

     (9R - x)  = 12GM12 R - x2t2           ....(ii)

Thus dividing equation (i) by equation (ii), we get

                x9R- x = 5

⇒            x = 45 R - 5x

⇒             6x = 45 R

∴               x = 7.5 R    

Question
CBSEENPH11026215

The moment of inertia of a uniform circular disc of radius R and mass M about an axis passing from the edge of the disc and normal to the disc is

  • MR2

  • 12 MR2

  • 32 MR2

  • 72 MR2

Solution

C.

32 MR2

The moment of inertia of circular disc about an axis through its centre and normal to its plane

             ICG = 12 MR2

Where M is the mass of the disc and R its radius.

According to the theorem of parallel axis, the moment of inertia of the uniform circular disc about an axis passing from the edge of the disc and normal to the disc,

         I = ICG + MR2 

          = 12 MR2 + MR2

         I = 32 MR2

Question
CBSEENPH11026216

A satellite orbiting the earth in a circular orbit of radius R completes one revolution in 3h. If orbital radius of geostationary satellite is 36000 km, orbital radius of earth is

  • 6000 km

  • 9000 km

  • 12000 km

  • 15000 km

Solution

B.

9000 km

Time period of satellite

     T24 π2GM r3

     T24π2g R2 r3                      [ since GM = gR2 ]

⇒    T = 2πR r3g

⇒     T ∝ r3/2 

∴    T1T2 = r1r232       

Given   T1 = 3h , T2 = 24 h 

 (geostationary satellite) r1 = R,  r2 = 36000 km

⇒        324 = R3600032

⇒         R = 1823 × 36000

⇒         R = 14 × 36000 

⇒         R = 9000 km