JEE mathematics

Sponsor Area

Question
CBSEENMA11015464

If X = {4n - 3n-1 : n ε N} and Y = {9(n-1):n εN}; where N is the set of natural numbers,then X U Y is equal to

  • N

  • Y-X

  • X

  • Y

Solution

D.

Y

We have X = {4n - 3n-1 : n ε N} 
X = {0,9,54,243,.....} [put n = 1,2,3....]
Y = {9(n-1):n ε N}
Y = {0,9,18,27,......}[Put n = 1,2,3....]
It is clear that 
X ⊂ Y
Therefore, X U Y = Y

Sponsor Area

Question
CBSEENMA11015465

If z is a complex number such that |z|≥2, then the minimum value of open vertical bar straight z space plus space 1 half close vertical bar

  • is equal to 5/2

  • lies in the interval (1,2)

  • is strictly greater than 5/2

  • is strictly greater than 3/2 but less than 5/2

Solution

B.

lies in the interval (1,2)

|z|  ≥2 is the region on or outside circle whose centre is (0,0) and the radius is 2.
Minimum open vertical bar straight z plus 1 half close vertical bar is distance of z, which lies on circle |z| = 2 from open parentheses negative 1 half comma 0 close parentheses
therefore, minimum open vertical bar straight z plus 1 half close vertical bar = Distance of open parentheses negative 1 half comma 0 close parentheses from (-2,0)
space equals space square root of open parentheses negative 2 space plus space 1 half close parentheses squared plus 0 end root space equals space 3 over 2 space equals space square root of open parentheses fraction numerator negative 1 over denominator 2 end fraction plus 2 close parentheses squared space plus 0 end root space equals space 3 over 2
Hence, minimum value of open vertical bar straight z plus 1 half close vertical bar  lies in the interval (1,2)

Question
CBSEENMA11015466

If a ε R and the equation - 3(x-[x]2 + 2(x-[x] +a2 = 0(where,[x] denotes the greatest integer ≤ x) has no  integral solution, then all possible value of  lie in the interval

  • (-1,0) ∪ (0,1)

  • (1,2)

  • (-2,-1)

  • (-∞,-2) ∪ (2, ∞)

Solution

A.

(-1,0) ∪ (0,1)

Given a ε R and equation is
-3{x-[x]}2 + 2{x-[x] +a2 = 0
Let t = x - [x], then equation is 
-3t2 +2t+ a2 = 0
⇒ straight t space equals fraction numerator 1 space plus-or-minus square root of 1 plus 3 straight a squared end root over denominator 3 end fraction space less or equal than space 1
∵ t = x - [x] = {X}
∴ 0≤ t≤1
0 space less or equal than fraction numerator 1 space plus-or-minus square root of 1 plus 3 straight a squared end root over denominator 3 end fraction space less or equal than space 1
Taking positive sign, we get
0 space less or equal than fraction numerator 1 space plus-or-minus square root of 1 plus 3 straight a squared end root over denominator 3 end fraction space less than space 1 space space space space space space space left square bracket because space open curly brackets straight x close curly brackets space greater than 0
⇒ square root of 1 plus 3 straight a squared end root space less than thin space 2 space
⇒ 1+3a2 <4 
⇒ a2-1 <0
⇒(a+1)(a-1) <0

a ε (-1,1)
For no integral solution of a, we consider the interval (-1,0) ∪ (0,1)

Question
CBSEENMA11015467

Let α and β be the roots of equation px2 +qx r =0 p ≠0. If p,q and r are in AP and 1 over straight alpha space plus space 1 over straight beta = 4, then the value of |α- β| is

  • fraction numerator square root of 61 over denominator 9 end fraction
  • fraction numerator 2 square root of 17 over denominator 9 end fraction
  • fraction numerator square root of 34 over denominator 9 end fraction
  • fraction numerator 2 square root of 13 over denominator 9 end fraction

Solution

D.

fraction numerator 2 square root of 13 over denominator 9 end fraction

Question
CBSEENMA11015468

If the coefficients of x3 and x4 in the expansion of (1+ax+bx2)(1-2x)18 in powers of x are both zero, then (a,b) is equal to

  • open parentheses 16 comma 251 over 3 close parentheses
  • open parentheses 14 comma 251 over 3 close parentheses
  • open parentheses 14 comma 272 over 3 close parentheses
  • open parentheses 16 comma 272 over 3 close parentheses

Solution

D.

open parentheses 16 comma 272 over 3 close parentheses

In expansion of (1+ax+bx2)(1-2x)18,
Coefficient of x3 = Coefficient of x3 in (1-2x)18
+Coefficient of x2 in a(1-2x)18
+Coefficient of x in b(1-2x)18
 = - negative straight C presuperscript 18 subscript 3.2 cubed space plus space straight a straight C presuperscript 18 subscript 2.2 squared minus straight b to the power of 18 straight C subscript 1.2 space equals space 0
rightwards double arrow fraction numerator 18 space straight x 17 space straight x space 16 over denominator 3 space straight x 2 end fraction.8 space plus space straight a. fraction numerator 18 space straight x 17 over denominator 2 end fraction 2 squared minus straight b.18.2 space equals 0
rightwards double arrow space 17 straight a minus straight b space equals space fraction numerator 34 space straight x space 16 over denominator 3 end fraction space space... space left parenthesis straight i right parenthesis
Similarly space coefficient space of space straight x to the power of 4
straight C presuperscript 18 subscript 4.2 to the power of 4 space plus space straight a straight C presuperscript 18 subscript 3.2 cubed minus straight b to the power of 18 straight C subscript 2.2 squared space equals space 0
therefore space 32 straight a minus 3 straight b equals space 240
On space solving space Eqs. space left parenthesis straight i right parenthesis space and space left parenthesis ii right parenthesis space we space get
straight a space equals space 16 space straight b space equals space 272 over 3