JEE mathematics

Sponsor Area

Question
CBSEENMA11015552

If the mean deviation of the numbers 1, 1 + d, 1+ 2d, ... , 1 + 100d from their mean is 255, then the d is equal to 

  • 10.0

  • 20.0

  • 10.1

  • 20.2

Solution

C.

10.1

Mean space left parenthesis straight x with minus on top right parenthesis space equals space fraction numerator sum space of space quantities over denominator straight n end fraction
space equals space fraction numerator begin display style straight n over 2 end style space left parenthesis straight a plus 1 right parenthesis over denominator straight n end fraction space equals space 1 half left square bracket space 1 plus space 1 plus 100 straight d right square bracket space equals space 1 plus 50 space straight d
straight M. straight D. space equals space 1 over straight n space begin inline style stack sum space with space below and space on top end style vertical line straight x subscript straight i space minus straight x with minus on top vertical line
rightwards double arrow space 255 space equals space 1 over 101 left square bracket 50 straight d space plus 49 straight d space plus 48 straight d space plus..... space straight d plus space 0 space plus straight d plus space.... plus 50 straight d right square bracket
space equals space fraction numerator 2 straight d over denominator 101 end fraction open square brackets fraction numerator 50 space straight x 51 over denominator 2 end fraction close square brackets
rightwards double arrow space straight d space equals space fraction numerator 255 space straight x space 101 over denominator 50 space straight x space 51 end fraction space equals space 10.1

Sponsor Area

Question
CBSEENMA11015553

If the roots of the equation bx2+ cx + a = 0 be imaginary, then for all real values of x, the expression 3b2x2 + 6bcx + 2c2 is

  • greater than 4ab

  • less than 4ab

  • greater than -4ab

  • less than 4ab

Solution

C.

greater than -4ab

As, bx2 + cx + a = 0 has imaginary roots
So, c2< 4ab
Now, 3b2x2 + 6bcx + 2c2
= 3(bx + c)2– c2≥ – c2≥ – 4ab

Question
CBSEENMA11015554

Let A and B denote the statements
A: cos α + cosβ + cosγ = 0
B : sinα + sinβ + sinγ = 0
If cos(β – γ) + cos(γ – α) + cos(α – β) = – 3/2, then

  •  A is true and B is false

  • A is false and B is true

  • both A and B are true

  • both A and B are false

Solution

C.

both A and B are true

cos(β–γ) + cos(γ – α) + cos(α – β) = –3/2
⇒ 2cos (β – γ) + 2cos(γ– α) + 2cos(α – β) = –3
⇒ Σ(cosβcosγ + 2Σsin α sinβ + 3 = 0
⇒ (cosα+cosβ + cosγ)2+ (sinα + sinβ +sinγ)2=0
⇒ cosα + cosβ + cosγ = 0
sinα + sinα + sinγ = 0

Question
CBSEENMA11015555

If A, B and C are three sets such that A ∩ B = A∩ C and A ∪ B = A ∪ C, then

  • A = B

  • A = C

  • B = C

  • A ∩ B = φ

Solution

C.

B = C

A ∪ B = A ∪ C
⇒ n (A ∪ B) = n(A ∪ C)
⇒ n(A) + n(B) – n(A ∩ B)
= n(A) + n(C) – n(A ∩C)
n(B) = n(C)

Question
CBSEENMA11015556

The projections of a vector on the three coordinate axis are 6, - 3, 2 respectively. The direction cosines of the vector are

  •  6, –3, 2 

  • 6/5, -3/5, 2/5

  • 6/7, -3/7, 2/7

  • -6/7, -3/7, 2/7

Solution

C.

6/7, -3/7, 2/7

Projection of a vector on coordinate axis are
x2-x1, y2-y1, z2-z1
x2-x1 = 6, y2-y1 = -3, z2-z1 = 2

square root of left parenthesis straight x subscript 2 minus straight x subscript 1 right parenthesis squared space plus left parenthesis straight y subscript 2 minus straight y subscript 1 right parenthesis squared space plus space left parenthesis straight z subscript 2 minus straight z subscript 1 right parenthesis squared end root space equals space square root of 36 plus 9 plus 4 end root space equals space 7
The space Direction space cosines space of space the space vector space are space 6 over 7 comma 3 over 7 comma 2 over 7