CBSE mathematics

Sponsor Area

Question
CBSEENMA12035898

If A =   cosα  - sinαsinα     cosα , then for what value of α is A an identity matrix?

Solution

Matrix A is a matrix of order 2.

Identity matrix of second order is 1  00  1 

For A to be an identity matrix,

 1  0 0 1 =  cosα  - sinαsinα     cosα  cosα = 1   and   sinα = 0  cosα =  cos 0°   and   sinα = sin 0° α = 0°Thus, for   α = 0°, A is an identity  matrix.

Sponsor Area

Question
CBSEENMA12035899

What is the principal value of cos-1 -32 ?

Solution

Let cos-1 -32 = x cos x = -32 cos x = - cos  π6  cos x =  cos  π - π6  cos x =  cos  5π6  x = 5π6

Therefore, the principal value of  cos-1  - 32   is  5π2

Question
CBSEENMA12035902

What is the range of the function f(x) =  x - 1  x - 1 ?

Solution

f ( x ) is not defined at x = 1.

for  x  1,  f ( x ) =  x - 1  x - 1  =  x - 1  x - 1  = 1for  x  1,  f ( x ) =  x - 1  x - 1  = -  x - 1  x - 1  =   1 - x  x - 1  = -1

Thus, range of the function is either -1 or 1 at all the points and is undefined  at x = 1

Question
CBSEENMA12035903

Find the minor of the element of second row and third column ( a23 ) in the following determinant:

  2  -3   56   0  41   5 -7  

Solution

Given determinant =  2  -3   56    0  41    5-7 

Minor of the element  a23  is  M23

Obtained by deleting III column and II row

M23 =  2 -31    5       = 10 - ( -3 )       = 13

Question
CBSEENMA12035906

If  1  23  4    3  12   5   =  7   11k   23 , then write the value of k.

Solution

Given   1  23  4  =  3  12  5  =  711k   23  

Now using matrix multiplication in L.H.S., we get

 1 x 3 + 2 x 2      1 x 1 + 2 x 53 x 3 + 4 x 2      3 x 1 + 4 x 5   =   7  11k   23   3 + 4     1 + 109 + 8     3 + 20   =  7  11k   23   7  1117   23   =   7  11k   23 

Now on equating the corresponding elements we get the value of k = 17