CBSE mathematics

Sponsor Area

Question
CBSEENMA10009779

The probability of selecting a rotten apple randomly from a heap of 900 apples is 0.18. What is the number of rotten apples in the heap?

Solution

Let the total number of rotten apples in a heap = n

Total number of apples in a heap = 900

probability of selecting a rotten apple from a heap = 0.18

Now.

P(selecting a rotten apple) = Number of rotten applesTotal number of apples0.18 = n900n = 0.18 x 900n = 162Hence, the number of rotten apples is 162.

Sponsor Area

Question
CBSEENMA10009780

If a tower 30 m high, casts a shadow 10 3m long on the ground, then what is the angle of elevation of the sun?

Solution

                        WiredFaculty

Let AB be the tower and BC  be its shadow.

AB = 30 m, BC = 103 mIn ABC,tanθ = ABBCtanθ = 30103 tanθ =33tan θ = 3  But, tan 60° =3  θ = 60°Thus, the angle of elevation of sun is 60°. 

Question
CBSEENMA10009781

If the angle between two tangents drawn from an external point P to a circle of radius a and centre O, is 60°, then find the length of OP.

Solution

                  WiredFaculty

In the figure, PA and PB are two tangents from an external point P to a circle with centre O and radius = a

APB = 60°    ( given )APQ = 30°   ( tangents are equally inclined to the line                                  joining the point and the centre. )Now, OA  APIn right angled triangle OAP,sin 30° = OAOP 12 = aOPOP = 2a

Question
CBSEENMA10009782

What is the common difference of an A.P. in which a21- a7= 84?

Solution

Let a be the first term and d be the common difference of the given A.P.

a21 - a7 = 84a + 20d - a + 6d = 84a + 20d -a - 6d = 84 14d = 84 d = 6Hence, the common difference is 6.

Question
CBSEENMA10009783

A circle touches all the four sides of a quadrilateral ABCD. Prove that 

AB + CD = BC + DA

Solution

                    WiredFaculty   

 

Since tangents drawn from an external point to a circle are equal in length, we have

AP = AS    ........(i)

BP = BQ   ........(ii)

CR = CQ   ........(iii)

DR = DS   ........(iv)

Adding (i), (ii), (iii), (iv), we get 

 

    AP + BP + CR + DR = AS + BQ + CQ + DS

 

  ( AP + BP ) + ( CR + DR ) = ( AS + DS ) + ( BQ + CQ )

 

⇒  AB + CD = AD + BC

 

⇒  AB + CD = BC + DA