CBSE mathematics

Sponsor Area

Question
CBSEENMA10009748

The probability that a number selected at random from the numbers 1, 2, 3, ..., 15 isa multiple of 4, is

  • 415

  • 212

  • 15

  • 13

Solution

C.

15

The multiple of 4 between  1  and  15 are  4, 8, 12. the probability of getting amultiple of 4 = 315  = 15

Sponsor Area

Question
CBSEENMA10009749

Two circles touch each other externally at P. AB is a common tangent to the circlestouching them at A and B. The value of  APB is

  • 30°

  • 45°

  • 60°

  • 90°

Solution

D.

90°

WiredFaculty

TA=TPTPA = TPATB= TPTBP=TPBTAP+TBP=TPA+TPB = APBTAP+TBP+APB = 180°   [Sum of ...180°]APB+APB=180°2APB=180°APB=90°

Question
CBSEENMA10009750

If k, 2k- 1 and 2k + 1 are three consecutive terms of an A.P., the value of k is

  • 2

  • 3

  • -3

  • 5

Solution

B.

3

K,  2K-1,  2K+1  are in Arithmetic Progression2x(2k-1) = k+2k+14k-2=3k+1k=3

Question
CBSEENMA10009751

In a family of 3 children, the probability of having at least one boy is

  • 78

  • 18

  • 58

  • 34

Solution

A.

78

There are in all 23 = 8 combinations or outcomes for the gender of the 3 children

The 8 combinations are as follows

BBB, BBG, BGB, BGG, GBB, GBG, GGB, GGG

Thus the probability of having at least one boy in a family is 78

 

Question
CBSEENMA10009752

A chord of a circle of radius 10 cm subtends a right angleat its centre. The length of the chord (in cm) is

  • 52

  • 102

  • 52

  • 103

Solution

B.

102

WiredFaculty

Given:  AOB is given as 90°AOB is an isosceles trianglesince OA=OBTherefore OAB= OBA= 45°Thus AOP=45° and BOP= 45°Hence AOP and BOP also are isosceles trianglesThus let AP=PB=OP=xUsing pythagoras theoremx2 + x2 = 102Thus 2x2 = 100x=52Hence length of chord AB = 2x = 102