Physics Part I Chapter 6 Electromagnetic Induction
  • Sponsor Area

    NCERT Solution For Class 12 Physics Physics Part I

    Electromagnetic Induction Here is the CBSE Physics Chapter 6 for Class 12 students. Summary and detailed explanation of the lesson, including the definitions of difficult words. All of the exercises and questions and answers from the lesson's back end have been completed. NCERT Solutions for Class 12 Physics Electromagnetic Induction Chapter 6 NCERT Solutions for Class 12 Physics Electromagnetic Induction Chapter 6 The following is a summary in Hindi and English for the academic year 2021-2022. You can save these solutions to your computer or use the Class 12 Physics.

    Question 1
    CBSEENPH12039436

    State the principle of an ac generators and explain its working with the help of a labelled diagram. Obtain the expression for the emf induced in a coil havin N turns each of cross-sectional area, rotating with a constant angular speed 'ω' in a magnetic field B, directed perpendicular to the axis of rotation.

    Solution

    Principle − AC generator based on the phenomenon of electromagnetic induction.

    Construction:

    Main parts of an ac generator:

    1. Armature − Rectangular coil ABCD

    2. Filed Magnets − Two pole pieces of a strong electromagnet

    3. Slip Rings − The ends of coil ABCD are connected to two hollow metallic rings R1 and R2.

    4. Brushes − B1 and B2 are two flexible metal plates or carbon rods. They are fixed and are kept in tight contact with R1 and R2 respectively.

    Theory and Working − As the armature coil is rotated in the magnetic field, angle θ between the field and normal to the coil changes continuously. Therefore, magnetic flux linked with the coil changes. An emf is induced in the coil. According to Fleming’s right-hand rule, current induced in AB is from A to B and it is from C to D in CD. In the external circuit, current flows from B2 to B1.

    To calculate the magnitude of emf induced:

    Suppose

    A → Area of each turn of the coil

    N → Number of turns in the coil

    B→ Strength of magnetic field

    θ → Angle which normal to the coil makes with State the principle of an ac generators and explain its working with tat any instant t

    State the principle of an ac generators and explain its working with t

    ∴ Magnetic flux linked with the coil in this position:

    Φ = N (B.A)= NBA cosθ= NBA cosωt …(i)

    Where, ‘ω’ is angular velocity of the coil

    As the coil rotates, angle θchanges. Therefore, magnetic flux Φ linked with the coil changes and hence, an emf is induced in the coil. At this instant t, if e is the emf induced in the coil, then

    e = - dt =-ddt (NAB cos ωt) = -NABddt(cos ωt)=-NAB (-sin ωt) ω

    Question 9
    CBSEENPH12039730

    A coil having n turns and resistance 4R Ω. This combination is moved in time t seconds from a magnetic field W1 weber to W2 weber. The induced current in the circuit is

    • fraction numerator negative straight W subscript 2 minus straight W subscript 1 over denominator 5 Rnt end fraction
    • fraction numerator negative left parenthesis straight W subscript 2 minus straight W subscript 1 right parenthesis over denominator 5 Rt end fraction
    • fraction numerator negative straight W subscript 2 minus straight W subscript 1 over denominator Rnt end fraction
    • fraction numerator straight n left parenthesis straight W subscript 2 minus straight W subscript 1 right parenthesis over denominator Rt end fraction

    Solution

    B.

    fraction numerator negative left parenthesis straight W subscript 2 minus straight W subscript 1 right parenthesis over denominator 5 Rt end fraction straight I equals space straight n over straight R comma dϕ over dt
or space straight I equals space 1 over straight R comma space straight n space open square brackets fraction numerator straight W subscript 2 minus straight W subscript 1 over denominator straight t subscript 2 minus space straight t subscript 1 end fraction close square brackets
straight I equals space fraction numerator negative 1 over denominator left parenthesis straight R space plus 4 straight R right parenthesis end fraction fraction numerator straight n left parenthesis straight W subscript 2 minus straight W subscript 1 right parenthesis over denominator straight t end fraction
or comma space straight I space equals space fraction numerator straight n left parenthesis straight W subscript 2 minus straight W subscript 1 right parenthesis over denominator 5 Rt end fraction
    (W1 and W2 are not the magnetic fields, but the values of flux associated with one turn of coil)
    Question 11
    CBSEENPH12040139

    The magnetic potential energy stored in a certain inductor is 25 mJ, when the current in the inductor is 60 mA. This inductor is of inductance

    • 0.138 H

    • 138.88 H

    • 13.89

    • 1.389 H

    Solution

    C.

    13.89

    Energy stored in the inductor, 
    U = 25 x 10-3 J

    Current, I = 60 mA
    Energy stored in inductor U = 12LI225 x 10-3 = 12 x L x (60 x 10-3)2L = 25 x 2 x 106 x 10-33600 = 13.89 H

    Question 12
    CBSEENPH12047694

    Two similar coils are kept mutually perpendicular such that their centres coincide. At the centre, find the ratio of the magnetic field due to one coil and the resultant magnetic field through both coils, if the same current is flown.

    • 1:2

    • 1:3

    • 1:2

    • 3:1

    Solution

    A.

    1:2

    Suppose magnetic field is produced due to each coil is B.The coils are kept perpendicular hence, the angle between these is 900.

    Therefore the resultant magnetic field is given by :   B2B=1:2Hence the ratio of magnetic field is due to one coil and the resultant magnetic field is given by  =B2 + B2 + 2B.B cos900    =2B2+2B2×0  =2B2 = B2

    Question 13
    CBSEENPH12047755

    The primary and secondary coils of a transformer have 50 and 1500 turns respectively. If the magnetic flux  ϕ linked with the primary coil is given by  ϕ = ϕo + 4t where ϕ is weber, t is time in second and ϕo is a constant, the output vltage across the secondary coil is

    • 90 v

    • 120 V

    • 220 V

    • 30 V

    Solution

    B.

    120 V

    The magnetic flux linked with the primary coil is given by

    ϕ = ϕo + 4t

    So voltage across primary

    VP =dt      = d dtϕo + 4 tVP  = 4 volt                         ( as ϕo = constant )

    Also we have

    NP = 50 and NS = 1500

    From relation

    VSVP = NSNP VS = VP NSNP VS = 4 150050 VS = 120 V

    Question 14
    CBSEENPH12047758

    A transformer is used to light a 100 W and 110 V lamp from a 220 V mains. If the main current is 0.5 A, the efficiency of the transformer is approximately

    • 30%

    • 50%

    • 90%

    • 10%

    Solution

    C.

    90%

    The efficiency of the transformer 

    = Energy obtained from the secoindary coilEnergy given to the primary coil

    η = Output powerInput power η = Vs IsVp Ip

    Given:- Vs Is = 100 W, 

                  Vp = 220 V,

                  I = 0.5 A

     η = 100220 × 0.5     = 0.90η  = 90%

    Question 15
    CBSEENPH12047763

    A coil of inductance 300 mH and resistance 2 0 is connected to a source of voltage 2 V. The current reaches half of its steady state value in

    • 0.05 s

    • 0.1 s

    • 0.15 s

    • 0.3 s

    Solution

    B.

    0.1 s

    The current at any instant is given by

    I = Io ( 1 - e-R t /L )

     Io2 = Io 1 - e-R t L12   = 1 - eR t L

    e-Rt/L = 1/ 2

    RtL = ln 2 

     t = LR ln 2         = 300 × 10-32 × 0.693          = 150 × 0.693 × 10-3 t = 0.10395 s t = 0.1 s

    Question 16
    CBSEENPH12047773

    When power is drawn from the secondary coil of the transformer, the dynamic resistance

    • increases

    • decreases

    • remains unchanged

    • changes erratically

    Solution

    A.

    increases

    When the secondary coil circuit is open, the magnetic flux in the core is produced by the primary current only. When the secondary circuit is closed, the currents in the secondary coil also produce the magnetic flux in the core but in opposite direction. This decreases the core flux and hence reduces the back emf produced in the primary coil.
    The source emf is now in excess of the back emf, more current is drawn in the primary coil. Hence, the power factor is no longer zero. The power factor has increased or the phase difference is no longer 90°, ie, phase difference has decreased. Thus, dynamic resistance has increased.

    Question 17
    CBSEENPH12047802

    The magnetic flux linked with a coil at any instant t is given by the equation ϕ = 5t3 - 100 t + 300. The magitude of emf induced in coil after 3 s is 

    • 10 V

    • 20 V

    • 35 V

    • 70 V

    Solution

    C.

    35 V

    Given:-  ϕ = 5 t3 - 100t + 300

                 e = -dt

                    = - ddt5 t3 - 100 t + 300

                    = - 15 t2 - 100 + 0

                     = 15 t2 + 100

                    et= -15 32 + 100

                           = -135 + 100

                   et = -35 V

    Sponsor Area

    Question 18
    CBSEENPH12047803

    In 0.1 s, the current in a coil increases from 1 A to 1.5A. If inductance of coil is 60 mH, then induced current in external resistance of 32 will be

    • 1 A

    • 0.5 A

    • 0.2 A

    • 0.1 A

    Solution

    D.

    0.1 A

    The magnitude of induced emf in a circuit is equal to the inductance × rate of current change and a circuit has an inductance of one Henry will have one volt induced in the circuit when the circuit changes at a rate of one ampere per second.

    When a current in coil changes, it induces a back emf in the same coil. The self-induced emf is given by

    Induced emf,

         e = L didt

               = 60 × 10-3 ×1.5  - 10.1

          e = 0.3 V

    Induced current,

            i = eR

               = 0.33

           i  = 0.1 A

    Question 19
    CBSEENPH12047851

    In 0.2 s, the current in a coil increases from 2.0 A to 3.0 A. If inductance of coil is 60 mH, then induced current in external resistance of 3 Ω will be

    • 1A

    • 0.5 A

    • 0.2 A

    • 0.1 A

    Solution

    D.

    0.1 A

    When a current in a coil changes, it induces a back emf back emf in the same coil. The self-induced emf is given by

        Induced emf

                      e = L didt

                           = 60 × 10-3  × 3.0 - 2.00.2

                            = 60 × 10-3 × 10.2

                            = 0.3 A

    A changing magnetic field through a coil of wire therefore must induce an emf in the coil which in turn causes current to flow.     

         Induced current 

                   i  = eR

                     = 0.33

                 i  = 0.1 A

    Question 20
    CBSEENPH12047905

    A transformer having efficiency of 75 % is working on 220 V and 4.4 kW power supply. If the current in the secondary coil is 5 A. What will be the voltage across secondary coil and the current in primary coil?

    • Vs = 220 V, ip = 20A

    • Vs = 660 V, ip = 15 A

    • Vs = 660 V, ip = 20 A

    • Vs = 220 V, ip = 15 A

    Solution

    C.

    Vs = 660 V, ip = 20 A

    Given:- Pin = 4.4 kW,

            Vp = 220 V,

            is = 5A,

             Vs = ?

    We know that

             iP = PinVP

                 = 4.4 × 103220

             ip = 20A

    ∴  Efficiency, η = output powerinput power

    Percentage efficiency

                η = PoutPin × 100

             75% = 100 × Pout4.4 × 103

             Pout75 × 4.4 × 103100

                    = 3300 W

    ∴     Pout = VS. iS

    ⇒        VS33005  

     ⇒        VS = 660 V 

    Question 21
    CBSEENPH12047907

    A cylinder of radius R and length L is placed in a uniform electric field E parallel to the cylinder axis. The total flux for the surface of the cylinder is given by

    • 2πR2 E

    • π R2E

    • RE

    • Zero

    Solution

    D.

    Zero

    Flux through surface A

              ϕ = E × πR2

              ϕA = E × π R2

         

    Flux through curved surface

              C =  E . dS

                = Eds cos90o

               C = 0

    Total flux through cylinder = ϕA + ϕB + ϕC 

                                           = 0

    Question 22
    CBSEENPH12047911

    In the given figure what will be the coefficient of mutual inductance

         

    • μ0 a2πln 1 + a2b

    • μ0 aπ ln 1 + b2a

    • μ0 a2π ln1 + ab

    • μ0 a2 π ln1 + ba

    Solution

    C.

    μ0 a2π ln1 + ab

    Magnetic field due to wire

          B = μ02πx .i

          dA = a dx

           

    and  dϕ = B. dA

    On integrating both sides, we get

          = B dA

    ⇒    ϕ = μ0 i2πba+ba dxx

              = μ0 i2π a   ln x ba+b

               =μ0 a2 π a ln a + b  - ln b 

               = μ02 π ln 1 + ab 

                = M i

    Where M = coefficient of mutual inductance

    and     M = μ0 i2 π ln 1 + ab

    Question 23
    CBSEENPH12047933

    The total charge induced in a conducting loop when it is moved in magnetic field depends on

    • the rate of change of magnetic flux

    • initial magnetic flux only

    • the total change in magnetic flux

    • final magnetic flux only

    Solution

    C.

    the total change in magnetic flux

    The induced emf is produced due to change in magnetic flux in the coil.

    Induced emf is given by

        e =  - dt

    As

       i  = eR

          = -1R dt

    ∴ Total charge induced = i dt

                              = - 1R dt dt

                              = - 1R ϕ1ϕ2 

                               = 1R ϕ1 - ϕ2

    Thus, the induced charge in a conducting loop, moving in a magnetic field depends on the total change in magnetic flux.        

    Question 24
    CBSEENPH12047941

    For MRI, a patient is slowly pushed in a time of 10 s within the coils of the magnet where magnetic field is B = 2.0 T. If the patient's trunk is 0.8 m in circumference, the induced emf around the patient's trunk is

    • 10.18 x 10-2 V

    • 9.66 × 102 V

    • 10.18 × 10-3 V

    • 1.51 × 10-2 V

    Solution

    C.

    10.18 × 10-3 V

    Change in magnetic field in 10 s = 2.0 T

    As 

        ε = - dt

             =- A dBdt                        (  ϕ = BA )

    Circumference of patient's trunk 

            2 πr = 0.8 m              (given)

    ∴            r = 0.82π m

                  r = 0.4πm

    Area of cross section 

                  A = π r2

                  A = π 0.4π2

                   A = 0.16πm2

    ∴           ε = 0.16π × 210 V

                 ε  ≈ 10.18 × 10-3 V

    Question 25
    CBSEENPH12048012

    The self-inductance of a coil having 400 turns is 10 mH. The magnetic flux through the cross-section of the coil corresponding to current 2 mA is

    • 2 × 10-5 Wb

    • 2 × 10-3 Wb

    • 3 × 10-5 Wb

    • 8 × 10-3 Wb

    Solution

    A.

    2 × 10-5 Wb

    Number of turns N = 400

    L = 10 mH = 10 × 10-3 H

    I = 2 mA = 2 × 10-3 A

    Total magnetic flux linked with the coil,

     ϕ = N L I

         = 400 × ( 10 × 10-3 ) × 2 × 10-3

    ϕ = 8 × 10-3 Wb

    Magnetic flux through the cross-section of the coil = Magnetic flux linked with each turn

                    = ϕN

                    = 8 × 10-3400

                      = 2 ×  10-5 Wb

    Question 26
    CBSEENPH12048014

    A coil of inductance 8 μH is connected to a capacitor of capacitance 0.02 μF To what wavelength is this circuit tuned?

    • 7.54 × 103 m

    • 4.12 × 102 m

    • 15.90 × 103 m

    • 7.54 × 102 m

    Solution

    D.

    7.54 × 102 m

       L = 8 μH = 8 × 10-6 H

       C = 0.02 μF = 0.02 × 10-6 F

    ∴    Resonant frequency

         fr12π LC

            = 12 π 8 × 10-6 × 0.02 × 10-6   

        fr = 3.98 × 105 Hz

    If c ( = 3 × 108 m s-1 ) is the velocity of the electromagnetic wave, then

    Wavelength

          λ = cf

              = 3 × 1083.98 × 105

         λ = 7.54 × 102 m

    Mock Test Series

    Sponsor Area

    Sponsor Area

    NCERT Book Store

    NCERT Sample Papers

    Entrance Exams Preparation