Mathematics Part Ii Chapter 13 Probability
  • Sponsor Area

    NCERT Solution For Class 12 Mathematics Mathematics Part Ii

    Probability Here is the CBSE Mathematics Chapter 13 for Class 12 students. Summary and detailed explanation of the lesson, including the definitions of difficult words. All of the exercises and questions and answers from the lesson's back end have been completed. NCERT Solutions for Class 12 Mathematics Probability Chapter 13 NCERT Solutions for Class 12 Mathematics Probability Chapter 13 The following is a summary in Hindi and English for the academic year 2021-2022. You can save these solutions to your computer or use the Class 12 Mathematics.

    Question 1
    CBSEENMA12033575

    If a leap year is selected at random, what is the chance that it will contain 53 Tuesdays?

    Solution

    Leap year contains 366 days.
    ∴ there are 52 complete weeks and two days other. The following are the possibilities for these two ‘over’ days:
    (i) Sunday and Monday (ii) Monday and Tuesday (iii) Tuesday and Wednesday
    (iv) Wednesday and Thursday (v) Thursday and Friday (vi) Friday and Saturday (vii) Saturday and Sunday.
    Now there will be 53 Tuesdays in a leap year when one of the two over days is a Tuesday.
    ∴  out of 7 possibilities, two are favourable to this event.
     therefore space space space required space probability space equals space 2 over 7.

    Question 2
    CBSEENMA12033576

    If each element of a second order determinant is either zero or one, what is the probability that the value of determinant is positive? (Assume that the individual enteries of the determinant are chosen independently, each value being assumed with probability 1 half right parenthesis.

    Solution

    There are four entries in determinant of 2 × 2 order. Each entry may be filled up in two ways with 0 or 1.
    ∴ number of determinants that can be formed = 24 = 16
    ∴ total number of cases = 16
    The value of determinant is positive in the cases
    open vertical bar table row 1 0 row 0 1 end table close vertical bar comma space open vertical bar table row 1 0 row 1 1 end table close vertical bar comma space open vertical bar table row 1 1 row 0 1 end table close vertical bar
    therefore space space number of favourable cases  = 3
    therefore the probability that the determinant is positive = 3 over 16.

    Question 3
    CBSEENMA12033577
    Question 4
    CBSEENMA12033578

    If straight P left parenthesis straight A right parenthesis space equals space 7 over 13 comma space straight P left parenthesis straight B right parenthesis space equals space 9 over 13 comma space space straight P left parenthesis straight A intersection straight B right parenthesis space equals 4 over 13 comma space evaluate space straight P left parenthesis straight A space left enclose straight B right parenthesis.

    Solution

    Here, straight P left parenthesis straight A right parenthesis space equals 7 over 13 comma space space straight P left parenthesis straight B right parenthesis space equals space 9 over 13 comma space space straight P left parenthesis straight A intersection straight B right parenthesis space equals space 4 over 13                        ...(1)
    Now,     straight P left parenthesis straight A space left enclose straight B right parenthesis space equals space fraction numerator straight P left parenthesis straight A intersection straight B right parenthesis over denominator straight P left parenthesis straight B right parenthesis end fraction space equals space fraction numerator begin display style 4 over 13 end style over denominator begin display style 9 over 13 end style end fraction space space space space space space space space space space space space space space open square brackets because space space of space space left parenthesis 1 right parenthesis close square brackets
                        equals space 4 over 13 cross times 13 over 9 space equals 4 over 9.

    Question 5
    CBSEENMA12033579

    Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and P(E ∩ F) = 0.2, find P(E | F) and P(F | E).

    Solution
    Here P(E) = 0.6, P(F) = 0.3, P(E ∩ F) = 0.2
    Now,           straight P left parenthesis straight E space left enclose space straight F end enclose right parenthesis space equals space fraction numerator straight P left parenthesis straight E space intersection space straight F right parenthesis over denominator straight P left parenthesis straight F right parenthesis end fraction space equals space fraction numerator 0.2 over denominator 0.3 end fraction space equals 2 over 3
    and      straight P left parenthesis straight F space left enclose straight E right parenthesis space equals space fraction numerator straight P left parenthesis straight F intersection straight E right parenthesis over denominator straight P left parenthesis straight E right parenthesis end fraction space equals fraction numerator straight P left parenthesis straight E intersection straight F right parenthesis over denominator straight P left parenthesis straight E right parenthesis end fraction equals space fraction numerator 0.2 over denominator 0.6 end fraction equals space 2 over 6 space equals 1 third
    Question 6
    CBSEENMA12033580

    Compute P(A|B), if P(B) = 0.5 and P(A ∩ B) = 0.32.

    Solution
    Here P(B) = 0.5, P(A ∩ B) = 0.32
    Now straight P left parenthesis straight A space left enclose straight B right parenthesis end enclose space equals space fraction numerator straight P left parenthesis straight A intersection straight B right parenthesis over denominator straight P left parenthesis straight B right parenthesis end fraction space equals space fraction numerator 0.32 over denominator 0.5 end fraction space equals space 32 over 100 cross times 10 over 5 space equals space 16 over 25
    Question 7
    CBSEENMA12033581

    Evaluate straight P left parenthesis straight A union straight B right parenthesis comma space space if space 2 space straight P left parenthesis straight A right parenthesis space equals space straight P left parenthesis straight B right parenthesis space equals 5 over 13 space and space straight P left parenthesis straight A space left enclose straight B right parenthesis space equals 2 over 5.

    Solution

                  2 P(A) = P(B) = 5 over 13                             (given)
    therefore space space space space space space straight P left parenthesis straight A right parenthesis space equals space 5 over 26 comma space space space straight P left parenthesis straight B right parenthesis space equals space 5 over 13
    Also,    straight P left parenthesis straight A space left enclose straight B right parenthesis space equals space 2 over 5 space space space space space rightwards double arrow space space space space fraction numerator straight P left parenthesis straight A intersection straight B right parenthesis over denominator straight P left parenthesis straight B right parenthesis end fraction space equals space 2 over 5 space space space rightwards double arrow space space space space space fraction numerator straight P left parenthesis straight A intersection straight B right parenthesis over denominator begin display style 5 over 13 end style end fraction space equals 2 over 5
    therefore space space space space space space space straight P left parenthesis straight A intersection straight B right parenthesis space equals space 2 over 5 cross times 5 over 13 space equals space 2 over 13
    Now,             straight P left parenthesis straight A union straight B right parenthesis space equals space straight P left parenthesis straight A right parenthesis plus straight P left parenthesis straight B right parenthesis minus straight P left parenthesis straight A intersection straight B right parenthesis
                                        equals space 5 over 26 plus 5 over 13 minus 2 over 13 space equals fraction numerator 5 plus 10 minus 4 over denominator 26 end fraction space equals 11 over 26

    Question 8
    CBSEENMA12033582

    A and B are two events such that P(A) ≠ 0. Find P (B|A), if
    (i) A is a subset of B      (ii) A ∩ B = ϕ

    Solution
    (i) Since A is a subset of B
    therefore space space space space space straight A space intersection thin space straight B space equals space straight A                                    ...(1)
    Now straight P left parenthesis straight B space left enclose straight A right parenthesis end enclose space equals space fraction numerator straight P left parenthesis straight B intersection straight A right parenthesis over denominator straight P left parenthesis straight A right parenthesis end fraction space equals space fraction numerator straight P left parenthesis straight A intersection straight B right parenthesis over denominator straight P left parenthesis straight A right parenthesis end fraction space equals space fraction numerator straight P left parenthesis straight A right parenthesis over denominator straight P left parenthesis straight A right parenthesis end fraction                     open square brackets because space of space left parenthesis 1 right parenthesis close square brackets
    therefore space space space space straight P left parenthesis straight B space left enclose straight A right parenthesis end enclose space equals space 1
    (ii) straight P left parenthesis straight B space left enclose straight A right parenthesis end enclose space equals space fraction numerator straight P thin space left parenthesis straight B intersection straight A right parenthesis over denominator straight P left parenthesis straight A right parenthesis end fraction space equals space fraction numerator straight P left parenthesis straight A intersection straight B right parenthesis over denominator straight P left parenthesis straight A right parenthesis end fraction
                       equals space fraction numerator straight P left parenthesis straight ϕ right parenthesis over denominator straight P left parenthesis straight A right parenthesis end fraction space space space space space space space space space space space space space space space space space space space space space space space space open square brackets because space space space straight A space intersection straight B space equals straight ϕ space left parenthesis given right parenthesis close square brackets
space equals space fraction numerator 0 over denominator straight P left parenthesis straight A right parenthesis end fraction space equals space 0
    Question 9
    CBSEENMA12033583

    If straight P left parenthesis straight A right parenthesis space equals space 6 over 11 comma space space space straight P left parenthesis straight B right parenthesis space equals space 5 over 11 space space and space straight P left parenthesis straight A space union space straight B right parenthesis space equals space 7 over 11 comma space space find space straight P left parenthesis straight A intersection straight B right parenthesis.

    Solution

    Here  straight P left parenthesis straight A right parenthesis space equals space 6 over 11 comma space space straight P left parenthesis straight B right parenthesis space equals space 5 over 11 comma space space straight P left parenthesis straight A union straight B right parenthesis space equals space 7 over 11
     Now      straight P left parenthesis straight A union straight B right parenthesis space equals space straight P left parenthesis straight A right parenthesis space plus space straight P left parenthesis straight B right parenthesis space minus space straight P left parenthesis straight A intersection straight B right parenthesis
       rightwards double arrow space space space space space space space space space space space space space space space space space space space 7 over 11 space equals space 6 over 11 plus 5 over 11 minus space straight P left parenthesis straight A space intersection space straight B right parenthesis
rightwards double arrow space space space space space space space space space space space space space space space space straight P left parenthesis straight A intersection straight B right parenthesis space equals space 6 over 11 plus 5 over 11 minus 7 over 11 space equals space fraction numerator 6 plus 5 minus 7 over denominator 11 end fraction space equals 4 over 11

    Question 10
    CBSEENMA12033584

    If straight P left parenthesis straight A right parenthesis space equals space 6 over 11 comma space space space straight P left parenthesis straight B right parenthesis space equals space 5 over 11 space space and space straight P left parenthesis straight A space union space straight B right parenthesis space equals space 7 over 11 comma space space find space straight P left parenthesis straight A space left enclose straight B right parenthesis.

    Solution

    Here  straight P left parenthesis straight A right parenthesis space equals space 6 over 11 comma space space straight P left parenthesis straight B right parenthesis space equals space 5 over 11 comma space space straight P left parenthesis straight A union straight B right parenthesis space equals space 7 over 11
     Now      straight P left parenthesis straight A space left enclose straight B right parenthesis end enclose space equals space fraction numerator straight P left parenthesis straight A space intersection straight B right parenthesis over denominator straight P left parenthesis straight B right parenthesis end fraction space equals space fraction numerator begin display style 4 over 11 end style over denominator begin display style 5 over 11 end style end fraction space equals space 4 over 11 cross times 11 over 5 space equals space 4 over 5
       

    Question 11
    CBSEENMA12033585

    If straight P left parenthesis straight A right parenthesis space equals space 6 over 11 comma space space space straight P left parenthesis straight B right parenthesis space equals space 5 over 11 space space and space straight P left parenthesis straight A space union space straight B right parenthesis space equals space 7 over 11 comma space space find space straight P left parenthesis straight B space left enclose straight A right parenthesis.

    Solution

    Here  straight P left parenthesis straight A right parenthesis space equals space 6 over 11 comma space space straight P left parenthesis straight B right parenthesis space equals space 5 over 11 comma space space straight P left parenthesis straight A union straight B right parenthesis space equals space 7 over 11
     Now,      straight P left parenthesis straight B space left enclose straight A right parenthesis end enclose space space equals space fraction numerator straight P left parenthesis straight B intersection straight A right parenthesis over denominator straight P left parenthesis straight A right parenthesis end fraction space equals fraction numerator straight P left parenthesis straight A intersection straight B right parenthesis over denominator straight P left parenthesis straight A right parenthesis end fraction space equals fraction numerator begin display style 4 over 11 end style over denominator begin display style 6 over 11 end style end fraction space equals space 4 over 6 space equals space 2 over 3

    Question 12
    CBSEENMA12033586

    If P( A) = 0.8,   P(B) = 0.5 and  P(B | A) = 0.4, find P(A ∩ B).

    Solution

    Here, P(A) = 0.8,   P(B) = 0.5,  P(B | A) = 0.4
    Now,             straight P left parenthesis straight B space left enclose straight A right parenthesis end enclose space equals space fraction numerator straight P left parenthesis straight B space intersection space straight A right parenthesis over denominator straight P left parenthesis straight A right parenthesis end fraction
    rightwards double arrow space space space space space space 0.4 space equals space fraction numerator straight P left parenthesis straight A intersection straight B right parenthesis over denominator 0.8 end fraction space space rightwards double arrow space space space space straight P left parenthesis straight A intersection straight B right parenthesis space equals space 0.32

    Question 13
    CBSEENMA12033587

    If P( A) = 0.8,   P(B) = 0.5 and  P(B | A) = 0.4, find P(A | B).

    Solution

    Here, P(A) = 0.8,   P(B) = 0.5,  P(B | A) = 0.4
    Now,             straight P left parenthesis straight A space left enclose straight B right parenthesis end enclose space equals fraction numerator straight P left parenthesis straight A space intersection space straight B right parenthesis over denominator straight P left parenthesis straight B right parenthesis end fraction space equals space fraction numerator 0.32 over denominator 0.5 end fraction space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets because space of space left parenthesis straight i right parenthesis close square brackets
                                       equals space 32 over 100 cross times 10 over 5 space equals 16 over 25 space equals space 0.64

    Question 14
    CBSEENMA12033588

    If P( A) = 0.8,   P(B) = 0.5 and  P(B | A) = 0.4, find P (A ∪ B)

    Solution

    Here, P(A) = 0.8,   P(B) = 0.5,  P(B | A) = 0.4
    Now,         P(A ∪ B) = straight P left parenthesis straight A right parenthesis plus straight P left parenthesis straight B right parenthesis minus straight P left parenthesis straight A intersection straight B right parenthesis space equals space 0.8 plus 0.5 minus 0.32 space space space space left square bracket because space of space left parenthesis straight i right parenthesis right square bracket
                                     = 0.98                              

    Question 15
    CBSEENMA12033589

    A fair die is rolled. Consider events E = {1, 3, 5}, F = {2, 3} and G = {2, 3, 4, 5}. Find  P(E|F) and P(F|E).

    Solution

    Since fair die is rolled
    therefore space space space straight S space equals space open curly brackets 1 comma space 2 comma space 3 comma space 4 comma space 5 comma space 6 close curly brackets.
            straight E space equals open curly brackets 1 comma space 3 comma space 5 close curly brackets comma space space space straight F space equals space open curly brackets 2 comma space 3 comma close curly brackets comma space space straight G space equals space open curly brackets 2 comma space 3 comma space 4 comma space 5 close curly brackets
              straight E space intersection space straight F space equals space open curly brackets 3 close curly brackets
    therefore space space space space space straight P left parenthesis straight E right parenthesis space equals space 3 over 6 comma space space space straight P left parenthesis straight F right parenthesis space equals space 2 over 6 comma space space straight P left parenthesis straight E intersection straight F right parenthesis space equals space 1 over 6
therefore space space space straight P left parenthesis straight E space left enclose straight F right parenthesis space equals fraction numerator straight P left parenthesis straight E intersection straight F right parenthesis over denominator straight P left parenthesis straight F right parenthesis end fraction space equals fraction numerator begin display style 1 over 6 end style over denominator begin display style 2 over 6 end style end fraction space equals 1 half
      straight P left parenthesis straight F space left enclose straight E right parenthesis space equals space fraction numerator straight P left parenthesis straight F intersection straight E right parenthesis over denominator straight P left parenthesis straight F right parenthesis end fraction space equals fraction numerator begin display style 1 over 6 end style over denominator begin display style 3 over 6 end style end fraction space equals 1 third

    Question 16
    CBSEENMA12033590

    A fair die is rolled. Consider events E = {1, 3, 5}, F = {2, 3} and G = {2, 3, 4, 5}. Find P(E|G) and P(G|E).

    Solution

    Since fair die is rolled
    therefore space space space straight S space equals space open curly brackets 1 comma space 2 comma space 3 comma space 4 comma space 5 comma space 6 close curly brackets.
            straight E space equals open curly brackets 1 comma space 3 comma space 5 close curly brackets comma space space space straight F space equals space open curly brackets 2 comma space 3 comma close curly brackets comma space space straight G space equals space open curly brackets 2 comma space 3 comma space 4 comma space 5 close curly brackets
    straight E intersection straight G space equals space open curly brackets 3 comma space 5 close curly brackets
therefore space space space straight P left parenthesis straight E right parenthesis space equals space 3 over 6 comma space space straight P left parenthesis straight G right parenthesis space equals space 4 over 6 comma space space straight P left parenthesis straight E space intersection space straight G right parenthesis space equals 2 over 6
therefore space space space space space straight P left parenthesis straight E space left enclose straight G right parenthesis end enclose space equals space fraction numerator straight P left parenthesis straight E intersection straight G right parenthesis over denominator straight P left parenthesis straight G right parenthesis end fraction space equals space fraction numerator begin display style 2 over 6 end style over denominator begin display style 4 over 6 end style end fraction equals space 2 over 4 space equals space 1 half
space space space space space space space space space space space space space space space straight P left parenthesis straight G space left enclose space straight E right parenthesis end enclose space equals space fraction numerator straight P left parenthesis straight G intersection straight E right parenthesis over denominator straight P left parenthesis straight E right parenthesis end fraction space equals space fraction numerator straight P left parenthesis straight E intersection straight G right parenthesis over denominator straight P left parenthesis straight E right parenthesis end fraction space equals space fraction numerator begin display style 2 over 6 end style over denominator begin display style 3 over 6 end style end fraction space equals space 2 over 3
space space space space space
              
      

    Question 17
    CBSEENMA12033591

    A fair die is rolled. Consider events E = {1, 3, 5}, F = {2, 3} and G = {2, 3, 4, 5}. Find P((E ∪ F) | G) and P((E ∩ F) | G)

    Solution

    Since fair die is rolled
    therefore space space space straight S space equals space open curly brackets 1 comma space 2 comma space 3 comma space 4 comma space 5 comma space 6 close curly brackets.
            straight E space equals open curly brackets 1 comma space 3 comma space 5 close curly brackets comma space space space straight F space equals space open curly brackets 2 comma space 3 comma close curly brackets comma space space straight G space equals space open curly brackets 2 comma space 3 comma space 4 comma space 5 close curly brackets
              straight E union straight F space equals space open curly brackets 1 comma space 2 comma space 3 comma space 5 close curly brackets comma space space straight E intersection straight F space equals open curly brackets 3 close curly brackets
left parenthesis straight E union straight F right parenthesis space intersection space straight G space equals space open curly brackets 2 comma space 3 comma space 5 close curly brackets comma space space left parenthesis straight E intersection straight F right parenthesis space intersection straight G space equals space open curly brackets 3 close curly brackets
straight P open parentheses left parenthesis straight E union straight F right parenthesis space intersection straight G close parentheses space equals space 3 over 6 comma space space space straight P open parentheses left parenthesis straight E space intersection straight F right parenthesis space intersection space straight G close parentheses space equals 1 over 6
    therefore space space straight P open parentheses left parenthesis straight E space union straight F right parenthesis space left enclose straight G close parentheses space equals space fraction numerator straight P left parenthesis left parenthesis straight E union straight F right parenthesis space intersection straight G right parenthesis over denominator straight P left parenthesis straight G right parenthesis end fraction space equals space fraction numerator begin display style 3 over 6 end style over denominator begin display style 4 over 6 end style end fraction space equals 3 over 4
    and      straight P left parenthesis left parenthesis straight E union straight F space left enclose straight G right parenthesis end enclose space equals space fraction numerator straight P left parenthesis left parenthesis straight E union straight F right parenthesis thin space intersection straight G right parenthesis over denominator straight P left parenthesis straight G right parenthesis end fraction space equals fraction numerator begin display style 3 over 6 end style over denominator begin display style 4 over 6 end style end fraction space equals space 3 over 4
    and        straight P left parenthesis left parenthesis straight E space intersection space straight F right parenthesis space left enclose straight G right parenthesis space equals space fraction numerator straight P left parenthesis left parenthesis straight E intersection straight F right parenthesis thin space intersection straight G right parenthesis over denominator straight P left parenthesis straight G right parenthesis end fraction space equals space fraction numerator begin display style 1 over 6 end style over denominator begin display style 4 over 6 end style end fraction space equals 1 fourth

              
      

    Sponsor Area

    Question 18
    CBSEENMA12033592

    12 cards, numbered 1 to 12, are placed in a box, mixed up thoroughly and then a card is drawn at random from the box. If it is known that the number on the drawn card is more than 3, find the probability that it is an even number.

    Solution
    Let A be the event ‘the number on the card drawn is even’ and B be the event ‘the number on the card is greater than 3’.
    therefore space space space space space space space space space space space space space space space space space space space space space space space space space space space space space straight S space equals space open curly brackets 1 comma space 2 comma space 3 comma space 4 comma space 5 comma space 6 comma space 7 comma space 8 comma space 9 comma space 10 comma space 11 comma space 12 close curly brackets
therefore space space space space space space space space space space space space space space space space space space space space space space space space space space space space straight A space equals space open curly brackets 2 comma space 4 comma space 6 comma space 8 comma space 10 comma space 12 close curly brackets comma space straight B space equals space open curly brackets 4 comma space 5 comma space 6 comma space 7 comma space 8 comma space 9 comma space 10 comma space 11 comma space 12 close curly brackets
    and             straight A space intersection thin space straight B space equals space open curly brackets 4 comma space 6 comma space 8 comma space 10 comma space 12 close curly brackets
    therefore space space space space space space space straight P left parenthesis straight A right parenthesis space equals space 6 over 12 comma space space straight P left parenthesis straight B right parenthesis space equals space 9 over 12 space space and space space straight P left parenthesis straight A intersection straight B right parenthesis space equals space 5 over 12
    Required probability = straight P left parenthesis straight A space left enclose straight B right parenthesis end enclose space equals space fraction numerator straight P left parenthesis straight A intersection straight B right parenthesis over denominator straight P left parenthesis straight B right parenthesis end fraction space equals fraction numerator begin display style 5 over 12 end style over denominator begin display style 9 over 12 end style end fraction space equals 5 over 9
    Question 19
    CBSEENMA12033593

    Ten cards numbered 1 to 10 are placed in a box, mixed up thoroughly and then one card is drawn randomly. If it is known that the number on the drawn card is more than 3, what is the probability that it is an even number?

    Solution
    Let A be the event ‘the number on the card drawn is even’ and B be the event ‘the number on the card drawn is greater than 3’.
    therefore space space space space straight S space equals space open curly brackets 1 comma space 2 comma space 3 comma space 4 comma space 5 comma space 6 comma space 7 comma space 8 comma space 9 comma space 10 close curly brackets
therefore space space straight A space equals space open curly brackets 2 comma space 4 comma space 6 comma space 8 comma space 10 close curly brackets comma space space space straight B space equals space open curly brackets 4 comma space 5 comma space 6 comma space 7 comma space 8 comma space 9 comma space 10 close curly brackets
and space space space space space space straight A space intersection thin space straight B space equals open curly brackets 4 comma space 6 comma space 8 comma space 10 close curly brackets
therefore space space space space space space space straight P left parenthesis straight A right parenthesis space equals space 5 over 10 comma space space space straight P left parenthesis straight B right parenthesis space equals space 7 over 10 space and space straight P left parenthesis straight A intersection straight B right parenthesis space equals space 4 over 10
therefore space space space space space space straight P left parenthesis straight A space left enclose space straight B right parenthesis end enclose space equals space fraction numerator straight P left parenthesis straight A intersection straight B right parenthesis over denominator straight P left parenthesis straight B right parenthesis end fraction space equals fraction numerator begin display style 4 over 10 end style over denominator begin display style 7 over 10 end style end fraction equals space 4 over 7.
    Question 20
    CBSEENMA12033594

    In a school, there are 1000 students, out of which 430 are girls. It is known that out of 430, 10% of the girls study in class XII. What is the probability that a student chosen randomly studies in Class XII given that the chosen student is a girl?

    Solution
    Let E denote the event that a student chosen randomly studies in class XII and F be the event that the randomly chosen student is a girl.
    Total number of students = 1000
    Number of girls = 430
    Number of girls studying in class XII = 10 over 100 cross times 430 space equals space 43
    Now, P(F) = 430 over 1000 space equals space 0.43  and straight P left parenthesis straight E intersection straight F right parenthesis space equals 43 over 1000 space equals 0.043
    therefore space space space straight P left parenthesis straight E space left enclose straight F right parenthesis space equals space fraction numerator straight P left parenthesis straight E space intersection thin space straight F right parenthesis over denominator straight P left parenthesis straight F right parenthesis end fraction equals space fraction numerator 0.043 over denominator 0.43 end fraction space equals fraction numerator begin display style 43 over 1000 end style over denominator begin display style 43 over 100 end style end fraction equals space 43 over 100 cross times 100 over 43 space equals 1 over 10 space equals space 0.1
    Question 21
    CBSEENMA12033595

    A die is thrown three times. Events A and B are defined as below:
    A: 4 on the third throw
    B: 6 on the first and 5 on the second throw
    Find the probability of A given that B has already occurred.



    Solution
    The sample space has 216 outcomes.
    Now A = open curly brackets table row cell left parenthesis 1 comma space 1 comma space 4 right parenthesis end cell cell left parenthesis 1 comma space 2 comma space 4 right parenthesis... end cell cell left parenthesis 1 comma space 6 comma space 4 right parenthesis end cell cell left parenthesis 2 comma space 1 comma space 4 right parenthesis end cell cell left parenthesis 2 comma space 2 comma space 4 right parenthesis... end cell cell left parenthesis 2 comma space 6 comma space 4 right parenthesis end cell row cell left parenthesis 3 comma space 1 comma space 4 right parenthesis end cell cell left parenthesis 3 comma space 2 comma space 4 right parenthesis... end cell cell left parenthesis 3 comma space 6 comma space 4 right parenthesis end cell cell left parenthesis 4 comma space 1 comma space 4 right parenthesis end cell cell left parenthesis 4 comma space 2 comma space 4 right parenthesis... end cell cell left parenthesis 4 comma space 6 comma space 4 right parenthesis end cell row cell left parenthesis 5 comma space 1 comma space 4 right parenthesis end cell cell left parenthesis 5 comma space 2 comma space 4 right parenthesis... end cell cell left parenthesis 5 comma space 6 comma space 4 right parenthesis end cell cell left parenthesis 6 comma space 1 comma space 4 right parenthesis end cell cell left parenthesis 6 comma space 2 comma space 4 right parenthesis... end cell cell left parenthesis 6 comma space 6 comma space 4 right parenthesis end cell end table close curly brackets
           straight B space equals space open curly brackets left parenthesis 6 comma space 5 comma space 1 right parenthesis comma space space left parenthesis 6 comma space 5 comma space 2 right parenthesis comma space left parenthesis 6 comma space 5 comma space 3 right parenthesis comma space left parenthesis 6 comma space 5 comma space 4 right parenthesis comma space left parenthesis 6 comma space 5 comma space 5 right parenthesis comma space left parenthesis 6 comma space 5 comma space 6 right parenthesis close curly brackets
    and straight A intersection straight B space equals space open curly brackets left parenthesis 6 comma space 5 comma space 4 right parenthesis close curly brackets.
    Now,                 straight P left parenthesis straight B right parenthesis space equals 6 over 216 space and space straight P left parenthesis straight A intersection straight B right parenthesis space equals space 1 over 216
    therefore space space space space space straight P left parenthesis straight A space left enclose straight B right parenthesis end enclose space equals space fraction numerator straight P left parenthesis straight A space intersection thin space straight B right parenthesis over denominator straight P left parenthesis straight B right parenthesis end fraction equals space fraction numerator begin display style 1 over 216 end style over denominator begin display style 6 over 216 end style end fraction space equals space 1 over 6
                 
    Question 22
    CBSEENMA12033596

    A die is thrown twice and the sum of the numbers appearing is observed to be 6. What is the conditional probability that the number 4 has appeared at least once?

    Solution

    Let the events be
    E : number 4 appears at least once.
    F : the sum of the numbers appearing is 6.
    The elementary events favourable to the occurrence of E are
    (4, 1), (4, 2), (4, 30, (4, 4), (4, 5), (4, 6), (1, 4), (2, 4), (3, 4), (5, 4), (6, 4).
    The elementary events favourable to the occurrence of F are
    (1, 5), (2, 4), (3, 3), (4, 2), (5, 1).
    The elementary events favourable to the occurrence of both E and F are (2, 4), (4, 2)
    therefore space space space straight P left parenthesis straight E right parenthesis space equals space 11 over 36 comma space space space straight P left parenthesis straight F right parenthesis space equals space 5 over 36 comma space space straight P left parenthesis straight E intersection straight F right parenthesis space equals 2 over 36
therefore space space space space required space probability space equals space fraction numerator straight P left parenthesis straight E intersection straight F right parenthesis over denominator straight P left parenthesis straight F right parenthesis end fraction equals 2 over 5.

    Question 23
    CBSEENMA12033597

    A die is thrown and the sum of the numbers appearing is observed to be 7. What is the conditional probability that the number 2 has appeared at least once. 

    Solution

    Let the events be
    E : number 2 appears at least at least once
    F : the sum of the numbers appearing is 7.
    The elementary events favorable to the occurence of E are
    (1, 2), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (3, 2), (4, 2), (5, 2). (6, 2).
    The elementary events favorable to the occurance of F are
    (1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1).
    The elementary events favorable to the occurence of both E and F are (2, 5),(5. 2).
    therefore space space space space straight P left parenthesis straight E right parenthesis space equals space 11 over 36 comma space space straight P left parenthesis straight F right parenthesis space equals space 6 over 36 comma space space straight P left parenthesis straight E intersection straight F right parenthesis space equals space 2 over 36
therefore space space space space required space probability space equals space fraction numerator straight P left parenthesis straight E intersection straight F right parenthesis over denominator straight P left parenthesis straight F right parenthesis end fraction space equals 2 over 6 space equals 1 third.

    Question 24
    CBSEENMA12033598

    A pair of fair dice is thrown. Find the probability that the sum is 10 or greater if 5 appears on the first die.

    Solution

    Let the events be
    E : sum is 10 or greater
    F : 5 appears on the first die.
    therefore space space space space space space space space straight E space equals space open curly brackets left parenthesis 4 comma space 6 right parenthesis comma space space left parenthesis 5 comma space 5 right parenthesis comma space left parenthesis 5 comma space 6 right parenthesis comma space left parenthesis 6 comma space 4 right parenthesis comma space left parenthesis 6 comma space 5 right parenthesis comma space left parenthesis 6 comma space 6 right parenthesis close curly brackets space space space space space space
                straight F space equals space open curly brackets left parenthesis 5 comma space 1 right parenthesis comma space left parenthesis 5 comma space 2 right parenthesis comma space left parenthesis 5 comma space 3 right parenthesis comma space left parenthesis 5 comma space 4 right parenthesis comma space left parenthesis 5 comma space 5 right parenthesis comma space left parenthesis 5 comma space 6 right parenthesis close curly brackets
    straight E intersection straight F space equals space open curly brackets left parenthesis 5 comma space 5 right parenthesis comma space left parenthesis 5 comma space 6 right parenthesis close curly brackets
    therefore space space space space space straight P left parenthesis straight E right parenthesis space equals space 6 over 36 comma space space space straight P left parenthesis straight F right parenthesis space equals 6 over 36 comma space space straight P left parenthesis straight E intersection straight F right parenthesis space equals 2 over 36
    Required probability = fraction numerator straight P left parenthesis straight E intersection straight F right parenthesis over denominator straight P left parenthesis straight F right parenthesis end fraction space equals 2 over 6 space equals 1 third.

    Question 25
    CBSEENMA12033599

    Find the probability that a single throw of a die results in a number less than 6 if
    (i) no other information is given
    (ii) it is given that the throw resulted in an odd number

    Solution

    Let S be the sample space when a die is thrown.
    therefore space space space straight S space equals space open curly brackets 1 comma space 2 comma space 3 comma space 4 comma space 5 comma space 6 close curly brackets
    Let E denote the event of getting number less than 6 and F denote the event of getting an odd number.
    therefore space space space space straight E space equals space open curly brackets 1 comma space 2 comma space 3 comma space 4 comma space 5 close curly brackets
space space space space space space space space straight F space equals space open curly brackets 1 comma space 3 comma space 5 close curly brackets
space space straight E space intersection space straight F space equals space open curly brackets 1 comma space 3 comma space 5 close curly brackets

    Question 26
    CBSEENMA12033600

    A pair of dice is thrown . If the sum is seven, find the probability that one of the dice shows 3.

    Solution

    We have
                          straight S space equals space open curly brackets table row cell left parenthesis 1 comma space 1 right parenthesis comma end cell cell left parenthesis 1 comma space 2 right parenthesis comma end cell cell left parenthesis 1 comma space 3 right parenthesis comma end cell cell left parenthesis 1 comma space 4 right parenthesis comma end cell cell left parenthesis 1 comma space 5 right parenthesis comma end cell cell left parenthesis 1 comma space 6 right parenthesis end cell row cell left parenthesis 2 comma space 1 right parenthesis comma end cell cell left parenthesis 2 comma space 2 right parenthesis comma end cell cell left parenthesis 2 comma space 3 right parenthesis comma end cell cell left parenthesis 2 comma space 4 right parenthesis comma end cell cell left parenthesis 2 comma space 5 right parenthesis comma end cell cell left parenthesis 2 comma space 6 right parenthesis end cell row cell left parenthesis 3 comma space 1 right parenthesis comma end cell cell left parenthesis 3 comma space 2 right parenthesis comma end cell cell left parenthesis 3 comma space 3 right parenthesis comma end cell cell left parenthesis 3 comma space 4 right parenthesis comma end cell cell left parenthesis 3 comma space 5 right parenthesis comma end cell cell left parenthesis 3 comma space 6 right parenthesis end cell row cell left parenthesis 4 comma space 1 right parenthesis comma end cell cell left parenthesis 4 comma space 2 right parenthesis comma end cell cell left parenthesis 4 comma space 3 right parenthesis comma end cell cell left parenthesis 4 comma space 4 right parenthesis comma end cell cell left parenthesis 4 comma space 5 right parenthesis comma end cell cell left parenthesis 4 comma space 6 right parenthesis end cell row cell left parenthesis 5 comma space 1 right parenthesis comma end cell cell left parenthesis 5 comma space 2 right parenthesis comma end cell cell left parenthesis 5 comma space 3 right parenthesis comma end cell cell left parenthesis 5 comma space 4 right parenthesis comma end cell cell left parenthesis 5 comma space 5 right parenthesis comma end cell cell left parenthesis 5 comma space 6 right parenthesis end cell row cell left parenthesis 6 comma space 1 right parenthesis comma end cell cell left parenthesis 6 comma space 2 right parenthesis comma end cell cell left parenthesis 6 comma space 3 right parenthesis comma end cell cell left parenthesis 6 comma space 4 right parenthesis comma end cell cell left parenthesis 6 comma space 5 right parenthesis comma end cell cell left parenthesis 6 comma space 6 right parenthesis end cell end table close curly brackets
    Let A = open curly brackets left parenthesis 1 comma space 3 right parenthesis comma space left parenthesis 2 comma space 3 right parenthesis comma space left parenthesis 3 comma space 1 right parenthesis comma space left parenthesis 3 comma space 2 right parenthesis comma space left parenthesis 3 comma space 4 right parenthesis comma left parenthesis 3 comma space 5 right parenthesis comma space left parenthesis 3 comma space 6 right parenthesis comma space left parenthesis 4 comma space 3 right parenthesis comma space left parenthesis 5 comma space 3 right parenthesis comma space left parenthesis 6 comma space 3 right parenthesis close curly brackets
    and straight B space equals open curly brackets left parenthesis 1 comma space 6 right parenthesis comma space left parenthesis 2 comma space 5 right parenthesis comma space left parenthesis 3 comma space 4 right parenthesis comma space left parenthesis 4 comma space 3 right parenthesis comma space left parenthesis 5 comma space 2 right parenthesis comma thin space left parenthesis 6 comma space 1 right parenthesis close curly brackets
    straight A intersection straight B space equals space open curly brackets left parenthesis 3 comma space 4 right parenthesis comma space space left parenthesis 4 comma space 3 right parenthesis close curly brackets
    Required probability = P(A/B) = fraction numerator straight P left parenthesis straight A intersection straight B right parenthesis over denominator straight P left parenthesis straight B right parenthesis end fraction space equals fraction numerator begin display style 2 over 36 end style over denominator begin display style 6 over 36 end style end fraction space equals 1 third

    Question 28
    CBSEENMA12033602

    A bag contains 3 red and 7 black balls. Two balls are selected at random without replacement. If the second selected is given to be red. what is the probability that the first selected is also red?

    Solution
    Let R1, R2 be the events that red ball is drawn in the first and second draw. Here balls are drawn without replacement.
     therefore space space space straight P left parenthesis straight R subscript 1 space space intersection space straight R subscript 2 right parenthesis space equals space straight P left parenthesis both space red space balls right parenthesis space equals space 3 over 10 cross times 2 over 9 space equals 1 over 15
    straight P left parenthesis straight R subscript 2 right parenthesis space equals space straight P left parenthesis apostrophe straight R subscript 1 straight R subscript 2 apostrophe space or space space apostrophe BR subscript 2 apostrophe right parenthesis space equals space straight P left parenthesis straight R subscript 1 space straight R subscript 2 right parenthesis space plus space straight P left parenthesis BR subscript 2 right parenthesis
space space space space space space space space space space space equals space 3 over 10 cross times 2 over 9 plus 7 over 10 cross times 3 over 9 space equals space 6 over 90 plus 21 over 90 equals space 27 over 90 space equals 3 over 10
    Required probability = straight P left parenthesis straight R subscript 1 divided by straight R subscript 2 right parenthesis space equals space fraction numerator straight P left parenthesis straight R subscript 1 intersection straight R subscript 2 right parenthesis over denominator straight P left parenthesis straight R subscript 2 right parenthesis end fraction space equals space fraction numerator begin display style 1 over 15 end style over denominator begin display style 3 over 10 end style end fraction space equals 1 over 15 cross times 10 over 3 space equals 2 over 9.
    Question 29
    CBSEENMA12033603

    A bag contains 3 red and 7 black balls. Two balls are selected at random with replacement. If the second selected is given to be red, what is the probability that the first selected is also red?

    Solution
    Let R1, R2 be the events that red ball is drawn in the first and second draw. Here balls are drawn with replacement.
    therefore space space space space straight P left parenthesis straight R subscript 1 space intersection space straight R subscript 2 right parenthesis space equals space straight P left parenthesis both space red space balls right parenthesis space equals space 3 over 10 cross times 3 over 10 space equals 9 over 100.
    straight P left parenthesis straight R subscript 2 right parenthesis space equals space straight P left parenthesis apostrophe straight R subscript 1 space straight R subscript 2 apostrophe space space or space space apostrophe BR subscript 2 apostrophe right parenthesis space equals space straight P left parenthesis straight R subscript 1 space straight R subscript 2 right parenthesis space plus space straight P left parenthesis BR subscript 2 right parenthesis
                equals space 3 over 10 cross times 3 over 10 plus 7 over 10 cross times 3 over 10 equals space 9 over 100 plus 21 over 100 equals 30 over 100.
    Required probability = straight P left parenthesis straight R subscript 1 divided by straight R subscript 2 right parenthesis space equals space fraction numerator straight P left parenthesis straight R subscript 1 space intersection space straight R subscript 2 right parenthesis over denominator straight P left parenthesis straight R subscript 2 right parenthesis end fraction space equals fraction numerator begin display style 9 over 100 end style over denominator begin display style 30 over 100 end style end fraction space equals 3 over 10.
    Question 30
    CBSEENMA12033604

    A die thrown three times,
    E : 4 appears on the third toss,
    F : 6 and 5 appears respectively on First two tosses
    Determine P(E | F).

    Solution
    Here a die is thrown three times
     therefore  sample space has 6 x 6 x 6 = 216 outcomes.
    therefore space space space straight E space equals space open curly brackets table row cell left parenthesis 1 comma space 1 comma space 4 right parenthesis end cell cell left parenthesis 1 comma space 2 comma space 4 right parenthesis... end cell cell left parenthesis 1 comma space 6 comma space 4 right parenthesis end cell cell left parenthesis 2 comma space 1 comma space 4 right parenthesis end cell cell left parenthesis 2 comma space 2 comma space 4 right parenthesis... end cell cell left parenthesis 2 comma space 6 comma space 4 right parenthesis end cell row cell left parenthesis 3 comma space 1 comma space 4 right parenthesis end cell cell left parenthesis 3 comma space 2 comma space 4 right parenthesis... end cell cell left parenthesis 3 comma space 6 comma space 4 right parenthesis end cell cell left parenthesis 4 comma space 1 comma space 4 right parenthesis end cell cell left parenthesis 4 comma space 2 comma space 4 right parenthesis... end cell cell left parenthesis 4 comma space 6 comma space 4 right parenthesis end cell row cell left parenthesis 5 comma space 1 comma space 4 right parenthesis end cell cell left parenthesis 5 comma space 2 comma space 4 right parenthesis... end cell cell left parenthesis 5 comma space 6 comma space 4 right parenthesis end cell cell left parenthesis 6 comma space 1 comma space 4 right parenthesis end cell cell left parenthesis 6 comma space 2 comma space 4 right parenthesis... end cell cell left parenthesis 6 comma space 6 comma space 4 right parenthesis end cell end table close curly brackets
           F: 6 and 5 appear respectively on first two tosses
    therefore space space space space straight F space equals space open curly brackets left parenthesis 6 comma space 5 comma space 1 right parenthesis thin space left parenthesis 6 comma space 5 comma space 2 right parenthesis comma space left parenthesis 6 comma space 5 comma space 3 right parenthesis comma space left parenthesis 6 comma space 5 comma space 4 right parenthesis comma space left parenthesis 6 comma space 5 comma space 5 right parenthesis comma space left parenthesis 6 comma space 5 comma space 6 right parenthesis close curly brackets
          straight E intersection straight F space equals space open curly brackets left parenthesis 6 comma space 5 comma space 4 right parenthesis close curly brackets
    Now,  
              straight P left parenthesis straight F right parenthesis space equals space 6 over 216 comma space space straight P left parenthesis straight E intersection straight F right parenthesis space equals space 1 over 216
       therefore space space space straight P left parenthesis straight E space left enclose straight F right parenthesis space equals space fraction numerator straight P left parenthesis straight E space intersection space straight F right parenthesis over denominator straight P left parenthesis straight F right parenthesis end fraction space equals fraction numerator begin display style 1 over 216 end style over denominator begin display style 6 over 216 end style end fraction space equals 1 over 6
    Question 31
    CBSEENMA12033605

    A coin is tossed three times, where
    E : head on third toss,     F : heads on first two tosses

    Solution

    Here S = {HHH, HHT, HTH, THH, TTH, THT, HTT, TTT}
    E : head on third toss
     therefore    E = {HHH, HTH, THH, TTH}
    and F : heads on first two tosses
    therefore space space space straight F space equals space left curly bracket HHH comma space HHT right curly bracket
therefore space space straight E intersection straight F space equals space left curly bracket HHH right curly bracket
therefore space space straight P left parenthesis straight E right parenthesis space equals space 4 over 8 space equals space 1 half comma space space space straight P left parenthesis straight F right parenthesis space equals space 2 over 8 space equals space 1 fourth comma space space space straight P left parenthesis straight E intersection straight F right parenthesis space equals space 1 over 8
                     straight P left parenthesis straight E space left enclose straight F right parenthesis space equals space fraction numerator straight P left parenthesis straight E intersection straight F right parenthesis over denominator straight P left parenthesis straight F right parenthesis end fraction space equals fraction numerator begin display style 1 over 8 end style over denominator begin display style 2 over 8 end style end fraction space equals space 1 half 

    Question 32
    CBSEENMA12033606

    A coin is tossed three times, where
    E : at least two heads , F : at most two heads

    Solution

    Here S = {HHH, HHT, HTH, THH, TTH, THT, HTT, TTT}
                E : at least two heads
    therefore space space space space straight E space equals space left curly bracket HHH comma space HHT comma space HTH comma space THH right curly bracket
            F: at most two heads
    therefore space space space space straight F space equals space left curly bracket HHT comma space HTH comma space THH comma space TTH comma space THT comma space HTT comma space TTT right curly bracket
therefore space space straight E space intersection thin space straight F space equals space left curly bracket HHT comma space HTH comma space THH right curly bracket
therefore space space space straight P left parenthesis straight E right parenthesis space equals space 4 over 8 space equals space 1 half comma space space straight P left parenthesis straight F right parenthesis space equals space 7 over 8 comma space space space straight P left parenthesis straight E intersection straight F right parenthesis space equals space 3 over 8
therefore space space space straight P left parenthesis straight E space space left enclose straight F right parenthesis space equals space fraction numerator straight P left parenthesis straight E intersection straight F right parenthesis over denominator straight P left parenthesis straight F right parenthesis end fraction space equals space fraction numerator begin display style 3 over 8 end style over denominator begin display style 7 over 8 end style end fraction space equals space 3 over 7

                      

    Question 33
    CBSEENMA12033607

    A coin is tossed three times, where
    E : at most two tails , F : at least one tail

    Solution

    Here S = {HHH, HHT, HTH, THH, TTH, THT, HTT, TTT}
           E: at most two tails
    therefore space space straight E space equals space open curly brackets HHH comma space HHT comma space HTH comma space THH comma space TTH comma space THT comma space HTT close curly brackets
          F: at least one tail
    therefore space space space straight F space equals space open curly brackets HHT comma space HTH comma space THH comma space TTH comma space THT comma space HTT comma space TTT close curly brackets
therefore space space space space straight E space intersection thin space straight F space equals space open curly brackets HHT comma space HTH comma space THH comma space TTH comma space THT comma space HTT close curly brackets
therefore space space space straight P left parenthesis straight E right parenthesis space equals space 7 over 8 comma space space space straight P left parenthesis straight F right parenthesis space equals space 7 over 8 comma space space straight P left parenthesis straight E intersection straight F right parenthesis space equals space 6 over 8 space equals 3 over 4
therefore space space space space straight P left parenthesis straight E space left enclose straight F right parenthesis space space equals space fraction numerator straight P left parenthesis straight E intersection straight F right parenthesis over denominator straight P left parenthesis straight F right parenthesis end fraction space equals fraction numerator begin display style 6 over 8 end style over denominator begin display style 7 over 8 end style end fraction space equals space 6 over 7.
          
       

    Question 34
    CBSEENMA12033608

    A black and a red dice are rolled.Find the conditional probability of obtaining a sum greater than 9, given that the black die resulted in a 5.

    Solution

    Here straight S space equals space open curly brackets table row cell left parenthesis 1 comma space 1 right parenthesis end cell cell left parenthesis 1 comma space 2 right parenthesis end cell cell left parenthesis 1 comma space 3 right parenthesis end cell cell left parenthesis 1 comma space 4 right parenthesis end cell cell left parenthesis 1 comma space 5 right parenthesis end cell cell left parenthesis 1 comma space 6 right parenthesis end cell row cell left parenthesis 2 comma space 1 right parenthesis end cell cell left parenthesis 2 comma space 2 right parenthesis end cell cell left parenthesis 2 comma space 3 right parenthesis end cell cell left parenthesis 2 comma space 4 right parenthesis end cell cell left parenthesis 2 comma space 5 right parenthesis end cell cell left parenthesis 2 comma space 6 right parenthesis end cell row cell left parenthesis 3 comma space 1 right parenthesis end cell cell left parenthesis 3 comma space 2 right parenthesis end cell cell left parenthesis 3 comma space 3 right parenthesis end cell cell left parenthesis 3 comma space 4 right parenthesis end cell cell left parenthesis 3 comma space 5 right parenthesis end cell cell left parenthesis 3 comma space 6 right parenthesis end cell row cell left parenthesis 4 comma space 1 right parenthesis end cell cell left parenthesis 4 comma space 2 right parenthesis end cell cell left parenthesis 4 comma space 3 right parenthesis end cell cell left parenthesis 4 comma space 4 right parenthesis end cell cell left parenthesis 4 comma space 5 right parenthesis end cell cell left parenthesis 4 comma space 6 right parenthesis end cell row cell left parenthesis 5 comma space 1 right parenthesis end cell cell left parenthesis 5 comma space 2 right parenthesis end cell cell left parenthesis 5 comma space 3 right parenthesis end cell cell left parenthesis 5 comma space 4 right parenthesis end cell cell left parenthesis 5 comma space 5 right parenthesis end cell cell left parenthesis 5 comma space 6 right parenthesis end cell row cell left parenthesis 6 comma space 1 right parenthesis end cell cell left parenthesis 6 comma space 2 right parenthesis end cell cell left parenthesis 6 comma space 3 right parenthesis end cell cell left parenthesis 6 comma space 4 right parenthesis end cell cell left parenthesis 6 comma space 5 right parenthesis end cell cell left parenthesis 6 comma space 6 right parenthesis end cell end table close curly brackets
    Number of elements (outcomes) of the above sample space is 6 × 6 = 36.
         Let E : sum greater than 9
    therefore space space space straight E space equals space open curly brackets left parenthesis 4 comma space 6 right parenthesis comma space left parenthesis 5 comma space 5 right parenthesis comma space left parenthesis 5 comma space 6 right parenthesis comma space left parenthesis 6 comma space 4 right parenthesis comma space left parenthesis 6 comma space 5 right parenthesis comma space left parenthesis 6 comma space 6 right parenthesis close curly brackets
    Let E: black dice resultant in a 5.
    therefore space space space space straight F thin space colon thin space open curly brackets left parenthesis 5 comma space 1 right parenthesis comma space left parenthesis 5 comma space 2 right parenthesis comma space left parenthesis 5 comma space 3 right parenthesis comma space left parenthesis 5 comma space 4 right parenthesis comma space left parenthesis 5 comma space 5 right parenthesis comma space left parenthesis 5 comma space 6 right parenthesis close curly brackets
              straight E space intersection thin space straight F space equals space open curly brackets left parenthesis 5 comma space 5 right parenthesis comma space left parenthesis 5 comma space 6 right parenthesis close curly brackets
    therefore space space space space straight P left parenthesis straight F right parenthesis space equals space 6 over 36 comma space space space space straight P left parenthesis straight E intersection straight F right parenthesis space equals space 2 over 36
    Required probability = straight P left parenthesis straight E left enclose straight F right parenthesis end enclose space equals space fraction numerator straight P left parenthesis straight E intersection straight F right parenthesis over denominator straight P left parenthesis straight F right parenthesis end fraction space equals fraction numerator begin display style 2 over 36 end style over denominator begin display style 6 over 36 end style end fraction space equals space 2 over 6 space equals space 1 third.

    Question 35
    CBSEENMA12033609

    A black and a red dice are rolled. Find the conditional probability of obtaining the sum 8, given that the red die resulted in a number less than 4.

    Solution

    Here straight S space equals space open curly brackets table row cell left parenthesis 1 comma space 1 right parenthesis end cell cell left parenthesis 1 comma space 2 right parenthesis end cell cell left parenthesis 1 comma space 3 right parenthesis end cell cell left parenthesis 1 comma space 4 right parenthesis end cell cell left parenthesis 1 comma space 5 right parenthesis end cell cell left parenthesis 1 comma space 6 right parenthesis end cell row cell left parenthesis 2 comma space 1 right parenthesis end cell cell left parenthesis 2 comma space 2 right parenthesis end cell cell left parenthesis 2 comma space 3 right parenthesis end cell cell left parenthesis 2 comma space 4 right parenthesis end cell cell left parenthesis 2 comma space 5 right parenthesis end cell cell left parenthesis 2 comma space 6 right parenthesis end cell row cell left parenthesis 3 comma space 1 right parenthesis end cell cell left parenthesis 3 comma space 2 right parenthesis end cell cell left parenthesis 3 comma space 3 right parenthesis end cell cell left parenthesis 3 comma space 4 right parenthesis end cell cell left parenthesis 3 comma space 5 right parenthesis end cell cell left parenthesis 3 comma space 6 right parenthesis end cell row cell left parenthesis 4 comma space 1 right parenthesis end cell cell left parenthesis 4 comma space 2 right parenthesis end cell cell left parenthesis 4 comma space 3 right parenthesis end cell cell left parenthesis 4 comma space 4 right parenthesis end cell cell left parenthesis 4 comma space 5 right parenthesis end cell cell left parenthesis 4 comma space 6 right parenthesis end cell row cell left parenthesis 5 comma space 1 right parenthesis end cell cell left parenthesis 5 comma space 2 right parenthesis end cell cell left parenthesis 5 comma space 3 right parenthesis end cell cell left parenthesis 5 comma space 4 right parenthesis end cell cell left parenthesis 5 comma space 5 right parenthesis end cell cell left parenthesis 5 comma space 6 right parenthesis end cell row cell left parenthesis 6 comma space 1 right parenthesis end cell cell left parenthesis 6 comma space 2 right parenthesis end cell cell left parenthesis 6 comma space 3 right parenthesis end cell cell left parenthesis 6 comma space 4 right parenthesis end cell cell left parenthesis 6 comma space 5 right parenthesis end cell cell left parenthesis 6 comma space 6 right parenthesis end cell end table close curly brackets
    Number of elements (outcomes) of the above sample space is 6 × 6 = 36.
        Let E: a total of 8
    therefore space space straight E thin space colon space space open curly brackets left parenthesis 2 comma space 6 right parenthesis comma space left parenthesis 3 comma space 5 right parenthesis comma space left parenthesis 4 comma space 4 right parenthesis comma space left parenthesis 5 comma space 3 right parenthesis comma space left parenthesis 6 comma space 2 right parenthesis close curly brackets
space space space space space space straight F thin space colon space red space die space resulted space in space straight a space number space less space than space 4
therefore space space straight F space equals space open curly brackets left parenthesis 1 comma space 1 right parenthesis comma space left parenthesis 1 comma space 2 right parenthesis comma.... comma space left parenthesis 1 comma space 6 right parenthesis comma space left parenthesis 2 comma space 1 right parenthesis comma space left parenthesis 2 comma space 2 right parenthesis comma space.... comma space left parenthesis 2 comma space 6 right parenthesis comma space left parenthesis 3 comma space 1 right parenthesis comma space left parenthesis 3 comma space 2 right parenthesis comma.... left parenthesis 3 comma space 6 right parenthesis space close curly brackets
therefore space space straight E intersection straight F space equals space open curly brackets left parenthesis 2 comma space 6 right parenthesis comma space left parenthesis 3 comma space 5 right parenthesis close curly brackets
therefore space space space straight P left parenthesis straight F right parenthesis space equals space 18 over 36 comma space space space straight P left parenthesis straight E intersection straight F right parenthesis space equals space 2 over 36
    therefore space space required space probability space equals space straight P left parenthesis straight E left enclose straight F right parenthesis end enclose space equals space fraction numerator straight P left parenthesis straight E intersection straight F right parenthesis over denominator straight P left parenthesis straight F right parenthesis end fraction equals space fraction numerator begin display style 2 over 36 end style over denominator begin display style 18 over 36 end style end fraction equals space 2 over 18 space equals 1 over 9

    Question 36
    CBSEENMA12033610

    Given that the two numbers appearing on throwing two dice are different. Find the probability of the event ‘the sum of numbers on the dice is 4’.

    Solution

    Here straight S space equals space open curly brackets table row cell left parenthesis 1 comma space 1 right parenthesis end cell cell left parenthesis 1 comma space 2 right parenthesis end cell cell left parenthesis 1 comma space 3 right parenthesis end cell cell left parenthesis 1 comma space 4 right parenthesis end cell cell left parenthesis 1 comma space 5 right parenthesis end cell cell left parenthesis 1 comma space 6 right parenthesis end cell row cell left parenthesis 2 comma space 1 right parenthesis end cell cell left parenthesis 2 comma space 2 right parenthesis end cell cell left parenthesis 2 comma space 3 right parenthesis end cell cell left parenthesis 2 comma space 4 right parenthesis end cell cell left parenthesis 2 comma space 5 right parenthesis end cell cell left parenthesis 2 comma space 6 right parenthesis end cell row cell left parenthesis 3 comma space 1 right parenthesis end cell cell left parenthesis 3 comma space 2 right parenthesis end cell cell left parenthesis 3 comma space 3 right parenthesis end cell cell left parenthesis 3 comma space 4 right parenthesis end cell cell left parenthesis 3 comma space 5 right parenthesis end cell cell left parenthesis 3 comma space 6 right parenthesis end cell row cell left parenthesis 4 comma space 1 right parenthesis end cell cell left parenthesis 4 comma space 2 right parenthesis end cell cell left parenthesis 4 comma space 3 right parenthesis end cell cell left parenthesis 4 comma space 4 right parenthesis end cell cell left parenthesis 4 comma space 5 right parenthesis end cell cell left parenthesis 4 comma space 6 right parenthesis end cell row cell left parenthesis 5 comma space 1 right parenthesis end cell cell left parenthesis 5 comma space 2 right parenthesis end cell cell left parenthesis 5 comma space 3 right parenthesis end cell cell left parenthesis 5 comma space 4 right parenthesis end cell cell left parenthesis 5 comma space 5 right parenthesis end cell cell left parenthesis 5 comma space 6 right parenthesis end cell row cell left parenthesis 6 comma space 1 right parenthesis end cell cell left parenthesis 6 comma space 2 right parenthesis end cell cell left parenthesis 6 comma space 3 right parenthesis end cell cell left parenthesis 6 comma space 4 right parenthesis end cell cell left parenthesis 6 comma space 5 right parenthesis end cell cell left parenthesis 6 comma space 6 right parenthesis end cell end table close curly brackets

    Number of elements (outcomes) of the above sample space is 6 × 6 = 36.
    Let E : the sum of numbers on the dice is 4
    ∴ E = {(1, 3), (2, 2), (3, 1)}
    and F : numbers appearing on the two dice are different
    ∴ F contains all the points of S except (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6).
    ∴ F contains 30 elements.
    Also E ∩ F = {(1, 3), (3, 1)}
    therefore space space space space space space space straight P left parenthesis straight F right parenthesis space equals space 30 over 36 comma space space space straight P left parenthesis straight E intersection straight F right parenthesis space equals space 2 over 36
    Required probability = straight P left parenthesis straight E space left enclose space straight F end enclose right parenthesis space equals space fraction numerator straight P left parenthesis straight E intersection straight F right parenthesis over denominator straight P left parenthesis straight F right parenthesis end fraction space equals fraction numerator begin display style 2 over 36 end style over denominator begin display style 30 over 36 end style end fraction space equals 2 over 36 cross times 36 over 30 space equals space 1 over 15

    Question 37
    CBSEENMA12033611

    An instructor has a question bank consisting of 300 easy True/False questions, 200 difficult True/False questions, 500 easy multiple choice questions and 400 difficult multiple choice questions. If a question is selected at random from the question bank, what is the probability that it will be an easy question given that it is a multiple choice question?

    Solution

    The given data is

     

    Easy

    Difficult

    Total

    True/False

    300

    200

    500

    Multiple Choice

    500

    400

    900

    Total

    800

    600

    1400

    Let E : Easy questions, D : Difficult questions
    T : True/false questions and M : Multiple choice questions
    Number of easy multiple choice questions = 500
    Total number of questions = 1400
    straight P left parenthesis straight E intersection straight M right parenthesis = Probability of selecting an easy and multiple choice question
                    equals space 500 over 1400
    Total number of multiple choice questions
                                      = 500 + 400 = 900
      P(M) = Probability of selecting one multiple choice question
                                     equals space 900 over 1400
                         straight P left parenthesis straight E space left enclose straight M right parenthesis space equals space fraction numerator straight P left parenthesis straight E intersection straight M right parenthesis over denominator straight P left parenthesis straight M right parenthesis end fraction space equals fraction numerator begin display style 500 over 1400 end style over denominator begin display style 900 over 1400 end style end fraction space equals 5 over 9

    Question 38
    CBSEENMA12033612

    Find the probability of drawing a king, when a card is drawn from a well shuffled pack of cards. It is also given that the card drawn is a face card.

    Solution

    Number of cards = 52
    Number of kings = 5
    Number of face cards = 16
    Let E denote the event of drawing a king and F the even of drawing face card.
    therefore space space space space straight P left parenthesis straight E right parenthesis space equals space 4 over 52 comma space space space straight P left parenthesis straight F right parenthesis space equals space 16 over 52
straight P left parenthesis straight E intersection straight F right parenthesis space equals space 4 over 52
    Required probability  = P(E/F) = fraction numerator straight P left parenthesis straight E intersection straight F right parenthesis over denominator straight F end fraction space equals fraction numerator begin display style 4 over 52 end style over denominator begin display style 16 over 52 end style end fraction space equals 1 fourth

    Question 39
    CBSEENMA12033613

    Two coins are tossed once, where
    E : tail appears on one coin,                  F : one coin shows head
    Determine P(E | F).

    Solution

    Here   S = {HH, HT, TH, TT}
               E: tail appears on one coin
    therefore space space space space space space straight E space equals space left curly bracket HT comma space space TH right curly bracket
space space space space space space space space space space straight F colon space one space coin space shows space head
therefore space space space space space space straight F space equals space left curly bracket HT comma space TH right curly bracket
therefore space space space space space space straight E intersection straight F space equals space left curly bracket HT comma space TH right curly bracket
therefore space space space space space space straight P left parenthesis straight E right parenthesis space equals space 2 over 4 space equals space 1 half comma space space straight P left parenthesis straight F right parenthesis space equals space 2 over 4 space equals space 1 half comma space space straight P left parenthesis straight E intersection straight F right parenthesis space equals 2 over 4 space equals 1 half
therefore space space space space space straight P left parenthesis straight E space left enclose straight F right parenthesis space equals space fraction numerator straight P left parenthesis straight E space intersection space straight F right parenthesis over denominator straight P left parenthesis straight F right parenthesis end fraction space equals space fraction numerator begin display style 1 half end style over denominator begin display style 1 half end style end fraction space equals 1

    Sponsor Area

    Question 40
    CBSEENMA12033614

    Two coins are tossed once, where
    E : no tail appears, F : no head appears
    Determine P(E | F).

    Solution

    Here   S = {HH, HT, TH, TT}
              E : no tail appears
    therefore space space space straight E space equals space open curly brackets HH close curly brackets
            straight F colon space no space head space appears
    therefore space space space space space straight F space equals space open curly brackets TT close curly brackets
therefore space space space space straight E intersection straight F space equals straight ϕ
therefore space space space space space straight P left parenthesis straight E right parenthesis space equals space 1 fourth comma space space straight P left parenthesis straight F right parenthesis space equals space 1 fourth comma space space space straight P left parenthesis straight E intersection straight F right parenthesis space equals space 0
therefore space space space space space straight P left parenthesis straight E space left enclose straight F right parenthesis space equals space fraction numerator straight P left parenthesis straight E intersection straight F right parenthesis over denominator straight P left parenthesis straight F right parenthesis end fraction space equals fraction numerator 0 over denominator begin display style 1 fourth end style end fraction equals 0

    Question 41
    CBSEENMA12033615

    Assume that each born child is equally likely to be a boy or a girl. If a family has two children, what is the conditional probability that both are girls given that the youngest is a girl?

    Solution

    Let the first child be denoted by capital letter and the second i.e. younger one by a smaller letter.
    ∴  S = {Bb, Bg, Gb, Gg}
    Let E : both children are girls
    ∴ E = {Gg}
     Let F : the youngest is a girl
     therefore space space space space straight F space equals open curly brackets Bg comma space Gg close curly brackets
therefore space space space straight E intersection straight F space equals space open curly brackets Gg close curly brackets
therefore space space space space straight P left parenthesis straight F right parenthesis space equals space 2 over 4 comma space space space straight P left parenthesis straight E intersection straight F right parenthesis space equals space 1 fourth
    Required proability = straight P left parenthesis straight E space left enclose straight F right parenthesis space equals space fraction numerator straight P left parenthesis straight E intersection straight F right parenthesis over denominator straight P left parenthesis straight F right parenthesis end fraction space equals space fraction numerator begin display style 1 fourth end style over denominator begin display style 2 over 4 end style end fraction space equals 1 half 

    Question 42
    CBSEENMA12033616

    Assume that each born child is equally likely to be a boy or a girl. If a family has two children, what is the conditional probability that both are girls given that at least one is a girl?

    Solution

    Let the first child be denoted by capital letter and the second i.e. younger one by a smaller letter.
    ∴  S = {Bb, Bg, Gb, Gg}
    Let E : both children are girls
    ∴ E = {Gg}
    Let F : at least one is a girl
    therefore space space space space space space space space straight F space equals space open curly brackets Bg comma space Gb comma space Gg close curly brackets
therefore space space space space straight E space intersection space straight F space equals space open curly brackets Gg close curly brackets
therefore space space space straight P left parenthesis straight F right parenthesis space equals space 3 over 4 comma space space space straight P left parenthesis straight E intersection straight F right parenthesis space equals space 1 fourth
    Required probability = straight P left parenthesis straight E space left enclose straight F right parenthesis space equals space space fraction numerator straight P left parenthesis straight E intersection straight F right parenthesis over denominator straight P left parenthesis straight F right parenthesis end fraction space equals fraction numerator begin display style 1 fourth end style over denominator begin display style 3 over 4 end style end fraction space equals 1 third

    Question 43
    CBSEENMA12033617

    A family has two children. What is the probability that both the children are boys given that at least one of them is a boy?

    Solution

    Let b stand for boy and g for girl.
    ∴ S = {(b, b), (g, b), (b, g), (g, g)}
    Let E and F denote the following events:
    E : ‘both the children are boys’
    F : ‘at least one of the child is a boy’
    ∴  E = {(b, b)} and F = {(b, b), (g, b), (b, g)}
    Now,            straight E space intersection space straight F space equals space left curly bracket left parenthesis straight b comma space straight b right parenthesis right curly bracket
     therefore space space space space space space space space straight P left parenthesis straight F right parenthesis space equals space 3 over 4 space and space straight P left parenthesis straight E intersection straight F right parenthesis space equals space 1 fourth
therefore space space space space space space straight P left parenthesis straight E space left enclose straight F right parenthesis space equals space fraction numerator straight P left parenthesis straight E intersection straight F right parenthesis over denominator straight P left parenthesis straight F right parenthesis end fraction space equals space fraction numerator begin display style 1 fourth end style over denominator begin display style 3 over 4 end style end fraction space equals space 1 third

    Question 44
    CBSEENMA12033618

    Mother, father and son line up at random for a family picture
    E : son on one end,    F : father in middle,  Determine P(E | F).

    Solution
    Let m, f and s denote respectively the mother, the father and the son.
    therefore space space space space straight S space equals space open curly brackets straight m space straight f space straight s comma space straight m space straight s space straight f comma space space straight f space straight m space straight s comma space space straight f space straight s space straight m comma space straight s space straight m space straight f comma space straight s space straight f space straight m close curly brackets comma
    Now E: 'son on one end' and F: 'father in the middle',
    i.e.  E = open curly brackets straight m space straight f space straight s comma space straight f space straight m space straight s comma space straight s space straight m space straight f comma space straight s space straight f space straight m close curly brackets space and space straight F space equals space left curly bracket straight m space straight f space straight s comma space space straight s space straight f space straight m right curly bracket
    therefore space space space straight E space intersection space straight F space equals space left curly bracket straight m space straight f space straight s comma space space straight s space straight f space straight m right curly bracket space equals space straight F
therefore space space space space straight P left parenthesis straight E space left enclose straight F right parenthesis space equals space fraction numerator straight P left parenthesis straight E space intersection space straight F right parenthesis over denominator straight P left parenthesis straight F right parenthesis end fraction space equals fraction numerator straight P left parenthesis straight F right parenthesis over denominator straight P left parenthesis straight F right parenthesis end fraction space equals space 1.


    Question 45
    CBSEENMA12033619

    A couple has two children,
    Find the probability that both children are males, if it is known that at least one of the children is male. 

    Solution

    S = {MM, MF, FM, FF}
    where M stands for male and F stands for female
      Let A: both the children are males
    and B: at least one of the children is male.
     therefore    A = {MM},   B = {MM, MF, FM}
    therefore space space space space straight A space intersection straight B space equals space left curly bracket MM right curly bracket space equals space straight A
therefore space space space straight P left parenthesis straight A right parenthesis space equals space 1 fourth comma space space straight P left parenthesis straight B right parenthesis space equals space 3 over 4 comma space space straight P left parenthesis straight A intersection straight B right parenthesis space equals space 1 fourth
    Required probability  = straight P left parenthesis straight A space left enclose straight B right parenthesis space equals space fraction numerator straight P left parenthesis straight A intersection straight B right parenthesis over denominator straight P left parenthesis straight B right parenthesis end fraction space equals space fraction numerator begin display style 1 fourth end style over denominator begin display style 3 over 4 end style end fraction space equals 1 third

    Question 46
    CBSEENMA12033620

    A couple has two children,
    Find the probability that both children are females, if it is known that the elder child is a female.

    Solution

    S = {MM, MF, FM, FF}
    where M stands for male and F stands for female
    Let A: both the children are female
    and B: elder child is a a female.
    therefore space space space straight A space equals space left curly bracket FF right curly bracket comma space space straight B space equals space left curly bracket FM comma space FF right curly bracket
therefore space space space straight A space intersection space straight B space equals space left curly bracket FF right curly bracket space equals space straight A
therefore space space space straight P left parenthesis straight A right parenthesis space equals space 1 fourth comma space space straight P left parenthesis straight B right parenthesis space equals space 2 over 4 comma space space space straight P left parenthesis straight A space intersection straight B right parenthesis space equals space 1 fourth

    Required probability = straight P left parenthesis straight A space left enclose space straight B end enclose right parenthesis space equals space fraction numerator straight P left parenthesis straight A space intersection space straight B right parenthesis over denominator straight P left parenthesis straight B right parenthesis end fraction space equals space fraction numerator begin display style 1 fourth end style over denominator begin display style 2 over 4 end style end fraction space space equals 1 half
    Question 47
    CBSEENMA12033621

    An electronic assembly consists of two subsystems, say A and B. From the previous testing procedures, the following probabilities are assumed to be known:
    P( A fails) = 0.2
    P(B fails alone) = 0.15
    P(A and B fail) = 0.15
    Evaluate the following probabilities:
    (i) P( A fails left enclose straight B space has space failed end enclose) (ii) P(A fails alone)

    Solution

    Consider the following events:
    E : A fails 
    F : B fails.
    Now P(A fails) = 0.2                               rightwards double arrow     P(E) = 0.2
    and P(A and B fails) = 0.15                    rightwards double arrow     straight P left parenthesis straight E intersection straight F right parenthesis space equals space 0.15
    Also P(B fails alone) = 0.15
    rightwards double arrow space space space straight P left parenthesis straight E with rightwards arrow on top space intersection space straight F right parenthesis space equals space 0.15
rightwards double arrow space space space straight P left parenthesis straight F right parenthesis space minus space straight P left parenthesis straight E space intersection space straight F right parenthesis space equals space 0.15
rightwards double arrow space space space space straight P left parenthesis straight F right parenthesis space equals space straight P left parenthesis straight E intersection straight F right parenthesis space plus space 0.15
rightwards double arrow space space space straight P left parenthesis straight F right parenthesis space equals space 0.15 plus 0.15 space equals space 0.30
    (i) P(A fails| B has failed) = P(E | F) = fraction numerator straight P left parenthesis straight E intersection straight F right parenthesis over denominator straight P left parenthesis straight F right parenthesis end fraction space equals space fraction numerator 0.15 over denominator 0.30 end fraction space equals space 15 over 30 space equals space 1 half
    (ii) P(A fails alone) = straight P left parenthesis straight E intersection straight F with rightwards arrow on top right parenthesis space equals space straight P left parenthesis straight E right parenthesis space minus space straight P left parenthesis straight E intersection straight F right parenthesis
                                   = 0.2 -  0.15 = 0.05   
     

    Question 48
    CBSEENMA12033622

    Consider the experiment of throwing a die, if a multiple of 3 comes up, throw the die again and if any other number comes, toss a coin. Find the conditional probability of the event ‘the coin shows a tail’, given that ‘at least one die shows a 3’.

    Solution

    S = {(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6), (1, H), (1, T), (2, H), (2, T), (4, H), (4, T), (5, H), (5, T)}
    The outcomes of S are not equally likely. First 12 outcomes are equally likely and are such that the sum of their probabilities is 2 over 6 space equals 1 third. So each of the first 12 outcomes has a probability equal to 1 third cross times 1 over 12 space equals space 1 over 36. Remaining eight outcomes are equally likely and are such that the sum of their probabilities is 4 over 6 space equals space 2 over 3.
    So, each of these has a probability equal to fraction numerator 2 over denominator 3 cross times 8 end fraction equals 1 over 12.
    Let  E: 'the coin shows a tail'
    and F: 'at least one die shows up a 3',
    therefore space space space space space straight E space equals space left curly bracket left parenthesis 1 comma space straight T right parenthesis comma space left parenthesis 2 comma space straight T right parenthesis comma space left parenthesis 4 comma space straight T right parenthesis comma space left parenthesis 5 comma space straight T right parenthesis right curly bracket
    and  straight F space equals space left curly bracket left parenthesis 3 comma space 1 right parenthesis comma space left parenthesis 3 comma space 2 right parenthesis comma space left parenthesis 3 comma space 3 right parenthesis comma space left parenthesis 3 comma space 4 right parenthesis comma space left parenthesis 3 comma space 5 right parenthesis comma space left parenthesis 3 comma space 6 right parenthesis comma space left parenthesis 6 comma space 3 right parenthesis right curly bracket
    therefore space space space space space space straight E intersection straight F space equals straight ϕ
therefore space space space space straight P left parenthesis straight E intersection straight F right parenthesis space equals space 0
    Required probability  = straight P left parenthesis straight E space left enclose space straight F right parenthesis end enclose space equals space fraction numerator straight P left parenthesis straight E intersection straight F right parenthesis over denominator straight P left parenthesis straight F right parenthesis end fraction equals space fraction numerator 0 over denominator straight P left parenthesis straight F right parenthesis end fraction equals space 0.

    Question 49
    CBSEENMA12033623

    Consider the experiment of tossing a coin. If the coin shows head, toss it again but if it shows tail, then throw a die. Find the conditional probability of the event that ‘the die shows a number greater than 4’ given that ‘there is at least one tail.’

    Solution
    S = {(H, H), (H, T), (T, 1), (T, 2), (T, 3), (T, 4), (T, 5), (T, 6)} where (H, H) denotes that both the tosses result into head and (T, i) denote the first toss result into a tail and the number i appeared on the die for i = 1, 2, 3, 4, 5, 6.
                  therefore   the probabilities assigned to the 8 elementary events (H, H), (H, T), (T, 1), (T, 2), (T, 3), (T, 4), (T, 5), (T, 6) are 1 fourth comma space 1 fourth comma space 1 over 12 comma space 1 over 12 comma space 1 over 12 comma space 1 over 12 comma space 1 over 12 comma space 1 over 12 space 1 over 12 respectively.

    Let F be the event that ‘there is at least one tail’ and E be the event ‘the die shows a number greater than 4’. Then
                straight F space equals space open curly brackets left parenthesis straight H comma space straight T right parenthesis comma space left parenthesis straight T comma space 1 right parenthesis comma space left parenthesis straight T comma space 2 right parenthesis comma space left parenthesis straight T comma space 3 right parenthesis comma space left parenthesis straight T comma space 4 right parenthesis comma space left parenthesis straight T comma space 5 right parenthesis comma space left parenthesis straight T comma space 6 right parenthesis close curly brackets
straight E space equals space left curly bracket left parenthesis straight T comma space 5 right parenthesis comma space left parenthesis straight T comma space 6 right parenthesis right curly bracket space and space straight E intersection straight F space equals space left curly bracket left parenthesis straight T comma space 5 right parenthesis comma space left parenthesis straight T comma space 6 right parenthesis right curly bracket
      
    Now, straight P left parenthesis straight F right parenthesis space equals space straight P thin space open parentheses open curly brackets left parenthesis straight H comma space straight T right parenthesis close curly brackets close parentheses space plus space straight P space open parentheses open curly brackets left parenthesis straight T comma space 1 right parenthesis close curly brackets close parentheses space plus space straight P open parentheses open curly brackets left parenthesis straight T comma space 2 right parenthesis close curly brackets close parentheses
                                    plus straight P open parentheses open curly brackets left parenthesis straight T comma space 3 right parenthesis close curly brackets close parentheses space plus space straight P space open parentheses open curly brackets left parenthesis straight T comma space 4 right parenthesis close curly brackets close parentheses space plus space straight P open parentheses open curly brackets left parenthesis straight T comma space 5 right parenthesis close curly brackets close parentheses space plus space straight P open parentheses open curly brackets left parenthesis straight T comma space 6 right parenthesis close curly brackets close parentheses
                          equals space 1 fourth plus 1 over 12 plus 1 over 12 plus 1 over 12 plus 1 over 12 plus 1 over 12 plus 1 over 12
equals space 1 fourth plus 6 over 12 space equals fraction numerator 3 plus 6 over denominator 12 end fraction space equals space 9 over 12 space equals 3 over 4
    and straight P left parenthesis straight E intersection straight F right parenthesis space equals space straight P open parentheses open curly brackets left parenthesis straight T comma space 5 right parenthesis close curly brackets close parentheses space plus space straight P open parentheses open curly brackets left parenthesis straight T comma space 6 right parenthesis close curly brackets close parentheses space equals space 1 over 12 plus 1 over 12 space equals 2 over 12 space equals 1 over 6
    therefore space space space space straight P left parenthesis straight E space left enclose straight F right parenthesis space equals fraction numerator straight P left parenthesis straight E intersection straight F right parenthesis over denominator straight P left parenthesis straight F right parenthesis end fraction space equals fraction numerator begin display style 1 over 6 end style over denominator begin display style 3 over 4 end style end fraction space equals 1 over 6 cross times 4 over 3 space equals space 2 over 9
    Question 50
    CBSEENMA12033624

    If straight P left parenthesis straight A right parenthesis space equals space 1 half comma space space space straight P left parenthesis straight B right parenthesis space equals space 0 comma space space then space straight P left parenthesis straight A space left enclose straight B right parenthesis is

    • 0

    • 1 half
    • not defined

    • 1

    Solution

    C.

    not defined

     straight P left parenthesis straight A right parenthesis space equals space 1 half comma space space straight P left parenthesis straight B right parenthesis space equals space 0
therefore space space space space space straight P left parenthesis straight A space left enclose straight B right parenthesis end enclose space equals space fraction numerator straight P left parenthesis straight A intersection straight B right parenthesis over denominator straight P left parenthesis straight B right parenthesis end fraction comma space which space is space not space defined space as space straight P left parenthesis straight B right parenthesis space equals space 0
    ∴ (C) is correct answer.

    Question 51
    CBSEENMA12033625

    If A and B are events such that P(A|B) = P(B|A), then
    • A ⊂ B but A ≠ B
    • A = B
    • A ∩ B = ϕ
    • P(A) = P(B)

    Solution

    D.

    P(A) = P(B) straight P left parenthesis straight A space left enclose straight B right parenthesis space equals space straight P left parenthesis straight B space left enclose straight A right parenthesis
    rightwards double arrow space space space space space space space fraction numerator straight P left parenthesis straight A intersection straight B right parenthesis over denominator straight P left parenthesis straight B right parenthesis end fraction space equals space fraction numerator straight P left parenthesis straight B intersection straight A right parenthesis over denominator straight P left parenthesis straight A right parenthesis end fraction
rightwards double arrow space space space space space space space space fraction numerator straight P left parenthesis straight A space intersection space straight B right parenthesis over denominator straight P left parenthesis straight B right parenthesis end fraction space equals space fraction numerator straight P left parenthesis straight A intersection straight B right parenthesis over denominator straight P left parenthesis straight A right parenthesis end fraction space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets because space space straight A space intersection space straight B space equals space straight B space intersection straight A close square brackets
rightwards double arrow space space space space space space straight P left parenthesis straight B right parenthesis space equals space straight P left parenthesis straight A right parenthesis space space space space space rightwards double arrow space space space straight P left parenthesis straight A right parenthesis space equals space straight P left parenthesis straight B right parenthesis
    ∴ (D) is correct answer.
    Question 52
    CBSEENMA12033626

    If A and B are two events, such that P(A) ≠ 0 and P(B | A) = 1, then
    • A ⊂ B 
    • B ⊂ A
    • B = ϕ
    • A = ϕ

    Solution

    A.

    A ⊂ B 

     straight P space left parenthesis straight B space left enclose straight A right parenthesis space equals space 1
    rightwards double arrow space space space space space fraction numerator straight P left parenthesis straight B space intersection space straight A right parenthesis over denominator straight P left parenthesis straight A right parenthesis end fraction space equals space 1 space space space space space space space space space space space space space rightwards double arrow space space space space straight P left parenthesis straight B intersection straight A right parenthesis space equals space straight P left parenthesis straight A right parenthesis
rightwards double arrow space space space space space space space space space space space space space space space space space space space space space space space straight A space subset of straight B.

    ∴ (A) is correct answer.
    Question 53
    CBSEENMA12033627
    Question 54
    CBSEENMA12033628
    Question 55
    CBSEENMA12033629

    If A and B are two events such that A ⊂ B and P(B) ≠ 0, then which of the following is correct?
    • straight P left parenthesis straight A vertical line straight B right parenthesis space equals space fraction numerator straight P left parenthesis straight B right parenthesis over denominator straight P left parenthesis straight A right parenthesis end fraction
    • straight P left parenthesis straight A vertical line straight B right parenthesis space less than thin space straight P left parenthesis straight A right parenthesis
    • straight P left parenthesis straight A vertical line straight B right parenthesis space greater or equal than space straight P left parenthesis straight A right parenthesis
    • None of these

    Solution

    C.

    straight P left parenthesis straight A vertical line straight B right parenthesis space greater or equal than space straight P left parenthesis straight A right parenthesis

    When A ⊂ B, then straight A intersection straight B space equals space straight A.
    therefore space space space space straight P left parenthesis straight A vertical line straight B right parenthesis space equals space fraction numerator straight P left parenthesis straight A intersection straight B right parenthesis over denominator straight P left parenthesis straight B right parenthesis end fraction space equals fraction numerator straight P left parenthesis straight A right parenthesis over denominator straight P left parenthesis straight B right parenthesis end fraction greater or equal than straight P left parenthesis straight A right parenthesis space space space space open square brackets because space 0 space less than thin space straight P left parenthesis straight B right parenthesis space less or equal than 1 comma space space therefore space fraction numerator 1 over denominator straight P left parenthesis straight B right parenthesis end fraction greater or equal than 1 close square brackets
    ∴ (C) is correct answer.

    Question 56
    CBSEENMA12033630

    If straight P left parenthesis straight A right parenthesis space equals space 3 over 5 space and space straight P left parenthesis straight B right parenthesis space equals space 1 fifth comma find P(A ∩ B) if A and B are independent events.

    Solution

    Here,   straight P left parenthesis straight A right parenthesis space equals 3 over 5 comma space space straight P left parenthesis straight B right parenthesis space equals space 1 fifth                              ...(1)
    Since A and B are independent events
    therefore space space space space space space space space space space space straight P left parenthesis straight A intersection straight B right parenthesis space equals straight P left parenthesis straight A right parenthesis space straight P left parenthesis straight B right parenthesis space equals space 3 over 5 cross times 1 fifth space space space space space space space space space space space space space space space space space space space space left square bracket because space of space left parenthesis 1 right parenthesis
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space 3 over 25

    Question 57
    CBSEENMA12033631

    Let E and F be events with straight P left parenthesis straight E right parenthesis space equals space 3 over 5 comma space straight P left parenthesis straight F right parenthesis space equals space 3 over 10 space and space straight P left parenthesis straight E space intersection space straight F right parenthesis space equals space 1 fifth. Are E and F independent?

    Solution

     straight P left parenthesis straight E right parenthesis space equals 3 over 5 comma space space space straight P left parenthesis straight F right parenthesis space equals 3 over 10 comma space space straight P left parenthesis straight E intersection straight F right parenthesis space equals 1 fifth
     Now comma space straight P left parenthesis straight E right parenthesis. space straight P left parenthesis straight F right parenthesis space equals space 3 over 5 cross times 3 over 10 space equals 9 over 50 not equal to space straight P left parenthesis straight E intersection straight F right parenthesis space space space space space space space space space space open square brackets because space space space straight P left parenthesis straight E intersection straight F right parenthesis space equals space 1 fifth close square brackets
therefore space space space space space space space space straight P left parenthesis straight E right parenthesis. space straight P left parenthesis straight F right parenthesis space space space not equal to space straight P left parenthesis straight E intersection straight F right parenthesis


    ∴ E and F are not independent.
    Question 58
    CBSEENMA12033632

    If P(A) = 0.38, P(A ∪ B) = 0.69, find P(B), if A and B are independent events. 

    Solution

    Here,   P(A) = 0.38,   straight P left parenthesis straight A union straight B right parenthesis space equals space 0.69
    Let P(B) = p
    Since A and B are independent.
    therefore          straight P left parenthesis straight A space intersection thin space straight B right parenthesis space equals straight P left parenthesis straight A right parenthesis space cross times space straight P left parenthesis straight B right parenthesis
    therefore space space space space straight P left parenthesis straight A intersection straight B right parenthesis space equals space left parenthesis 0.38 right parenthesis thin space straight p                                   ...(1)
    Now straight P left parenthesis straight A space union space straight B right parenthesis space equals space straight P left parenthesis straight A right parenthesis space plus space straight P left parenthesis straight B right parenthesis space minus space straight P left parenthesis straight A intersection straight B right parenthesis.
    therefore space space space 0.69 space equals space 0.38 space plus space straight p space minus space left parenthesis 0.38 right parenthesis thin space straight p
therefore space space space 0.31 space equals space 0.62 space straight p space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space space space space straight p space equals space fraction numerator 0.31 over denominator 0.62 end fraction
therefore space space space space space straight p space equals space 31 over 62 space equals space 1 half
therefore space space space straight P left parenthesis straight B right parenthesis space equals 1 half space equals space 0.5

    Question 60
    CBSEENMA12033634
    Question 63
    CBSEENMA12033637
    Question 64
    CBSEENMA12033638

    For two events A and B, let P(A) = 0.4 and P(B) = p and P(A∪ B) = 0.6
    (i) Find p so that A and B are independent events.
    (ii) Find p so that A and B are mutually exclusive events.

    Solution
    straight P left parenthesis straight A right parenthesis space equals space 0.4 comma space space space straight P left parenthesis straight B right parenthesis space equals space straight p comma space space space straight P left parenthesis straight A union straight B right parenthesis space equals space 0.6
    (i) Since A  and B are independent events
     therefore space space space space space space straight P left parenthesis straight A intersection straight B right parenthesis space equals space straight P left parenthesis straight A right parenthesis space straight P left parenthesis straight B right parenthesis                                       ...(1)
    Now    straight P left parenthesis straight A union straight B right parenthesis space equals space straight P left parenthesis straight A right parenthesis space plus space straight P left parenthesis straight B right parenthesis space minus space straight P left parenthesis straight A intersection straight B right parenthesis  
    therefore space space space space space space space space space space space space space 0.6 space equals 0.4 space plus space straight p space minus space straight P left parenthesis straight A right parenthesis space straight P left parenthesis straight B right parenthesis space space space space space space space space space space space space open square brackets because space of space left parenthesis 1 right parenthesis close square brackets
therefore space space space space space space space space space space space space space 0.6 space equals space 0.4 space plus space straight p space minus space left parenthesis 0.4 right parenthesis space straight p space space rightwards double arrow space space 0.2 space equals space 0.6 space straight p
rightwards double arrow space space space space space space space space space space space space space straight p space equals space fraction numerator 0.2 over denominator 0.6 end fraction space equals 2 over 6 space equals 1 third
    (ii) Since A and B are mutually exclusive events
    therefore space space space space space space straight P left parenthesis straight A intersection straight B right parenthesis space equals space 0                                                     ...(2)
    Now,   straight P left parenthesis straight A space union space straight B right parenthesis space equals space straight P left parenthesis straight A right parenthesis plus straight P left parenthesis straight B right parenthesis space minus space straight P left parenthesis straight A intersection straight B right parenthesis
    therefore space space space space space space space space space space 0.6 space equals space 0.4 space plus space straight p space minus space 0 space space space rightwards double arrow space space space straight p space equals space 0.2 space equals space 1 fifth
    Question 65
    CBSEENMA12033639

    Given that the events A and B are such that P(A) =1 half comma   straight P left parenthesis straight A union straight B right parenthesis space equals space 3 over 5 space and space straight P left parenthesis straight B right parenthesis space equals space straight p. Find p if they are mutually exclusive.

    Solution
    straight P left parenthesis straight A right parenthesis space equals space 1 half comma space space straight P left parenthesis straight B right parenthesis space equals space straight p comma space space space space straight P left parenthesis straight A union straight B right parenthesis space equals space 3 over 5
    Since A and B are mutually exclusive events
    therefore space space space space space straight P left parenthesis straight A intersection straight B right parenthesis space equals space 0                         ...(1)
    Now,  straight P left parenthesis straight A union straight B right parenthesis space equals space straight P left parenthesis straight A right parenthesis space plus space straight P left parenthesis straight B right parenthesis space minus space straight P left parenthesis straight A intersection straight B right parenthesis

    therefore space space space space space space space space space space space 3 over 5 space equals 1 half plus straight p minus 0 space space space space space space space space space space space space space space space space open square brackets because space of space left parenthesis 1 right parenthesis close square brackets
rightwards double arrow space space space space space space space space space space space space space space space straight p space equals space 3 over 5 minus 1 half space equals space fraction numerator 6 minus 5 over denominator 10 end fraction space equals 1 over 10
    Question 66
    CBSEENMA12033640

    Given that the events A and B are such that P(A) =1 half comma   straight P left parenthesis straight A union straight B right parenthesis space equals space 3 over 5 space and space straight P left parenthesis straight B right parenthesis space equals space straight p. Find p if they are independent.

    Solution
    straight P left parenthesis straight A right parenthesis space equals space 1 half comma space space straight P left parenthesis straight B right parenthesis space equals space straight p comma space space space space straight P left parenthesis straight A union straight B right parenthesis space equals space 3 over 5
    Since A and B are independent events
    therefore space space space space space space space straight P left parenthesis straight A intersection straight B right parenthesis space equals space straight P left parenthesis straight A right parenthesis space straight P left parenthesis straight B right parenthesis space equals space 1 half cross times straight p
therefore space space space space space space space space straight P left parenthesis straight A space intersection space straight B right parenthesis space equals space straight p over 2 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis
    Now,    straight P left parenthesis straight A union straight B right parenthesis space equals space straight P left parenthesis straight A right parenthesis plus straight P left parenthesis straight B right parenthesis minus straight P left parenthesis straight A intersection straight B right parenthesis
    therefore space space space space space 3 over 5 space equals 1 half plus straight p minus straight p over 2 space space space space space space space open square brackets because space of space left parenthesis 2 right parenthesis close square brackets
therefore space space space space space straight p over 2 space equals 3 over 5 minus 1 half space space space space space space space space space space space rightwards double arrow space space space space straight p over 2 space equals space fraction numerator 6 minus 5 over denominator 10 end fraction
rightwards double arrow space space space space space space straight p over 2 space equals space 1 over 10 space space space space space space space space space space space rightwards double arrow space space space straight p space equals space 2 over 10 space equals 1 fifth
     
    Question 67
    CBSEENMA12033641

    Let A and B be independent events with P(A) = 0.3 and P(B) = 0.4. Find P(A ∩ B)

    Solution

    P(A) = 0.3,   P(B) = 0.4
             straight P open parentheses straight A intersection straight B close parentheses space equals space straight P left parenthesis straight A right parenthesis cross times straight P left parenthesis straight B right parenthesis           open square brackets because space space straight A space and space straight B space are space independent close square brackets
                            equals space 0.3 space cross times space 0.4 space equals space 0.12

    Question 68
    CBSEENMA12033642

    Let A and B be independent events with P(A) = 0.3 and P(B) = 0.4. Find P(A ∪ B)

    Solution

    P(A) = 0.3,   P(B) = 0.4
            <pre>uncaught exception: <b>file_put_contents(/home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/web/../../../../../../formulas/3a/d7/4a067d8fa77bf5cc4c3b50d54e9b.ini): failed to open stream: Permission denied (errno: 2) in /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/sys/io/File.class.php at line #12file_put_contents(/home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/web/../../../../../../formulas/3a/d7/4a067d8fa77bf5cc4c3b50d54e9b.ini): failed to open stream: Permission denied</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/sys/io/File.class.php line 12<br />#0 [internal function]: _hx_error_handler(2, 'file_put_conten...', '/home/config_ad...', 12, Array)
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/sys/io/File.class.php(12): file_put_contents('/home/config_ad...', 'mml=<math xmlns...')
#2 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php(48): sys_io_File::saveContent('/home/config_ad...', 'mml=<math xmlns...')
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/FolderTreeStorageAndCache.class.php(112): com_wiris_util_sys_Store->write('mml=<math xmlns...')
#4 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(231): com_wiris_plugin_impl_FolderTreeStorageAndCache->codeDigest('mml=<math xmlns...')
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(59): com_wiris_plugin_impl_RenderImpl->computeDigest(NULL, Array)
#6 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#7 {main}</pre>
                          equals space 0.3 plus 0.4 space minus 0.12                             open square brackets because space of space left parenthesis straight i right parenthesis close square brackets
                           = 0.58 

    Question 69
    CBSEENMA12033643

    Let A and B be independent events with P(A) = 0.3 and P(B) = 0.4. Find P(A|B) 

    Solution

    P(A) = 0.3,   P(B) = 0.4
           straight P left parenthesis straight A vertical line straight B right parenthesis space equals space fraction numerator straight P left parenthesis straight A intersection straight B right parenthesis over denominator straight P left parenthesis straight B right parenthesis end fraction space equals fraction numerator 0.12 over denominator 0.4 end fraction space equals space 12 over 100 cross times 10 over 4 space equals space 3 over 10 space equals space 0.3

    Question 70
    CBSEENMA12033644

    Let A and B be independent events with P(A) = 0.3 and P(B) = 0.4. Find P(B | A)

    Solution

    P(A) = 0.3,   P(B) = 0.4
    P(B | A) = fraction numerator straight P left parenthesis straight B space intersection space straight A right parenthesis over denominator straight P left parenthesis straight A right parenthesis end fraction space equals space fraction numerator straight P left parenthesis straight A intersection straight B right parenthesis over denominator straight P left parenthesis straight A right parenthesis end fraction space equals fraction numerator 0.12 over denominator 0.3 end fraction space equals space 12 over 100 cross times 10 over 3 space equals 4 over 10 space equals space 0.4

    Question 71
    CBSEENMA12033645

    Events A and B are such that straight P left parenthesis straight A right parenthesis space equals space 1 half comma space straight P left parenthesis straight B right parenthesis space equals space 7 over 12 space and space straight P left parenthesis not space straight A space or space not space straight B right parenthesis space equals 1 fourth. State whether A and B are independent?

    Solution
    straight P left parenthesis straight A right parenthesis space equals space 1 half comma space space straight P left parenthesis straight B right parenthesis space equals space 7 over 12
    Now P(not A or not B) = 1 fourth space space space rightwards double arrow space space space space straight P left parenthesis straight A to the power of straight c space or space space straight B to the power of straight c right parenthesis space equals space 1 fourth
    rightwards double arrow space space space space straight P left parenthesis straight A to the power of straight c space union space straight B to the power of straight c right parenthesis space equals space 1 fourth space space space rightwards double arrow space space space space straight P open square brackets left parenthesis straight A space intersection space straight B right parenthesis to the power of straight c close square brackets space equals space 1 fourth
rightwards double arrow space space space space 1 minus space straight P left parenthesis straight A space intersection space straight B right parenthesis space equals space 1 fourth space space space space rightwards double arrow space space space straight P left parenthesis straight A space intersection straight B right parenthesis space equals space 1 minus 1 fourth space equals space 3 over 4

    Also,    straight P left parenthesis straight A right parenthesis space cross times space straight P left parenthesis straight B right parenthesis space equals space 1 half cross times 7 over 12 space equals space 7 over 24 not equal to 3 over 4
    space space space space straight P left parenthesis straight A right parenthesis space cross times space straight P left parenthesis straight B right parenthesis space equals space 1 half cross times 7 over 12 space equals 7 over 24 not equal to 3 over 4
    therefore space space space space straight P left parenthesis straight A right parenthesis space cross times space straight P left parenthesis straight B right parenthesis space space not equal to space straight P left parenthesis straight A intersection straight B right parenthesis
    ∴ A and B are not independent.
    Question 72
    CBSEENMA12033646

    If P(A) = 3 over 5 and straight P left parenthesis straight B right parenthesis space equals space 1 third comma find:
    (i) P(A or B), if A and B are mutually exclusive events.
    (ii) P (A and B), if A and B are independent events.

    Solution

    Here  straight P left parenthesis straight A right parenthesis space equals space 3 over 5 comma space space straight P left parenthesis straight B right parenthesis space equals 1 third
    (i)   straight P left parenthesis straight A space or space straight B right parenthesis space equals space straight P left parenthesis straight A right parenthesis space plus space straight P left parenthesis straight B right parenthesis space space space left square bracket because space straight A space and space straight B space are space mutually space exclusive space events right square bracket
                             equals space 3 over 5 plus 1 third space equals fraction numerator 9 plus 5 over denominator 15 end fraction space equals 14 over 15
    (ii) Since A and B are independent events
             straight P left parenthesis straight A space and space straight B right parenthesis space equals space straight P left parenthesis straight A right parenthesis space cross times space straight P left parenthesis straight B right parenthesis space equals space 3 over 5 cross times 1 third space space equals 1 fifth

    Question 73
    CBSEENMA12033647

    If A and B are two events such that straight P left parenthesis straight A right parenthesis space equals space 1 fourth comma space space straight P left parenthesis straight B right parenthesis space equals space 1 half space and space straight P left parenthesis straight A intersection straight B right parenthesis space equals space 1 over 8 comma find P(not A and not B).

    Solution
    straight P left parenthesis straight A right parenthesis space equals space 1 fourth comma space space straight P left parenthesis straight B right parenthesis space equals space 1 half comma space space straight P left parenthesis straight A intersection straight B right parenthesis space equals space 1 over 8
    Now,      straight P left parenthesis straight A space intersection space straight B right parenthesis space equals space 1 over 8 space equals 1 fourth cross times 1 half space equals space straight P left parenthesis straight A right parenthesis cross times straight P left parenthesis straight B right parenthesis comma
    therefore     A and B are independent
    rightwards double arrow space space space space space space space straight A to the power of straight c space and space straight B to the power of straight c space are space also space independent.
rightwards double arrow space space space space space space straight P left parenthesis straight A to the power of straight c space intersection space straight B to the power of straight c right parenthesis space equals space straight P left parenthesis straight A to the power of straight c right parenthesis thin space straight P left parenthesis straight B to the power of straight c right parenthesis
rightwards double arrow space space space straight P left parenthesis not space straight A space and space not thin space straight B right parenthesis space equals space open square brackets 1 minus straight P left parenthesis straight A right parenthesis close square brackets space open square brackets 1 minus straight P left parenthesis straight B right parenthesis close square brackets
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space open parentheses 1 minus 1 fourth close parentheses space open parentheses 1 minus 1 half close parentheses space equals 3 over 4 cross times 1 half space equals 3 over 8.
    Question 74
    CBSEENMA12033648

    Given two independent events A and B such that P(A) = 0.3, P(B) = 0.6. Find P(A and B).

    Solution

    Here P(A) = 0.3,    P(B) = 0.6
    therefore space space space space space space space space space space straight P space open parentheses straight A with bar on top close parentheses equals space 1 minus straight P left parenthesis straight A right parenthesis space equals space 1 minus 0.3 space equals 0.7
space space space space space space space space space space space space space straight P open parentheses straight B with bar on top close parentheses space equals space 1 minus space straight P left parenthesis straight B right parenthesis space equals space 1 minus 0.6 space equals space 0.4
    P(A and B) = P(A) x P(B)                  [because A and B are independent]
                       = 0.3 x 0.6 = 0.18

    Question 75
    CBSEENMA12033649

    Given two independent events A and B such that P(A) = 0.3, P(B) = 0.6. Find P(A and not B).

    Solution

    Here P(A) = 0.3,    P(B) = 0.6
    therefore space space space space space space space space space space straight P space open parentheses straight A with bar on top close parentheses equals space 1 minus straight P left parenthesis straight A right parenthesis space equals space 1 minus 0.3 space equals 0.7
space space space space space space space space space space space space space straight P open parentheses straight B with bar on top close parentheses space equals space 1 minus space straight P left parenthesis straight B right parenthesis space equals space 1 minus 0.6 space equals space 0.4    
    P(A and not B) = straight P left parenthesis straight A right parenthesis space cross times space straight P space left parenthesis straight B with bar on top right parenthesis space equals 0.3 space cross times space 0.4 space equals space 0.12

    Question 76
    CBSEENMA12033650

    Given two independent events A and B such that P(A) = 0.3, P(B) = 0.6. Find P(A or B).

    Solution

    Here P(A) = 0.3,    P(B) = 0.6
    therefore space space space space space space space space space space straight P space open parentheses straight A with bar on top close parentheses equals space 1 minus straight P left parenthesis straight A right parenthesis space equals space 1 minus 0.3 space equals 0.7
space space space space space space space space space space space space space straight P open parentheses straight B with bar on top close parentheses space equals space 1 minus space straight P left parenthesis straight B right parenthesis space equals space 1 minus 0.6 space equals space 0.4    
     P(A or B) = P(A)+P(B) - straight P left parenthesis straight A intersection straight B right parenthesis  = 0.3 + 0.6 - 0.18  = 0.72

    Question 77
    CBSEENMA12033651

    Given two independent events A and B such that P(A) = 0.3, P(B) = 0.6. Find P(neither A nor B)

    Solution

    Here P(A) = 0.3,    P(B) = 0.6
    therefore space space space space space space space space space space straight P space open parentheses straight A with bar on top close parentheses equals space 1 minus straight P left parenthesis straight A right parenthesis space equals space 1 minus 0.3 space equals 0.7
space space space space space space space space space space space space space straight P open parentheses straight B with bar on top close parentheses space equals space 1 minus space straight P left parenthesis straight B right parenthesis space equals space 1 minus 0.6 space equals space 0.4    
     P (neither A nor B) = straight P left parenthesis straight A to the power of straight c space and space straight B to the power of straight c right parenthesis space equals space straight P left parenthesis straight A to the power of straight c space intersection straight B to the power of straight c right parenthesis
                                    equals space straight P space open parentheses left parenthesis straight A space union space straight B right parenthesis to the power of straight c close parentheses space equals space 1 minus space straight P left parenthesis straight A space union space straight B right parenthesis space space equals space 1 minus 0.72 space equals 0.28

    Question 78
    CBSEENMA12033652

    A die is thrown. If E is the event ‘the number appearing is a multiple of 3’ and F be the event ‘the number appearing is even’ then find whether E and F are independent?

    Solution

    S = {1, 2, 3, 4, 5, 6}
    E = {3, 6},   F = {2, 4, 6},  straight E intersection straight F space equals space open curly brackets 6 close curly brackets
    therefore space space space straight P left parenthesis straight E right parenthesis equals space space 2 over 6 space equals 1 third comma space space space straight P left parenthesis straight F right parenthesis space equals 3 over 6 space equals space 1 half comma space space straight P left parenthesis straight E space intersection space straight F right parenthesis space equals space 1 over 6
    Since P(E and F)  = 1 over 6 space equals 1 third cross times 1 half space equals space straight P left parenthesis straight E right parenthesis space cross times space straight P left parenthesis straight F right parenthesis
    ∴ the events E and F are independent events.

    Question 79
    CBSEENMA12033653

    An unbiased die is thrown twice. Let the event A be ‘odd number on the first throw’ and B the event ‘odd number on the second throw’. Check the independence of the events A and B.

    Solution
    straight S space equals space open curly brackets table row cell left parenthesis 1 comma space 1 right parenthesis end cell cell left parenthesis 1 comma space 2 right parenthesis end cell cell left parenthesis 1 comma space 3 right parenthesis end cell cell left parenthesis 1 comma space 4 right parenthesis end cell cell left parenthesis 1 comma space 5 right parenthesis end cell cell left parenthesis 1 comma space 6 right parenthesis end cell row cell left parenthesis 2 comma 1 right parenthesis end cell cell left parenthesis 2 comma space 2 right parenthesis end cell cell left parenthesis 2 comma space 3 right parenthesis end cell cell left parenthesis 2 comma space 4 right parenthesis end cell cell left parenthesis 2 comma space 5 right parenthesis end cell cell left parenthesis 2 comma space 6 right parenthesis end cell row cell left parenthesis 3 comma space 1 right parenthesis end cell cell left parenthesis 3 comma space 2 right parenthesis end cell cell left parenthesis 3 comma space 3 right parenthesis end cell cell left parenthesis 3 comma space 4 right parenthesis end cell cell left parenthesis 3 comma space 5 right parenthesis end cell cell left parenthesis 3 comma space 6 right parenthesis end cell row cell left parenthesis 4 comma space 1 right parenthesis end cell cell left parenthesis 4 comma space 2 right parenthesis end cell cell left parenthesis 4 comma space 3 right parenthesis end cell cell left parenthesis 4 comma space 4 right parenthesis end cell cell left parenthesis 4 comma space 5 right parenthesis end cell cell left parenthesis 4 comma space 6 right parenthesis end cell row cell left parenthesis 5 comma space 1 right parenthesis end cell cell left parenthesis 5 comma space 2 right parenthesis end cell cell left parenthesis 5 comma space 3 right parenthesis end cell cell left parenthesis 5 comma space 4 right parenthesis end cell cell left parenthesis 5 comma space 5 right parenthesis end cell cell left parenthesis 5 comma space 6 right parenthesis end cell row cell left parenthesis 6 comma space 1 right parenthesis end cell cell left parenthesis 6 comma space 2 right parenthesis end cell cell left parenthesis 6 comma space 3 right parenthesis end cell cell left parenthesis 6 comma space 4 right parenthesis end cell cell left parenthesis 6 comma space 5 right parenthesis end cell cell left parenthesis 6 comma space 6 right parenthesis end cell end table close curly brackets
    Number of elements (outcomes) of the above example space is 6 x 6  = 36.
                                     straight P left parenthesis straight A right parenthesis space equals 18 over 36 space equals 1 half space space and space straight P left parenthesis straight B right parenthesis space equals space 18 over 36 space equals 1 half

       Also comma space straight P left parenthesis straight A intersection straight B right parenthesis space equals space straight P thin space left parenthesis odd space number space on space both space throws right parenthesis
space space space space space space space space space space space space space space space space space equals space 9 over 36 space equals space 1 fourth
    Now,   straight P left parenthesis straight A right parenthesis. space straight P left parenthesis straight B right parenthesis space equals space 1 half cross times 1 half space equals space 1 fourth
    Clearly,   straight P left parenthesis straight A space intersection space straight B right parenthesis space equals space straight P left parenthesis straight A right parenthesis space cross times space straight P left parenthesis straight B right parenthesis
    ∴ A and B are independent events.


                    
      

    Sponsor Area

    Question 80
    CBSEENMA12033654

    If straight P left parenthesis straight A right parenthesis space equals space 6 over 11 comma space space straight P left parenthesis straight B right parenthesis space equals space 5 over 11 space and space straight P left parenthesis straight A union straight B right parenthesis space equals space 7 over 11 comma find P(A | B) .

    Solution

    Here   straight P left parenthesis straight A right parenthesis space equals space 6 over 11 comma space space straight P left parenthesis straight B right parenthesis space equals space 5 over 11 comma space space straight P left parenthesis straight A union straight B right parenthesis space equals space 7 over 11
                straight P left parenthesis straight A space left enclose straight B right parenthesis space equals space fraction numerator straight P left parenthesis straight A intersection straight B right parenthesis over denominator straight P left parenthesis straight B right parenthesis end fraction space equals fraction numerator begin display style 4 over 11 end style over denominator begin display style 5 over 11 end style end fraction space equals space 4 over 11 cross times 11 over 5 space equals 4 over 5

    Question 81
    CBSEENMA12033655

    If straight P left parenthesis straight A right parenthesis space equals space 6 over 11 comma space space straight P left parenthesis straight B right parenthesis space equals space 5 over 11 space and space straight P left parenthesis straight A union straight B right parenthesis space equals space 7 over 11 comma find P(B | A)

    Solution

    Here   straight P left parenthesis straight A right parenthesis space equals space 6 over 11 comma space space straight P left parenthesis straight B right parenthesis space equals space 5 over 11 comma space space straight P left parenthesis straight A union straight B right parenthesis space equals space 7 over 11
               straight P left parenthesis straight B vertical line straight A right parenthesis space equals space fraction numerator straight P left parenthesis straight B space intersection space straight A right parenthesis over denominator straight P left parenthesis straight A right parenthesis end fraction space equals space fraction numerator straight P left parenthesis straight A intersection straight B right parenthesis over denominator straight P left parenthesis straight A right parenthesis end fraction space equals space fraction numerator begin display style 4 over 11 end style over denominator begin display style 6 over 11 end style end fraction space equals space 4 over 6 space equals space 2 over 3
                 
                

    Question 82
    CBSEENMA12033656

    A fair coin and an unbiased die are tossed. Let A be the event ‘head appears on the coin’ and B be the event ‘3 on the die’. Check whether A and B are independent events or not.

    Solution

    S = {(H, 1), (H, 2), (H, 3), (H, 4), (H, 5), (H, 6), (T, 1), (T, 2), (T, 3), (T, 4), (T, 5), (T, 6)}
    Now A: 'head appears on the coin'
    and B: '3 appears on the dice'.
    therefore space space straight A space equals space left curly bracket left parenthesis straight H comma 1 right parenthesis comma space left parenthesis straight H comma space 2 right parenthesis comma space left parenthesis straight H comma space 3 right parenthesis comma space left parenthesis straight H comma space 4 right parenthesis comma space left parenthesis straight H comma space 5 right parenthesis comma space left parenthesis straight H comma space 6 right parenthesis
    and straight B space equals space open curly brackets left parenthesis straight H comma space 3 right parenthesis comma space left parenthesis straight T comma space 3 right parenthesis close curly brackets
    Also, straight A space intersection space straight B space equals space left curly bracket left parenthesis straight H comma space 3 right parenthesis right curly bracket
    therefore space space space straight P left parenthesis straight A right parenthesis space equals space 6 over 12 space equals 1 half comma space space space space straight P left parenthesis straight B right parenthesis space equals space 2 over 12 space equals space 1 over 6
    and straight P left parenthesis straight A space intersection space straight B right parenthesis space equals space 1 over 12.
    Now,       straight P left parenthesis straight A right parenthesis space cross times space straight P left parenthesis straight B right parenthesis space equals space 1 half cross times 1 over 6 space equals 1 over 12 space equals space straight P left parenthesis straight A space intersection space straight B right parenthesis.
    ∴ A and B are independent.

    Question 83
    CBSEENMA12033657

    A die marked 1, 2, 3 in red and 4, 5, 6 in green is tossed. Let A be the event 'the number is even', and B be the event, 'the number is red'. Are A and B independent?

    Solution

    S = {1, 2, 3, 4, 5, 6}
       Now A: 'number is even'
       and B: 'number is red'
    therefore                        straight A space equals space left curly bracket 2 comma space 4 comma space 6 right curly bracket space and space straight B space equals space left curly bracket 1 comma space 2 comma space 3 right curly bracket
    Also,    straight A intersection straight B space equals space left curly bracket 2 right curly bracket.
    Now,        straight P left parenthesis straight A right parenthesis space equals 3 over 6 space equals 1 half comma space space space straight P left parenthesis straight B right parenthesis space equals space 3 over 6 space equals space 1 half space space and space straight P left parenthesis straight A space intersection space straight B right parenthesis space equals space 1 over 6 space not equal to space 1 half cross times 1 half
    therefore space space space space space straight P left parenthesis space straight A intersection straight B right parenthesis space not equal to space straight P left parenthesis straight A right parenthesis space straight P left parenthesis straight B right parenthesis
    ∴ A and B are not independent.

    Question 84
    CBSEENMA12033658

    In the two dice experiment, if E is the even of getting the sum of numbers on dice as 11 and F is the event of getting a number other than 5 on the first die. find P (E and F). Are E and F independent events?

    Solution

    Total number of outcomes = 6 × 6 = 36
    Number of outcomes favourable to E = 2.    [i.e., (5, 6), (6, 5)]
    Let F be the event that the number 5 does not appear on the first die.
    Number of outcomes favourable to F = 30
    Now,  straight P left parenthesis straight E right parenthesis space equals space 2 over 36 space equals space 1 over 18 comma space space straight P left parenthesis straight F right parenthesis space equals space 30 over 36 space equals space 5 over 6
            straight P left parenthesis straight E intersection straight F right parenthesis space equals space 1 over 36 not equal to 1 over 18 cross times 5 over 6 space equals space straight P left parenthesis straight E right parenthesis space cross times straight P left parenthesis straight F right parenthesis
    Therefore, E and F are not independent events.


    Question 85
    CBSEENMA12033659
    Question 88
    CBSEENMA12033662

    A coin is tossed thrice. In which of the following cases are the events E and F independent?
    E : the first throw results in head”.
    F : “the last throw results in tail”.

    Solution

    Here,   S = {HHH,  HHT,  HTH,  THH, TTH, THT,  HTT, TTT}
          P(E) = P(HHH,  HHT,  HTH,  HTT) = 4 over 8 space equals 1 half
          P(F) = P(HHT, THT, HTT, TTT) = 4 over 8 space equals 1 half
          straight P left parenthesis straight E intersection straight F right parenthesis space equals straight P left parenthesis HHT comma space space HTT right parenthesis space equals space 2 over 8 space equals space 1 fourth
    therefore space space space space space straight P left parenthesis straight E intersection straight F right parenthesis space equals space space space straight P left parenthesis straight E right parenthesis space straight P left parenthesis straight F right parenthesis                              open square brackets because space space space 1 fourth space equals space 1 half cross times 1 half close square brackets
    therefore space space events space straight E space and space straight F space are space independent.

    Question 90
    CBSEENMA12033664

    A coin is tossed thrice. In which of the following cases are the events E and F independent?
    E : “the number of heads is odd”.   
    F : “the number of tails is odd”.

    Solution

    Here,   S = {HHH,  HHT,  HTH,  THH, TTH, THT,  HTT, TTT}
            P(E) = P(HHH,   TTH, THT, TTH) = 4 over 8 space equals 1 half
            straight P left parenthesis straight F right parenthesis space equals space straight P left parenthesis HHT comma space HTH comma space THH comma space TTT right parenthesis space equals 4 over 8 space equals space 1 half
             straight P left parenthesis straight E intersection straight F right parenthesis space equals space 0
    therefore space space space space straight P left parenthesis straight E intersection straight F right parenthesis space not equal to space straight P left parenthesis straight E right parenthesis space cross times space straight P left parenthesis straight F right parenthesis space space space space space space space space space space space space space space space space space space open square brackets because space space 0 space not equal to space 1 half cross times 1 half close square brackets
    therefore space space space events space straight E space and space straight F space are space not space independent.
       
         

    Question 91
    CBSEENMA12033665

    Three coins are tossed simultaneously. Consider the event E ‘three heads or three tails’, F ‘at least two heads' and G ‘at most two heads’. Of the pairs (E, F), (E, G) and (F, G), which are independent? Which are dependent?

    Solution

                 S = {HHH,  HHT, HTH, THH, HTT, THT, TTH, TTT}
    therefore space space       E = {HHH, TTT},   F = {HHH, HHT, HTH, THH}
    and       G = {HHT, HTH,  THH, HTT, THT, TTH, TTT}
    therefore space       straight E intersection straight F space equals space left curly bracket HHH right curly bracket comma space straight E space intersection space straight G space equals space left curly bracket TTT right curly bracket comma space space straight F intersection straight G space equals space left curly bracket HHT comma space space HTH comma space THH right curly bracket
    therefore space space space straight P left parenthesis straight E right parenthesis space equals space 2 over 8 space equals space 1 fourth comma space space straight P left parenthesis straight F right parenthesis space equals space 4 over 8 space equals 1 half comma space space straight P left parenthesis straight G right parenthesis space equals space 7 over 8
    and  straight P left parenthesis straight E intersection straight F right parenthesis space equals space 1 over 8 comma space space straight P left parenthesis straight E intersection straight G right parenthesis space equals space 1 over 8 comma space space straight P left parenthesis straight F intersection straight G right parenthesis space equals space 3 over 8
    Also,  straight P left parenthesis straight E right parenthesis. space straight P left parenthesis straight F right parenthesis space equals space 1 fourth cross times 1 half space equals 1 over 8 comma space space straight P left parenthesis straight E right parenthesis. space space straight P left parenthesis straight G right parenthesis space equals space 1 fourth cross times 7 over 8 space equals 7 over 32
    and    straight P left parenthesis straight F right parenthesis. space straight P left parenthesis straight G right parenthesis space equals 1 half cross times 7 over 8 equals space 7 over 16
        therefore space space space space space straight P left parenthesis straight E intersection straight F right parenthesis space equals space straight P left parenthesis straight E right parenthesis. space straight P left parenthesis straight F right parenthesis
                 straight P left parenthesis straight E space intersection space straight G right parenthesis thin space not equal to space straight P left parenthesis straight E right parenthesis. space straight P left parenthesis straight G right parenthesis
    and     straight P left parenthesis straight F intersection straight G right parenthesis space not equal to space straight P left parenthesis straight F right parenthesis. space straight P left parenthesis straight G right parenthesis
    ∴ the events (E and F) are independent, and the events (E and G) and (F and G) are dependent.

    Question 92
    CBSEENMA12033666

    Prove that if E and F are independent events,  then so are the events E and F'.

    Solution

    Since E and F are independent.
    ∴  P(E ∩ F) = P(E). P(F)
    From the Venn diagram in the figure, it is clear that E ∩ F and E ∩ F' are mutually exclusive events and also
               straight E space equals space left parenthesis straight E space intersection space straight F right parenthesis thin space left parenthesis straight E space intersection space straight F apostrophe right parenthesis.
    therefore space space space space straight P left parenthesis straight E right parenthesis space equals space straight P left parenthesis straight E intersection straight F right parenthesis space plus space straight P left parenthesis straight E intersection straight F apostrophe right parenthesis
rightwards double arrow space space straight P left parenthesis straight E space intersection space straight F apostrophe right parenthesis space equals space straight P left parenthesis straight E right parenthesis space minus space straight P left parenthesis straight E space intersection space straight F right parenthesis
space space space space space space space space space space space space space space space space space space space space space space space space space equals space straight P left parenthesis straight E right parenthesis space minus space straight P left parenthesis straight E right parenthesis. space straight P left parenthesis straight F right parenthesis
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets because space of space left parenthesis 1 right parenthesis close square brackets
space space space space space space space space space space space space space space space space space space space space space space space space equals space straight P left parenthesis straight E right parenthesis space left square bracket 1 minus space straight P left parenthesis straight F right parenthesis right square bracket
space space space space space space space space space space space space space space space space space space space space space space space space equals space straight P left parenthesis straight E right parenthesis. space straight P left parenthesis straight F apostrophe right parenthesis
    ∴   E and F' are independent.


    Tips: -

    Note: In a similar manner, it can be shown that if the events E and F are independent, then
    (a)    E' and F are independent,
    (b)    E' and F' are independent.

    Question 93
    CBSEENMA12033667

    If A and B are two independent events, then the probability of occurrence of at least one of A and B is given by 1 - P(A') P(B').

    Solution

    Since A and B are independent events
    ∴ P(A ∩ B) = P(A) P(B)    ...(1)
    P(at least one of A and B) = P(A ∪ B)
    = P(A) + P(B) - P(A ∩ B)
    = P( A) + P(B) - P(A) P(B)    [∵ of(1)]
    = P(A) + P(B) [1 - P(A)]
    = P(A) + P(B). P(A') = 1 - P(A') + P(B) P(A')
    = 1 - P(A') [1 - P(B)] = 1 - P(A') P(B')

     
    Question 94
    CBSEENMA12033668

    Two events A and B will be independent, if

    • A and B are mutually exclusive
    • P(A'B') = [1 - P(A)] [1 - P(B)]
    • P(A) = P(B)
    • P(A) + P(B) = 1

    Solution

    B.

    P(A'B') = [1 - P(A)] [1 - P(B)]

     P(A'B') = (P(A' ∩ B') = P(A ∪ B)'
    = 1 - P(A ∪ B)
    = 1 - [P(A) + P(B) - P(A ∩ B)]
    = 1 - P(A) - P(B) + P(A ∩ B)
    = 1 - P(A) - P(B) + P(A) P(B)    [A and B are independent]
    = [1 - P(A)] [1 - P(B)]
    ∴ (B) is correct answer.

    Question 95
    CBSEENMA12033669

    An urn contains 10 black and 5 white balls. Two balls are drawn from the urn one after the other without replacement. What is the probability that both drawn balls are black?

    Solution

    Number of black balls = 10
    Number of white balls = 5
    ∴ total number of balls = 10 + 5 = 15
    Let E and F denote respectively the events that first and second ball drawn are black.
          Now P(E) = P(black ball in first draw) = 10 over 15
    Since there is no replacement
     therefore space space space straight P left parenthesis straight E vertical line straight F right parenthesis space equals space 9 over 14
    By multiplication rule of probability,
                         straight P left parenthesis straight E intersection straight F right parenthesis space equals space straight P left parenthesis straight E right parenthesis space straight P left parenthesis straight F vertical line straight E right parenthesis space equals space 10 over 15 cross times 9 over 14 space equals 3 over 7

    Question 96
    CBSEENMA12033670

    Two cards are drawn at random and without replacement from a pack of 52 playing cards. Find the probability that both the cards are black.

    Solution

    Total number of cards = 52
    Number of black cards = 26
    Let E and F denote respectively events that first and second balls drawn are black
    therefore space space space space straight P left parenthesis straight E right parenthesis space equals space straight P left parenthesis black space ball space in space first space draw right parenthesis space equals space 26 over 52
        straight P left parenthesis straight F vertical line straight E right parenthesis space equals space 25 over 51
    Required probability = P(E) P(F|E)
                                    equals space 26 over 52 cross times 25 over 51 space equals 25 over 102

    Question 98
    CBSEENMA12033672

    Two dice are thrown. Find the probability of getting an odd number on the first die and a multiple of 3 on the other.

    Solution
    Let A and B denote the two events.
    therefore space space space straight P left parenthesis straight A right parenthesis space equals space straight P left parenthesis 1 comma space 3 comma space 5 right parenthesis space equals space 3 over 6 space equals space 1 half comma space space space straight P left parenthesis straight B right parenthesis space equals space straight P left parenthesis 3 comma space 6 right parenthesis space equals space 2 over 6 space equals space 1 third
    Required probability = straight P left parenthesis straight A space straight B right parenthesis space equals space straight P left parenthesis straight A right parenthesis space straight P left parenthesis straight B right parenthesis space equals 1 half cross times 1 third space equals 1 over 6
    Question 99
    CBSEENMA12033673

    A die is tossed twice. Find, the probability of ‘a number greater than 4’ on each dice.

    Solution
    Let A denote the event ‘a number greater than 4 on first toss’ and B denote the event ‘a number greater than 4 on the second toss’.
                         straight P left parenthesis straight A right parenthesis space equals space straight P left parenthesis 5 comma space 6 right parenthesis space equals space 2 over 6 space equals 1 third comma space space straight P left parenthesis straight B right parenthesis space equals space straight P left parenthesis 5 comma space 6 right parenthesis space equals space 2 over 6 space equals 1 third
    Now A and B are independent.
    therefore space space space straight P left parenthesis straight A space and space straight B right parenthesis space equals space straight P left parenthesis straight A right parenthesis space straight P left parenthesis straight B right parenthesis space equals 1 third cross times 1 third space equals 1 over 9.
    Question 103
    CBSEENMA12033677

    A bag contains 8 marbles of which 3 are blue and 5 are red. One marble is drawn at random, its colour is noted and the marble is replaced in the bag. A marble is again drawn from the bag and its colour is noted. Find the probability that the marbles will be
    (i) blue followed by red (ii) blue and red in any order (iii) of the same colour.

    Solution

    Number of blue balls = 3
    Number of red balls = 5
    Total number of balls = 3 + 5 = 8
    (i) P(blue followed by red) = P (BR) = P(B)  P(R)
                                               equals space 3 over 8 cross times 5 over 8 space equals 15 over 64
    (ii) P(blue and red in any order) = P (BR) + P (RB)
                                                       = P(B) P(R) + P(R) P(B)
                                                        equals space 3 over 8 cross times 5 over 8 plus 5 over 8 cross times 3 over 8 space equals space 15 over 64 plus 15 over 64 space equals 30 over 64 space equals 15 over 32
    (iii) P(of the same colour) = P(BB) + P(RR) = P(B) P(B) + P(R) P(R)
                                              equals space 3 over 8 cross times 3 over 8 plus 5 over 8 cross times 5 over 8 space equals 9 over 64 plus 25 over 64 space equals 34 over 64 space equals space 17 over 32

    Question 104
    CBSEENMA12033678

    Two cards are drawn one by one without replacement from a well shuffled pack of 52 cards. What is the probability that one is a red card and the other is a black card?

    Solution

    P(red card is first draw and black card in second draw) = 26 over 52 cross times 26 over 51 space equals 13 over 51
    P(black card is first draw and red card in second draw) = 26 over 52 cross times 26 over 51 space equals 13 over 51
    therefore   required probability = 13 over 51 plus 13 over 51 space equals 26 over 51

    Question 106
    CBSEENMA12033680

    A bag contains 4 white balls and 2 black balls. Another bag contains 3 white balls and 5 black balls. If one ball is drawn from each bag, find the probability that both are black.

    Solution
    Let A denote the event ‘a black ball is taken from first bag and B denote the event ‘a black ball is taken from second bag’.
       therefore space space space straight P left parenthesis straight A right parenthesis space equals space 2 over 6 space equals space 1 third comma space space space straight P left parenthesis straight B right parenthesis space equals 5 over 8
    P(both balls are black) = P(AB) = P(A). P(B) = 1 third cross times 5 over 8 space equals 5 over 24.
    Question 107
    CBSEENMA12033681

    An urn contains 25 balls numbered 1 to 25. Two balls are drawn from the urn with replacement. Find the probability of getting both odd numbers.

    Solution

    Total number of balls = 25
    ∴ total number of cases = 25
    Let E denote the event of drawing even numbered ball and O denote the event of drawing odd numbered ball.
    Number of balls numbered odd = 13
    Number of balls numbered even = 12
    therefore space space space space space space space space space straight P left parenthesis straight E right parenthesis space equals space 12 over 25 comma space space straight P left parenthesis straight O right parenthesis space equals space 13 over 25
    Since the balls are replaced back before the next draw
    therefore space space space space straight P left parenthesis OO right parenthesis space equals space straight P left parenthesis straight O right parenthesis thin space straight P left parenthesis straight O right parenthesis space equals space 13 over 25 cross times 13 over 25 space equals 169 over 625

    Question 108
    CBSEENMA12033682

    An urn contains 25 balls numbered 1 to 25. Two balls are drawn from the urn with replacement. Find the probability of getting one odd and one even number.

    Solution

    Total number of balls = 25
    ∴ Total number of cases = 25
    Let E denote the event of drawing even numbered ball and O denote the event of drawing odd numbered ball.
    Number of balls numbered odd = 13
    Number of balls numbered even = 12
    therefore space space space space space space space space space straight P left parenthesis straight E right parenthesis space equals space 12 over 25 comma space space straight P left parenthesis straight O right parenthesis space equals space 13 over 25
    therefore space space straight P left parenthesis one space odd space and space one space even right parenthesis space equals space straight P left parenthesis OE space or space EO right parenthesis space equals space straight P left parenthesis straight O right parenthesis space straight P left parenthesis straight E right parenthesis space plus space straight P left parenthesis straight E right parenthesis space straight P left parenthesis straight O right parenthesis
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space 13 over 25 cross times 12 over 25 plus 12 over 25 cross times 13 over 25 space equals 312 over 625

    Question 109
    CBSEENMA12033683

    An urn contains 25 balls numbered 1 to 25. Two balls are drawn from the urn with replacement. Find the probability of getting at least one odd number .

    Solution

    Total number of balls = 25
    ∴ Total number of cases = 25
    Let E denote the event of drawing even numbered ball and O denote the event of drawing odd numbered ball.
    Number of balls numbered odd = 13
    Number of balls numbered even = 12
    therefore space space space space space space space space space straight P left parenthesis straight E right parenthesis space equals space 12 over 25 comma space space straight P left parenthesis straight O right parenthesis space equals space 13 over 25
    Probaility of getting both the balls even numbered
                                                  = P(EE) = P(E) P(E) = 12 over 25 cross times 12 over 25 space equals space 144 over 625
               P(at least one odd) = 1 - P(EE) = 1 - 144 over 625 space equals 481 over 625

    Question 110
    CBSEENMA12033684

    An urn contains 25 balls numbered 1 to 25. Two balls are drawn from the urn with replacement. Find the probability of getting no odd number.

    Solution

    Total number of balls = 25
    ∴ Total number of cases = 25
    Let E denote the event of drawing even numbered ball and O denote the event of drawing odd numbered ball.
    Number of balls numbered odd = 13
    Number of balls numbered even = 12
    therefore space space space space space space space space space straight P left parenthesis straight E right parenthesis space equals space 12 over 25 comma space space straight P left parenthesis straight O right parenthesis space equals space 13 over 25
    Probaility of getting both the balls even numbered
                                                  = P(EE) = P(E) P(E) = 12 over 25 cross times 12 over 25 space equals space 144 over 625
               P(at least one odd) = 1 - P(EE) = 1 - 144 over 625 space equals 481 over 625
    P(no. odd number) = 1 - P(at least one odd) = 1 minus 481 over 625 space equals 144 over 625

    Question 111
    CBSEENMA12033685

    Three cards are drawn successively, without replacement from a pack of 52 well shuffled cards. What is the probability that first two cards are kings and the third card drawn is an ace?

    Solution
    Let K denote the event that the card drawn is king and A be the event that the card drawn is an ace.
    Now,                   straight P left parenthesis straight K right parenthesis space equals space 4 over 52
    Also,  P(K | K) is the probability of second king with the condition that one king has already been drawn. Now there are three kings in (52 - 1) = 51 cards.
    therefore space space space space space space space space space space space straight P left parenthesis straight K vertical line straight K right parenthesis space equals space 3 over 51
    Again, P(A | KK) is the probability of third drawn card to be an ace, with the condition that two kings have already been drawn. Now, there arc four aces in remaining 50 cards.
    therefore space space space space straight P left parenthesis straight A space vertical line space KK right parenthesis space equals 4 over 50
    By multiplication law of probability, we have
                       straight P left parenthesis KKA right parenthesis space equals space straight P left parenthesis straight K right parenthesis space space space space space space straight P left parenthesis straight K vertical line straight K right parenthesis space space straight P left parenthesis straight A vertical line KK right parenthesis
space space space space space space space space space space space space space space space equals space 4 over 52 cross times 3 over 51 cross times 4 over 50 space equals 2 over 5525
    Question 113
    CBSEENMA12033687

    Two balls are drawn at random with replacement from a box containing 10 black and 8 red balls. Find the probability that both balls are red.

    Solution

    Number of black balls = 10
    Number of red balls = 8
    Total number of balls = 10 + 8 = 18
    P(both balls are red) = P(RR) = P(R) P(R) = 8 over 18 cross times 8 over 18 space equals 16 over 81

    Question 114
    CBSEENMA12033688

    Two balls are drawn at random with replacement from a box containing 10 black and 8 red balls. Find the probability that first ball is black and second is red. 

    Solution

    Number of black balls = 10
    Number of red balls = 8
    Total number of balls = 10 + 8 = 18
    P(first ball is black and second is red) = P(BR)
                             equals space straight P left parenthesis straight B right parenthesis space straight P left parenthesis straight R right parenthesis space equals space 10 over 8 cross times 8 over 18 space equals 20 over 81

    Question 115
    CBSEENMA12033689

    Two balls are drawn at random with replacement from a box containing 10 black and 8 red balls. Find the probability that one of them is black and other is red. 

    Solution

    Number of black balls = 10
    Number of red balls = 8
    Total number of balls = 10 + 8 = 18
    P(one of them is black and other red) = P(BR) + P(RB) = P(B) P(R) + P(R) P(B)
                                                                 equals space 10 over 18 cross times 8 over 18 plus 8 over 18 cross times 10 over 18 space equals 20 over 81 plus 20 over 81 space equals 40 over 81
                             

    Question 116
    CBSEENMA12033690
    Question 117
    CBSEENMA12033691
    Question 118
    CBSEENMA12033692

    An urn contains 7 red and 4 blue balls. Two balls are drawn at random with replacement. Find the probability of getting one red and one blue ball.

    Solution

    Number of red balls = 7
    Number of blue balls = 4
    therefore space space space space total space number space of space balls space equals space 7 plus 4 space equals space 11
    P (one red and one blue ball) = 7 over 11 cross times 4 over 11 plus 4 over 11 cross times 7 over 11 space equals 56 over 121

    Question 119
    CBSEENMA12033693

    An urn contains  4 red and 7 blue balls. Two balls are drawn at random with replacement. Find the probability of getting 2 red balls.

    Solution

    Number of red balls = 4
    Number of blue balls = 7
    Total number of balls = 4 + 7 = 11
    P(both balls are red) = P(RR) = P(R) P(R) = 4 over 11 cross times 4 over 11 space equals 16 over 121

    Sponsor Area

    Question 120
    CBSEENMA12033694

    An urn contains  4 red and 7 blue balls. Two balls are drawn at random with replacement. Find the probability of getting 2 blue balls.

    Solution

    Number of red balls = 4
    Number of blue balls = 7
    Total number of balls = 4 + 7 = 11
    P(both balls are blue) = P(BB) = P(B) P(B)
                                       = 7 over 11 cross times 7 over 11 space equals space 49 over 121

    Question 121
    CBSEENMA12033695

    An urn contains  4 red and 7 blue balls. Two balls are drawn at random with replacement. Find the probability of getting one red and one blue ball.

    Solution

    Number of red balls = 4
    Number of blue balls = 7
    Total number of balls = 4 + 7 = 11
    P(one of them is red and other blue) = P(RB) + P(BR) = P(R) P(B) + P(B) P(R)
                          = 4 over 11 cross times 7 over 11 plus 7 over 11 cross times 4 over 11 space equals 28 over 121 plus 28 over 121 space equals space 56 over 121
       
                                                          

    Question 122
    CBSEENMA12033696

    An urn contains 6 red and 4 blue balls. Two balls are drawn at random with replacement. Find the probability of getting 2 red balls.

    Solution

    Number of red balls = 6
    Number of blue balls = 4
    Total number of balls = 6 + 4 =  10
    P(both balls are red) = P(RR) = P(R) P(R)
                                      equals space 6 over 10 cross times 6 over 10 space equals 9 over 25

    Question 123
    CBSEENMA12033697

    An urn contains 6 red and 4 blue balls. Two balls are drawn at random with replacement. Find the probability of getting 2 blue balls.

    Solution

    Number of red balls = 6
    Number of blue balls = 4
    Total number of balls = 6 + 4 =  10
    P(both balls are blue) = P(BB) = P(B) P(B)
                                       equals space 4 over 10 cross times 4 over 10 space equals space 4 over 25
                                      

    Question 124
    CBSEENMA12033698

    An urn contains 6 red and 4 blue balls. Two balls are drawn at random with replacement. Find the probability of getting one red and one blue ball.

    Solution

    Number of red balls = 6
    Number of blue balls = 4
    Total number of balls = 6 + 4 =  10
    P(one of them is red and other blue) = P(RB) + P(BR) = P(R) + P(B) + P(B) P(R)
                                               equals space 6 over 10 cross times 4 over 10 plus 4 over 10 cross times 6 over 10 space equals space 6 over 25 plus 6 over 25 space equals 12 over 25
                                       
                                      

    Question 125
    CBSEENMA12033699

    Three groups of children contain respectively 3 girls and 1 boy; 2 girls and 2 boys; 1 girl and 2 boys. One child is selected at random from each group. Show that the probability that the three selected consist of 1 girl and 2 boys is 3 over 8.

    Solution

                                          Group  I                 Group II               Group III
                      Boys                 1                         2                             2
                       Girls                3                          2                            1
    P (1 girl and two boys) = P(GBB) + P(BGB) + P(BBG)
                                   = P(G) P(B) P(B)+ P(B) P(G) P(B) + P(B) P(B) P(G)
                                   equals space 3 over 4 cross times 2 over 4 cross times 2 over 3 plus 1 fourth cross times 2 over 4 plus 2 over 3 cross times 1 fourth cross times 2 over 4 cross times 1 third
space equals space 12 over 48 plus 4 over 48 plus 2 over 48 space equals space 18 over 48 space equals space 3 over 8

    Question 126
    CBSEENMA12033700

    A bag contains 5 white and 3 black balls. Four balls are drawn one at a time without replacement. Find the probability that the ball are alternatively of different colours.

    Solution

    Number of white balls = 5
    Number of black balls = 3
    ∴  total number of balls = 5 + 3 = 8
    P (balls are of alternatively of different colours)
    space equals straight P left parenthesis apostrophe WBWB apostrophe space space or space space space apostrophe BWBW apostrophe right parenthesis space space equals space straight P thin space left parenthesis WBWB right parenthesis space plus space straight P left parenthesis BWBW right parenthesis
space equals 3 over 8 cross times 5 over 7 cross times 2 over 6 cross times 4 over 5 plus 3 over 8 cross times 5 over 7 cross times 2 over 6 cross times 4 over 5 space equals 1 over 14 plus 1 over 14 space equals space 1 over 7

    Question 127
    CBSEENMA12033701

    A bag contains 3 red and 5 black balls and second bag contains 6 red and 4 black balls. A ball is drawn from each bag. Find the probability that one is red and other is black.

    Solution

    In first bag, there are 3 red and 5 black ball. In second bag, there are 6 red and 4 black balls.
    P (one red and one black ball)= P (‘one red from first bag and one black from second bag’ or ‘one black from first bag and one red from second bag’)
    = P (one red from first bag and one black from second bag) + P (one black from first bag and one red from second bag).
    equals space 3 over 8 cross times 4 over 10 plus 5 over 8 cross times 6 over 10 space equals space 12 over 80 plus 30 over 80 space equals 42 over 80 space equals space 21 over 40

    Question 128
    CBSEENMA12033702

    A bag contains 4 white and 2 black balls, and another bag contains 3 white and 5 black balls. If one ball is drawn from each bag, find the probability that one is white and the other black.

    Solution

    In first bag, there are 4 white and 2 black balls ; in second bag there are 3 white and 5 black balls. P (one white ball and one black ball) = P (‘one white ball from first bag and one black ball from second bag’ or ‘one black ball from first bag and one white ball from second bag’)
    = P (one white ball from first bag and one black ball from second bag) + P (one black ball from first bag and one white ball from second bag)
    equals space 4 over 6 cross times 5 over 8 plus 2 over 6 cross times 3 over 8 space equals 20 over 48 space plus space 6 over 48 space equals space 26 over 48 space equals space 13 over 24

    Question 129
    CBSEENMA12033703

    A bag has 4 red and 5 black balls, a second bag has 3 red and 7 black balls. One ball is drawn from the first and two from the second. Find the probability that out of three balls two are red and one is black.

    Solution

    In first bag. there are 4 red and 5 black balls and in second bag, there are 3 red and 7 black balls.
    P(two red and one black ball) = P(‘one red ball from first bag and one red, one black from second bag’ or ‘one black ball from first bag and two red balls from second bag’ )
    = P(one red ball from first bag and one red. one black from second bag) + P(one black ball from first bag and two red balls from second bag).
    equals space 4 over 9 cross times fraction numerator straight C presuperscript 3 subscript 1 cross times straight C presuperscript 7 subscript 1 over denominator straight C presuperscript 10 subscript 2 end fraction plus 5 over 9 cross times fraction numerator straight C presuperscript 3 subscript 2 over denominator straight C presuperscript 10 subscript 2 end fraction space equals 4 over 9 cross times fraction numerator begin display style 3 over 1 end style cross times begin display style 7 over 1 end style over denominator begin display style fraction numerator 10 cross times 9 over denominator 1 cross times 2 end fraction end style end fraction plus 5 over 9 cross times fraction numerator begin display style fraction numerator 3 cross times 2 over denominator 1 cross times 2 end fraction end style over denominator begin display style fraction numerator 10 cross times 9 over denominator 1 cross times 2 end fraction end style end fraction
equals space 4 over 9 cross times 7 over 15 plus 5 over 9 cross times 1 over 15 space equals 28 over 135 plus 5 over 135 space equals space 33 over 135 space equals space 11 over 45

    Question 130
    CBSEENMA12033704

    Fatima and John appear in an interview for two vacancies in the same post. The probability of Fatima's selection is 1 over 7 space and spacethat of John's selection is 1 fifth.what is the probability that both of them will be selected?

    Solution

    Let A : Fatima is selected
          B : John is selected
    Clearly ‘A’ and ‘B’ are independent.
    P(both of them will be selected)
                equals space straight P left parenthesis straight A intersection straight B right parenthesis space space straight P left parenthesis straight A right parenthesis space straight P left parenthesis straight B right parenthesis space equals space 1 over 7 cross times 1 fifth space equals space 1 over 35

    Question 131
    CBSEENMA12033705

    Fatima and John appear in an interview for two vacancies in the same post. The probability of Fatima's selection is 1 over 7 space and spacethat of John's selection is 1 fifth. What is the probability that only one of them is selected?

    Solution

    Let A : Fatima is selected
          B : John is selected
    Clearly ‘A’ and ‘B’ are independent.
    P(only one of them will be selected)
              = P('A and not B' or 'B and not A')
              = P(A and not B)  + P(B and not A)
              = P(A) P(not B) + P(B) P(not A)
               = P(A) [1 -  P(B)] + P(B) [1 - P(A)]
               equals space 1 over 7 cross times 4 over 5 plus 1 fifth cross times 6 over 7 space equals 10 over 35 space equals 2 over 7
                

    Question 132
    CBSEENMA12033706

    Fatima and John appear in an interview for two vacancies in the same post. The probability of Fatima's selection is 1 over 7 space and spacethat of John's selection is 1 fifth. What is the probability that none of them will be selected.

    Solution

    P(none of them will be selected)
                                         = P(not A and not B)
                                         = P(not A). P(not B)
                                         = [1 - P(A)] [1 - P(B)]
                                         =open square brackets 1 minus 1 over 7 close square brackets space open square brackets 1 minus 1 fifth close square brackets space equals space 6 over 7 cross times 4 over 5 space equals space 24 over 35

    Question 133
    CBSEENMA12033707

    Arun and Tarun appear for an interview for two vacancies. The probability of Arun's selection is 1 third and that of Tarun's selection is 1 fifth. Find the probability that only one of them will be selected.

    Solution
    Let A denote the event ‘Arun is selected’ and B denote the event ‘Tarun is selected’
    therefore space space space straight P left parenthesis straight A right parenthesis space equals space 1 third comma space space straight P left parenthesis straight B right parenthesis space equals space 1 fifth
    Also A and B are independent. A and not B are independent, not A and B are independent.
           P (only one of them is selected)
         = P ('A and not B'  or 'B and not A')
         = P(A and not B) + P(B and not A)
         = P(A) P(not B) + P(B) P(not A)
      space equals space straight P left parenthesis straight A right parenthesis space open square brackets 1 minus straight P left parenthesis straight B right parenthesis close square brackets space plus space straight P left parenthesis straight B right parenthesis space open square brackets 1 minus straight P left parenthesis straight A right parenthesis close square brackets
        equals space 1 third cross times open square brackets 1 minus 1 fifth close square brackets plus 1 fifth open square brackets 1 minus 1 third close square brackets space equals space 1 third cross times 4 over 5 plus 1 fifth cross times 2 over 3 equals space 4 over 15 plus 2 over 15 equals space 6 over 15 equals space 2 over 5.
     
          
         
    Question 134
    CBSEENMA12033708

    Kamal and Monica appeared for an interview for two vacancies. The probability of Kamal’s selection is 1 third and that of Monica’s selection is 4 over 5. Find the probability that only one of them will be selected. 

    Solution
    Let A denote the event ‘Kamal is selected’ and B denote the event ‘Monica is selected’.
    therefore space space space straight P left parenthesis straight A right parenthesis space equals space 1 third comma space space straight P left parenthesis straight B right parenthesis space equals space 4 over 5
therefore space space straight P left parenthesis straight A with bar on top right parenthesis space equals space 1 minus straight P left parenthesis straight A right parenthesis space equals space 1 minus 1 third space equals 2 over 3
space space space space space straight P open parentheses straight B with bar on top close parentheses space equals space 1 minus straight P left parenthesis straight B right parenthesis space equals space 1 minus 4 over 5 space equals 1 fifth
    P(only one of them is selected)
                             equals space straight P left parenthesis apostrophe straight A space and space straight B with bar on top apostrophe space space space or space space space apostrophe straight A with bar on top space and space straight B apostrophe right parenthesis
space equals straight P left parenthesis straight A space and space straight B with bar on top right parenthesis space plus space straight P left parenthesis straight A with bar on top space and space straight B right parenthesis
space equals space straight P left parenthesis straight A right parenthesis. space straight P left parenthesis straight B with bar on top right parenthesis space plus space straight P left parenthesis straight A with bar on top right parenthesis. space straight P left parenthesis straight B right parenthesis
space equals space 1 third cross times 1 fifth plus 2 over 3 cross times 4 over 5 space equals 1 over 15 plus 8 over 15 space equals 9 over 15 space equals 3 over 5
    Question 135
    CBSEENMA12033709

    Surjit and Sachdev appeared for an interview. The probability of their selection is 1 third space and space 1 over 6 respectively. Find the probability both selected.

    Solution

    Let A : Surjit is selected
    B ; Sachdev is selected
    therefore space space space straight P left parenthesis straight A right parenthesis space equals space 1 third comma space space straight P left parenthesis straight B right parenthesis space equals space 1 over 6
    Clearly A and B are independent.
     P(both selected) = straight P left parenthesis straight A intersection straight B right parenthesis space equals space straight P left parenthesis straight A right parenthesis space straight P left parenthesis straight B right parenthesis
                                     equals space 1 third cross times 1 over 6 space equals 1 over 18

    Question 136
    CBSEENMA12033710

    Surjit and Sachdev appeared for an interview. The probability of their selection is 1 third space and space 1 over 6 respectively. Find the probability only one of them selected.

    Solution

    Let A : Surjit is selected
    B ; Sachdev is selected
    therefore space space space straight P left parenthesis straight A right parenthesis space equals space 1 third comma space space straight P left parenthesis straight B right parenthesis space equals space 1 over 6
     P(only one is selected) = P('A and not B' or 'B and not A')
                                          = P(A and not B) + P(B and not A)
                                          = P(A) P(not B) + P(B) P(not A)
                                          = P(A) [1 - P(B)] + P(B) [1 - P(A)]
                                            equals space 1 third open parentheses 1 minus 1 over 6 close parentheses plus space 1 over 6 open parentheses 1 minus 1 third close parentheses
equals space 1 third cross times 5 over 6 plus 1 over 6 cross times 2 over 3 space equals 5 over 18 plus 2 over 18 equals space 7 over 18.
                                            


    Question 137
    CBSEENMA12033711

    Surjit and Sachdev appeared for an interview. The probability of their selection is 1 third space and space 1 over 6 respectively. Find the probability neither of them selected.

    Solution

    Let A : Surjit is selected
    B ; Sachdev is selected
    therefore space space space straight P left parenthesis straight A right parenthesis space equals space 1 third comma space space straight P left parenthesis straight B right parenthesis space equals space 1 over 6
    Clearly A and B are independent.
          P(neither selected) = P(not A and not B) = P(not A) P(not B) = [1 - P(A)] [1 - P(B)]
                                         = space open parentheses 1 minus 1 third close parentheses space open parentheses 1 minus 1 over 6 close parentheses space equals 2 over 3 cross times 5 over 6 space equals 5 over 9

    Question 138
    CBSEENMA12033712

    Balwant and Kulwant appeared for an interview. The probability of their selection is 1 third space and space 1 fifth respectively. Find the probability both selected.

    Solution

    Let A : Balwant is selected
    B : Kulwant is selected
    therefore space space space straight P left parenthesis straight A right parenthesis space equals space 1 third comma space space straight P left parenthesis straight B right parenthesis space equals 1 fifth
    Clearly A and B are independent.
    P(both selected)  =   straight P left parenthesis straight A intersection straight B right parenthesis space equals space straight P left parenthesis straight A right parenthesis. space straight P left parenthesis straight B right parenthesis
                                 equals space 1 third cross times 1 fifth space equals 1 over 15

    Question 139
    CBSEENMA12033713

    Balwant and Kulwant appeared for an interview. The probability of their selection is 1 third space and space 1 fifth respectively. Find the probability only of them selected.

    Solution

    Let A : Balwant is selected
    B : Kulwant is selected
    therefore space space space straight P left parenthesis straight A right parenthesis space equals space 1 third comma space space straight P left parenthesis straight B right parenthesis space equals 1 fifth
    P(only one is selected) = P('A and not B' or B' and not A')
                               = P (A and not B) + P(B and not A)
                               = P(A) P(not B) + P(B) P(not A)
                               = P(A) [1 - P(B)] + P(B) [1 - P(A)]
                              = 1 third open parentheses 1 minus 1 fifth close parentheses space plus space 1 fifth space open parentheses 1 minus 1 third close parentheses
                              equals space 1 third cross times 4 over 5 plus 1 fifth cross times 2 over 3 space equals 4 over 15 plus 2 over 15 equals 6 over 15 equals space 2 over 5

    Question 140
    CBSEENMA12033714

    Balwant and Kulwant appeared for an interview. The probability of their selection is 1 third space and space 1 fifth respectively. Find the probability neither of them selected.

    Solution

    Let A : Balwant is selected
    B : Kulwant is selected
    therefore space space space straight P left parenthesis straight A right parenthesis space equals space 1 third comma space space straight P left parenthesis straight B right parenthesis space equals 1 fifth
    P(neither selected) = P(not A and not B) = P(not A) P(not B) = [1  - P(A)] [1 - P(B)]
                                   equals space open parentheses 1 minus 1 third close parentheses space open parentheses 1 minus 1 fifth close parentheses space equals space 2 over 3 cross times 4 over 5 space equals space 8 over 15
                              

    Question 141
    CBSEENMA12033715

    Navdeepika and Meenakshi appeared for an interview. The probability of their selection is 1 third space and space 1 fourth respectively. Find the probability of
    (i) both selected.
    (ii) only one of them selected
    (iii) neither of them selected.

    Solution

    Let A : Navdeepika is selected
    B : Meenakshi is selected
    therefore space space space space space space straight P left parenthesis straight A right parenthesis space equals 1 third comma space space space straight P left parenthesis straight B right parenthesis space equals 1 fourth
    Clearly A and B are independent.
    (i) P(both selected) = straight P left parenthesis straight A space intersection space straight B right parenthesis space equals space straight P left parenthesis straight A right parenthesis space straight P left parenthesis straight B right parenthesis
                                     equals space 1 third cross times 1 fourth space equals space 1 over 12
    (ii) P(only one is selected)  = P('A and not B' or 'B and not A')
                                               = P(A and not B) + P(B and not A)
                                               = P(A) P(not B) + P(B) P(not A)
                                              = P(A) [1 - P(B)] + P(B) [1 - P(A)]
                                                equals space 1 third open parentheses 1 minus 1 fourth close parentheses space plus space 1 fourth space open parentheses 1 minus 1 third close parentheses
equals space 1 third cross times 3 over 4 plus 1 fourth cross times 2 over 3 space equals space 3 over 12 plus 2 over 12 space equals 5 over 12
    (iii) P(neither selected) = P(not A and not B) = P(not A)  P(not B)
                                        equals space left square bracket space 1 space minus space straight P left parenthesis straight A right parenthesis right square bracket space space space left square bracket 1 space minus space straight P left parenthesis straight B right parenthesis right square bracket
equals space open parentheses 1 minus 1 third close parentheses space open parentheses 1 minus 1 fourth close parentheses space equals 2 over 3 cross times 3 over 4 space equals 1 half

    Question 142
    CBSEENMA12033716

    The probability of A solving a problem is 3 over 7 and that of B solving it is 1 third. What is the probability that
    (i)    at least one of them will solve the problem?
    (ii)    Only one of them will solve the problem?

    Solution
    Let E denote the event ‘A solves the problem’ and F denote the event ‘B solves the problem’.
    therefore space space space space space space space straight P left parenthesis straight E right parenthesis space equals space 3 over 7 comma space space space straight P left parenthesis straight F right parenthesis space equals space 1 third
therefore space space space space space space space straight P left parenthesis straight E with bar on top right parenthesis space equals space 1 space minus space straight P left parenthesis straight E right parenthesis space equals space 1 minus 3 over 7 space equals 4 over 7
space space space space space space space space space space space straight P left parenthesis straight F with bar on top right parenthesis space equals space 1 space space minus space straight P left parenthesis straight F right parenthesis space equals space 1 minus 1 third space equals 2 over 3
    (i) P(none of them solves the problem) = straight P space open parentheses straight E with rightwards arrow on top space and space straight F with rightwards arrow on top close parentheses
                               equals space straight P open parentheses straight E with rightwards arrow on top close parentheses space cross times space straight P open parentheses straight F with rightwards arrow on top close parentheses space equals space 4 over 7 cross times 2 over 3 space equals 8 over 21.
    therefore space space space space space space straight P left parenthesis at space leastl space one space of space them space solves space the space problem right parenthesis
                                   equals space 1 space minus straight P left parenthesis none space of space them space solves space the space problem right parenthesis
space equals space 1 minus 8 over 21 space equals 13 over 21
    (ii) P(only one solves the problem) = straight P open parentheses apostrophe straight E space and space straight F with bar on top apostrophe space or space apostrophe straight E with bar on top space and space straight F apostrophe close parentheses
                                equals space straight P left parenthesis straight E space and space straight F with bar on top right parenthesis space plus space open parentheses straight E with bar on top space and space straight F with bar on top close parentheses
equals space straight P left parenthesis straight E right parenthesis thin space straight P space open parentheses straight F with bar on top close parentheses space plus space straight P space open parentheses straight E with bar on top close parentheses space space straight P left parenthesis straight F right parenthesis
space equals space 3 over 7 cross times 2 over 3 plus 4 over 7 cross times 1 third space equals 6 over 21 plus 4 over 21 space equals 10 over 21
              
    Question 143
    CBSEENMA12033717

    A speaks truth in 60% cases and B in 90% cases. In what percentage of cases are they likely to contradict each other in stating the same fact.

    Solution
    Let P(A), P(B) be the probability of A and B speaking the truths. Then
                                  straight P left parenthesis straight A right parenthesis space equals space 60 over 100 equals space 3 over 5 comma space space space straight P left parenthesis straight B right parenthesis space equals 90 over 100 space equals 9 over 10
    therefore space space straight P left parenthesis straight A with bar on top right parenthesis space equals space straight P left parenthesis straight A space tells space straight a space lie right parenthesis space equals space 1 space minus space straight P left parenthesis straight A right parenthesis space equals space 1 minus 3 over 5 equals space 2 over 5
           straight P left parenthesis straight B with bar on top right parenthesis space equals space straight P left parenthesis straight B space tells space straight a space lie right parenthesis space equals space 1 space minus space straight P left parenthesis straight B right parenthesis space equals space 1 minus 9 over 10 space equals 1 over 10
    Now P(A and B contradict) = straight P left parenthesis straight A right parenthesis. space straight P left parenthesis straight B with bar on top right parenthesis space plus space straight P left parenthesis straight A with bar on top right parenthesis. space straight P left parenthesis straight B right parenthesis
                                               = 3 over 5 cross times 1 over 10 plus 2 over 5 cross times 9 over 10 space equals 3 over 30 plus 18 over 50 space equals 21 over 50 space equals 42 percent sign
     
    Question 144
    CBSEENMA12033718

    A speaks truth in 75% and B in 80% of the cases. In what percentage of cases are they likely to contradict each other in narrating the same incident?

    Solution

    Let P(A), P(B) be the probability of A and B are speaking the truths. Then
                  straight P left parenthesis straight A right parenthesis space equals space 75 over 100 space equals 3 over 4 comma space space space straight P left parenthesis straight B right parenthesis space equals 80 over 100 space equals 4 over 5
    therefore space space space space space straight P left parenthesis straight A with bar on top right parenthesis space equals space straight P left parenthesis straight A space tells space straight a space lie right parenthesis space equals space 1 space space minus straight P left parenthesis straight A right parenthesis space equals space 1 minus space 3 over 4 space equals 1 fourth
space space space space space space space space space straight P left parenthesis straight B with bar on top right parenthesis space equals space straight P left parenthesis straight B space tells space straight a space lie right parenthesis space equals space 1 minus straight P left parenthesis straight B right parenthesis space equals space 1 minus 4 over 5 space equals 1 fifth
    Now, P(A and B contradict) = straight P left parenthesis straight A right parenthesis space straight P left parenthesis straight B with bar on top right parenthesis space plus space straight P left parenthesis straight A with bar on top right parenthesis space straight P left parenthesis straight B right parenthesis
    space equals space 3 over 4 cross times 1 fifth plus 4 over 5 cross times 1 fourth space equals space 3 over 20 plus 1 fifth space equals 7 over 20 equals space 35 percent sign

    Question 145
    CBSEENMA12033719

    The probability of hitting a target by three marksmen are 1 half comma space 1 third space and space 1 fourth respectively. Find the probability that one and only one of them will hit the target when they fire simultaneously.

    Solution
    Let A denote the event ‘first marksman hits the target’, B denote the event ‘second marksman hits the target’, and C denote the event ‘third marksman hits the target’.
    therefore space space space space straight P left parenthesis straight A right parenthesis space equals space 1 half comma space space space straight P left parenthesis straight B right parenthesis space equals space 1 third comma space space straight P left parenthesis straight C right parenthesis space equals space 1 fourth              straight P left parenthesis straight A with bar on top right parenthesis space equals space 1 minus space straight P left parenthesis straight A right parenthesis space equals space 1 minus 1 half space equals space 1 half comma space space straight P left parenthesis straight B with bar on top right parenthesis space equals space 1 minus 1 third space equals space 2 over 3 comma space space straight P left parenthesis straight C with bar on top right parenthesis space equals space 1 minus 1 fourth space equals 3 over 4
    Required probability
                                   equals space straight P left parenthesis straight A right parenthesis space straight P left parenthesis straight B with bar on top right parenthesis space straight P left parenthesis straight C with bar on top right parenthesis space plus space straight P left parenthesis straight A with bar on top right parenthesis space straight P left parenthesis straight B right parenthesis space straight P left parenthesis straight C with bar on top right parenthesis space plus space straight P left parenthesis straight A with bar on top right parenthesis space straight P left parenthesis straight B with bar on top right parenthesis space straight P left parenthesis straight C right parenthesis
equals space open parentheses 1 half close parentheses space open parentheses 2 over 3 close parentheses space open parentheses 3 over 4 close parentheses space plus space open parentheses 1 half close parentheses space open parentheses 1 third close parentheses space open parentheses 3 over 4 close parentheses space plus space open parentheses 1 half close parentheses space open parentheses 2 over 3 close parentheses space open parentheses 1 fourth close parentheses
space equals space 1 fourth plus 1 over 8 plus 1 over 12 space equals fraction numerator 6 plus 3 plus 2 over denominator 24 end fraction space equals space 11 over 24
    Question 146
    CBSEENMA12033720

    An anti-aircraft gun can take a minimum of four shots at an enemy plane moving away from it. The probability of hitting the plane at the first, second, third and fourth shot are 0.4, 0.3, 0.2 and 0.1 respectively. What is the probability that the gun hits the plane?

    Solution
    Let E1 , E2 , E3 , E4 be the events of hitting the plane by 1st, 2nd, 3rd, 4th shot respectively. Then
     straight P left parenthesis straight E subscript 1 right parenthesis space equals space 0.4 comma space space space straight P left parenthesis straight E subscript 2 right parenthesis equals space 0.3 comma space space space straight P left parenthesis straight E subscript 3 right parenthesis space equals space 0.2 comma space space space straight P left parenthesis straight E subscript 4 right parenthesis space equals space 0.1
    therefore space space space space straight P left parenthesis straight E with bar on top subscript 1 right parenthesis space equals space 0.6 comma space space straight P left parenthesis straight E with bar on top subscript 2 right parenthesis space equals space 0.7 comma space space straight P left parenthesis straight E with bar on top subscript 3 right parenthesis space equals space 0.8 comma space space straight P left parenthesis straight E with bar on top subscript 4 right parenthesis space equals space 0.9
    Probabililty that no shot hit the plane
                              equals space straight P left parenthesis straight E with bar on top subscript 1 space space straight E with bar on top subscript 2 space straight E with bar on top subscript 3 space stack straight E subscript 4 with bar on top right parenthesis
equals space straight P left parenthesis straight E with bar on top subscript 1 right parenthesis thin space straight P left parenthesis straight E with bar on top subscript 2 right parenthesis space space straight P left parenthesis straight E with bar on top subscript 3 right parenthesis thin space straight P left parenthesis straight E with bar on top subscript 4 right parenthesis
space equals space.6 space cross times space.7 space cross times space.8 space cross times space.9 space equals space.3024
    therefore   probability that at least one shot hit the plane.
                                equals space 1 minus straight P left parenthesis straight E with bar on top subscript 1 space space straight E with bar on top subscript 2 space straight E with bar on top subscript 3 space straight E with bar on top subscript 4 right parenthesis
equals space 1 minus.3024 space equals space.6976

    Question 147
    CBSEENMA12033721

    A problem is given to three students, whose chances of solving it are 1 third comma space 1 fifth space and space 1 over 6 respectively. What is the probability that exactly one of them may solve it?

    Solution
    Let A, B, C be the events that three students solve the problem.
    therefore space space space space straight P left parenthesis straight A right parenthesis space equals space 1 third comma space space space straight P left parenthesis straight B right parenthesis space equals space 1 fifth comma space space straight P left parenthesis straight C right parenthesis space equals space 1 over 6                straight P left parenthesis straight A with bar on top right parenthesis space equals space 1 minus space straight P left parenthesis straight A right parenthesis space equals space 1 minus 1 third space equals space 2 over 3 comma space space straight P left parenthesis straight B with bar on top right parenthesis space equals space 1 minus 1 fifth space equals 4 over 5 comma space space straight P left parenthesis straight C with bar on top right parenthesis space equals space 1 minus 1 over 6 space equals 5 over 6
    P(exactly one student solves the problem)
                                      equals space straight P left parenthesis straight A space straight B with bar on top space straight C with bar on top space space space or space space space straight A with bar on top space straight B with bar on top space straight C with bar on top space or space straight A with bar on top space straight B with bar on top space straight C right parenthesis
                        equals space straight P left parenthesis straight A space straight B with bar on top space straight C with bar on top right parenthesis space plus space straight P left parenthesis straight A with bar on top space straight B space straight C with bar on top right parenthesis space plus space straight P left parenthesis straight A with bar on top space straight B with bar on top space straight C right parenthesis
space equals space straight P left parenthesis straight A right parenthesis space straight P left parenthesis straight B with bar on top right parenthesis space straight P left parenthesis straight C with bar on top right parenthesis space plus space straight P open parentheses straight A with bar on top close parentheses space straight P left parenthesis straight B right parenthesis space straight P open parentheses top enclose straight C close parentheses space plus space straight P open parentheses straight A with bar on top close parentheses space straight P open parentheses straight B with bar on top close parentheses space straight P left parenthesis straight C right parenthesis
equals space 1 third cross times 4 over 5 cross times 5 over 6 plus 2 over 3 cross times 1 fifth cross times 5 over 6 plus 2 over 3 cross times 4 over 5 cross times 1 over 6
equals space 20 over 90 plus 10 over 90 plus 8 over 90 space equals fraction numerator 20 plus 10 plus 8 over denominator 90 end fraction space equals 38 over 90 space equals 19 over 45
    Question 148
    CBSEENMA12033722

    A problem is given to three students, whose chances of solving it are 1 fourth comma space 1 third space and space 1 half respectively. Find the probability that exactly one of them may solve it.

    Solution
    Let A, B, C be the events that three students solve the problem.
    therefore space space space straight P left parenthesis straight A right parenthesis space equals space 1 fourth comma space space space straight P left parenthesis straight B right parenthesis space equals space 1 third comma space space straight P left parenthesis straight C right parenthesis space equals 1 half                  straight P open parentheses straight A with bar on top close parentheses space equals space 1 space minus space straight P left parenthesis straight A right parenthesis space equals space 1 minus 1 fourth space equals 3 over 4 comma space space straight P left parenthesis straight B with bar on top right parenthesis space space equals space 1 minus 1 third space equals 2 over 3 comma space space straight P open parentheses straight C with bar on top close parentheses space equals space 1 minus 1 half space equals 1 half
    P(exactly one student solves the problem)
                       equals space straight P left parenthesis straight A space straight B with bar on top space straight C with bar on top space or space straight A with bar on top space straight B space straight C with bar on top space or space straight A with bar on top space straight B with bar on top space straight C right parenthesis
equals space straight P left parenthesis straight A space straight B with bar on top space straight C with bar on top right parenthesis space plus space straight P left parenthesis top enclose straight A space straight B thin space top enclose straight C right parenthesis space plus space straight P left parenthesis top enclose straight A space top enclose straight B space straight C right parenthesis
space equals space straight P left parenthesis straight A right parenthesis space straight P left parenthesis top enclose straight B right parenthesis space straight P left parenthesis top enclose straight C right parenthesis space plus space straight P left parenthesis top enclose straight A right parenthesis thin space straight P left parenthesis straight B right parenthesis space straight P left parenthesis top enclose straight C right parenthesis space plus space straight P left parenthesis top enclose straight A right parenthesis thin space straight P left parenthesis top enclose straight B right parenthesis thin space straight P left parenthesis straight C right parenthesis
equals space 1 fourth cross times 2 over 3 cross times 1 half plus 3 over 4 cross times 1 third cross times 1 half plus 3 over 4 cross times 2 over 3 cross times 1 half space equals 2 over 24 plus 3 over 24 plus 6 over 24 space equals fraction numerator 2 plus 3 plus 6 over denominator 24 end fraction equals 11 over 24
    Question 149
    CBSEENMA12033723

    The probabilities of A, B, C solving a problem are  1 third comma space 2 over 7 space and space 3 over 8 respectively. If all the three try to solve the problem simultaneously find the probability that exactly one of them will solve it.

    Solution
    Let E, F, G be the events that A, B, C solve the problem.
        therefore space space space straight P left parenthesis straight E right parenthesis space equals space 1 third comma space space straight P left parenthesis straight F right parenthesis space equals 2 over 7 comma space space straight P left parenthesis straight G right parenthesis space equals 3 over 8                straight P left parenthesis straight E with bar on top right parenthesis space equals space 1 minus straight P left parenthesis straight E right parenthesis space equals space 1 minus 1 third space equals space 2 over 3 comma space space straight P left parenthesis straight F with bar on top right parenthesis space equals space 1 minus 2 over 7 space equals 5 over 7 comma space space straight P left parenthesis straight G with bar on top right parenthesis space equals space 1 minus 3 over 8 space equals 5 over 8
    P(exactly one solves the problem).
                                 equals space straight P left parenthesis straight E space straight F with bar on top space straight G with bar on top space space or space space straight E with bar on top space straight F space straight G with bar on top space space or space straight E with bar on top space straight F with bar on top space straight G right parenthesis
space equals space straight P left parenthesis straight E space straight F with bar on top space straight G with bar on top right parenthesis space plus space straight P left parenthesis straight E with bar on top space straight F space straight G with bar on top right parenthesis space plus space straight P left parenthesis straight E with bar on top space straight F with bar on top space straight G right parenthesis
equals space straight P left parenthesis straight E right parenthesis space straight P left parenthesis straight F with bar on top right parenthesis space straight P left parenthesis straight G with bar on top right parenthesis space plus space straight P left parenthesis straight E with bar on top right parenthesis thin space straight P left parenthesis straight F right parenthesis space straight P left parenthesis straight G with bar on top right parenthesis space plus space straight P left parenthesis straight E with bar on top right parenthesis space straight P left parenthesis straight F with bar on top right parenthesis thin space straight P left parenthesis straight G right parenthesis
space equals space 1 third cross times 5 over 7 cross times 5 over 8 plus 2 over 3 cross times 2 over 7 cross times 5 over 8 plus 2 over 3 cross times 5 over 7 cross times 3 over 8 space equals 25 over 168 plus 20 over 168 plus 30 over 168 space equals 75 over 168 space equals 25 over 26
    Question 150
    CBSEENMA12033724

    A problem in Mathematics is given to three students Dayanand, Ramesh and Naresh and whose cances of solving it are 1 half comma space 1 third comma space 1 fourth respectively, what is the probability  that the problem will be solved?

    Solution
    The probabilities of Dayanand, Ramesh and Naresh solving the problem are 1 half comma space 1 third comma space 1 fourth respectively.
    ∴    the probabilities of Dayanand, Ramesh and Naresh not solving the problems are 
    1 minus 1 half space equals 1 half comma space space 1 minus 1 third space equals 2 over 3 comma space space 1 minus 1 fourth space equals 3 over 4 respectively.
    ∴ the probability that the problem is not solved by any one of them 1 half cross times 2 over 3 cross times 3 over 4 space equals 1 fourth.
    ∴ the probability that the problem will be solved by at least one of them equals space 1 minus 1 fourth space equals 3 over 4.
    Question 151
    CBSEENMA12033725

    The probability of A hitting a target is 4 over 5 and that of B hitting it is 2 over 3. They both fire at the target. Find the probability that 
    (i) at least one of them will hit the target.
    (ii) only one of them will hit the target.

    Solution
    Let E denote the event ‘A hits the target’ and F denote the event ‘B hits the target’.
    therefore                            straight P left parenthesis straight E right parenthesis space equals 4 over 5 comma space space space straight P left parenthesis straight F right parenthesis space equals space 2 over 3
    therefore space space space space space straight P left parenthesis straight E with bar on top right parenthesis space equals space 1 minus space straight P left parenthesis straight E right parenthesis space equals space 1 minus 4 over 5 space equals 1 fifth comma
                straight P left parenthesis straight F with bar on top right parenthesis space equals space 1 minus straight P left parenthesis straight F right parenthesis space equals space 1 minus 2 over 3 space equals 1 third
    (i) P(none of them hits the target) = straight P left parenthesis straight E with bar on top space and space straight F with bar on top right parenthesis
                              equals space straight P open parentheses straight E with bar on top close parentheses space straight P open parentheses straight F with bar on top close parentheses space equals space 1 fifth cross times 1 third space equals 1 over 15
    therefore space space space straight P left parenthesis at space least space one space of space them space hits space the space target right parenthesis space equals space 1 space minus space straight P left parenthesis none space of space them space hits space the space target right parenthesis
space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space 1 space minus space 1 over 15 space equals space 14 over 15
    (ii) P(only one of them hits the target) = straight P left parenthesis apostrophe straight E space and space straight F with bar on top apostrophe space space or space space straight E with bar on top space and space straight F apostrophe right parenthesis
                                      equals space straight P open parentheses straight E space and space straight F with bar on top close parentheses space plus space straight P open parentheses straight E with bar on top space and space straight F close parentheses
                                       equals space 4 over 5 cross times 1 third plus 2 over 3 cross times 2 over 5 space equals space 4 over 15 plus 4 over 15 space equals space 8 over 15
    Question 152
    CBSEENMA12033726

    Probabilities of solving a specific problem independently by A and B are 1 half space and space 1 third respectively. If both try to solve the problem independently, find the probability:
    (i) the problem is solved    (ii) exactly one of them solves the problem.

    Solution
    (i) The probabilities of A and B solving the problem are 1 half space and space 1 third respectively. 
    i.e.     straight P left parenthesis straight A right parenthesis space equals 1 half comma space space straight P left parenthesis straight B right parenthesis space equals space 1 third
    therefore the probabilities of A and B solving the problems are 1 minus 1 half comma space space 1 minus 1 third.
    i.e.,               1 half comma space 2 over 3 respectively.
    therefore   probability that problem is not solved by A and B  = 1 half cross times 2 over 3 space equals space 1 third
    therefore  probability that the problem is solved = 1 minus 1 third equals space space 2 over 3
    (ii) P(exactly one of them solves the problem)
                equals space straight P left parenthesis straight A space straight B with bar on top space space or space space straight A with bar on top space straight B right parenthesis space equals space straight P left parenthesis straight A space straight B with bar on top right parenthesis space plus space left parenthesis straight A with bar on top space straight B right parenthesis
equals space straight P left parenthesis straight A right parenthesis thin space straight P left parenthesis straight B with bar on top right parenthesis space plus space straight P left parenthesis straight A with bar on top right parenthesis thin space straight P left parenthesis straight B right parenthesis
space equals space straight P left parenthesis straight A right parenthesis space left square bracket 1 space minus space straight P left parenthesis straight B right parenthesis right square bracket space plus space left square bracket 1 space minus space straight P left parenthesis straight A right parenthesis right square bracket space straight P left parenthesis straight B right parenthesis
space equals space open parentheses 1 half close parentheses space open square brackets 1 minus 1 third close square brackets space plus space open square brackets 1 minus 1 half close square brackets space open parentheses 1 third close parentheses
space equals space 1 half cross times 2 over 3 cross times 1 half cross times 1 third space equals space 1 third plus 1 over 6 space equals fraction numerator 2 plus 1 over denominator 6 end fraction space equals 3 over 6 space equals 1 half

space
    Question 153
    CBSEENMA12033727

    The probability that A will solve a problem is 2 over 5 and B will solve it is 5 over 6. If both try the problem independently, find the probability that the problem will be solved.

    Solution

    The probabilities of A and B solving the problem are 2 over 5 space and space 5 over 6 respectively.
    therefore          the probabilities of A and B not solving the problems are 1 minus 2 over 5 comma space 1 space minus 5 over 6 i.e., 3 over 5 comma space space 1 over 6 respectively.
           therefore   probabilities that problem is not solved by A and B equals space 3 over 5 cross times 1 over 6 space equals 1 over 10
          therefore  probability that the problem will be solved = 1 minus 1 over 10 space equals space 9 over 10
                

    Question 154
    CBSEENMA12033728

    A problem of Mathematics is given to three students, whose chances of solving it are 1 third comma space 1 fourth comma space 1 fifth. What is the probability that the problem will be solved?

    Solution

    The probabilities of three students solving the problem are  1 third comma space 1 fourth comma space 1 fifth respectively.
    therefore      proabilites of three students not solving the problem are
                        1 minus 1 third space equals 2 over 3 comma space space 1 minus 1 fourth space equals 3 over 4 comma space space 1 minus 1 fifth space equals 4 over 5 space respectively.
    therefore            the probability that the problem is not solved by any one of them
                                       equals space 2 over 3 cross times 3 over 4 cross times 4 over 5 space equals 2 over 5
    therefore           probability that the problem will be solved by atleast one of them
                                        equals space 1 minus 2 over 5 space equals space 3 over 5

    Question 155
    CBSEENMA12033729

    In a hostel, 60% of the students read Hindi newspaper, 40% read English newspaper and 20% read both Hindi and English newspapers. A student is selected at random.
    Find the probability that she reads neither Hindi nor English newspaper.

    Solution

    Let A and B be two events such that
    A : a student reads Hindi newspaper
    B : a student reads English newspaper.
    therefore space space space space space straight P left parenthesis straight A right parenthesis space equals space 60 over 100 space equals 3 over 5 comma space space space space straight P left parenthesis straight B right parenthesis space equals space 40 over 100 space equals space 2 over 5
space space space space space space space space space space space straight P left parenthesis straight A space intersection space straight B right parenthesis space equals space 20 over 100 space equals 1 fifth
     P(student reads neither Hindi nor English newspaper)
          equals space straight P left parenthesis straight A to the power of straight c space and space straight B to the power of straight c right parenthesis space equals space straight P space open square brackets open parentheses straight A space union space straight B close parentheses to the power of straight c close square brackets space equals space 1 space space minus space straight P left parenthesis straight A space union space straight B right parenthesis
space equals space 1 minus open square brackets straight P left parenthesis straight A right parenthesis space plus space straight P left parenthesis straight B right parenthesis space minus space straight P left parenthesis straight A space intersection space straight B right parenthesis close square brackets
space equals space 1 minus open square brackets 3 over 5 plus 2 over 5 minus 1 fifth close square brackets space equals space 1 minus 4 over 5 space equals space 1 fifth

    Question 156
    CBSEENMA12033730

    In a hostel, 60% of the students read Hindi newspaper, 40% read English newspaper and 20% read both Hindi and English newspapers. A student is selected at random.
    If she reads Hindi newspaper, find the probability that she reads English newspaper.

    Solution

    Let A and B be two events such that
    A : a student reads Hindi newspaper
    B : a student reads English newspaper.
    therefore space space space space space straight P left parenthesis straight A right parenthesis space equals space 60 over 100 space equals 3 over 5 comma space space space space straight P left parenthesis straight B right parenthesis space equals space 40 over 100 space equals space 2 over 5
space space space space space space space space space space space straight P left parenthesis straight A space intersection space straight B right parenthesis space equals space 20 over 100 space equals 1 fifth
    P(she reads English newspaper when it is given that she reads Hindi newspaper) = P(B | A)
    equals space fraction numerator straight P left parenthesis straight B intersection straight A right parenthesis over denominator straight P left parenthesis straight A right parenthesis end fraction space equals fraction numerator straight P left parenthesis straight A space intersection space straight B right parenthesis over denominator straight P left parenthesis straight A right parenthesis end fraction space equals fraction numerator begin display style 1 fifth end style over denominator begin display style 3 over 5 end style end fraction space equals 1 third

    Question 157
    CBSEENMA12033731

    In a hostel, 60% of the students read Hindi newspaper, 40% read English newspaper and 20% read both Hindi and English newspapers. A student is selected at random.
    If she reads English newspaper, find the probability that she reads Hindi newspaper.

    Solution

    Let A and B be two events such that
    A : a student reads Hindi newspaper
    B : a student reads English newspaper.
    therefore space space space space space straight P left parenthesis straight A right parenthesis space equals space 60 over 100 space equals 3 over 5 comma space space space space straight P left parenthesis straight B right parenthesis space equals space 40 over 100 space equals space 2 over 5
space space space space space space space space space space space straight P left parenthesis straight A space intersection space straight B right parenthesis space equals space 20 over 100 space equals 1 fifth
    P(she reads Hindi newspaper when it is given that she reads English newspaper) = P(A | B)
             equals space fraction numerator straight P left parenthesis straight A space intersection space straight B right parenthesis over denominator straight P left parenthesis straight B right parenthesis end fraction space equals space fraction numerator begin display style 1 fifth end style over denominator begin display style 2 over 5 end style end fraction space equals 1 half

    Question 158
    CBSEENMA12033732

    A certain team wins with probability 0.7, losses with probability 0.2 and ties with probability 0.1. The team plays three games. Find the probability that the team wins at least two of the games, but not lose.

    Solution

    Let W , L and T denote the events that the team wins, loses and ties respectively.
    ∴ P (W) = 0.7, P (L) = 0.2, P (T) = 0.1
    Required probability = P (team wins at least two games but not loses)
    = P (WWT) + P (WTW) + P (TWW) + P (WWW)
    = P (W) P (W) P (T) + P (W) P (T) P (W) + P (T) P (W) P (W) + P(W) P(W) P(W)
    = 3 [P (W) P (W) P (T)] + P (W) P (W) P (W)
    = 3 [(0.7) (0.7) (0.1) + (0.7) (0.7) (0.7)
    = 3 × 0.049 + 0.343 = 0.147 + 0.343
    = 0.49

    Question 159
    CBSEENMA12033733

    A can hit a target 4 times in 5 shots, B 3 times in 4 shots, and C 2 times in 3 shots. Calculate the probability that
    (i) A B, C all may hit    (ii) B, C may hit and A may lose.

    Solution
    Let E1 , E2 , E3 be the events ‘A hits a shot’, ‘B hits a shot,’ ‘C hits a shot’ respectively.
    therefore space space space space straight P left parenthesis straight E subscript 1 right parenthesis space equals space 4 over 5 comma space space straight P left parenthesis straight E subscript 2 right parenthesis space equals 3 over 4 comma space space straight P left parenthesis straight E subscript 3 right parenthesis space equals space 2 over 3
    (i) P(A, B, C all may hit) = straight P left parenthesis straight E subscript 1 space straight E subscript 2 space straight E subscript 3 right parenthesis
                                     equals space straight P left parenthesis straight E subscript 1 right parenthesis thin space straight P left parenthesis straight E subscript 2 right parenthesis thin space straight P left parenthesis straight E subscript 3 right parenthesis space equals space 4 over 5 cross times 3 over 4 cross times 2 over 3 space equals 2 over 5
    (ii) P(B, C may hit and A may lose)
                                  equals space straight P left parenthesis straight E subscript 2 space straight E subscript 3 space straight E with bar on top subscript 1 right parenthesis space equals space straight P left parenthesis straight E subscript 2 right parenthesis thin space straight P left parenthesis straight E subscript 3 right parenthesis thin space straight P left parenthesis straight E with bar on top subscript 1 right parenthesis
equals space straight P left parenthesis straight E subscript 2 right parenthesis space thin space straight P left parenthesis straight E subscript 3 right parenthesis space left square bracket 1 minus straight P left parenthesis straight E subscript 1 right parenthesis right square bracket
space equals 3 over 4 cross times 2 over 3 cross times open parentheses 1 minus 4 over 5 close parentheses space equals space 3 over 4 cross times 2 over 3 cross times 1 fifth space equals 1 over 10
    Question 160
    CBSEENMA12033734

    A can hit a target 3 times in 5 shots, B 2 times in 5 shots, C 3 times in 4 shots. Each fire a volley, what is the probability that 2 shots hit the target?

    Solution
    Let E1 , E2 , E3 be the events ‘A hits a shot’, ‘B hits a shot’, ‘C hits a shot respectively.
    therefore                straight P space left parenthesis straight E subscript 1 right parenthesis space space equals space 3 over 5 comma space space space straight P left parenthesis straight E subscript 2 right parenthesis space equals space 2 over 5 comma space space straight P left parenthesis straight F subscript 3 right parenthesis space equals space 3 over 4
    P(two shots hit)                       equals space straight P left parenthesis straight E subscript 1 space straight E subscript 2 space straight E with bar on top subscript 3 right parenthesis space plus space straight P left parenthesis straight E subscript 1 space straight E with bar on top subscript 2 space straight E subscript 3 right parenthesis space plus space straight P left parenthesis straight E with bar on top subscript 1 space straight E subscript 2 space straight E subscript 3 right parenthesis
equals space straight P left parenthesis straight E subscript 1 right parenthesis thin space straight P left parenthesis straight E subscript 2 right parenthesis thin space straight P left parenthesis straight E with bar on top subscript 3 right parenthesis space plus space straight P left parenthesis straight E subscript 1 right parenthesis thin space straight P left parenthesis straight E with bar on top subscript 2 right parenthesis thin space straight P left parenthesis straight E subscript 3 right parenthesis space plus space straight P left parenthesis straight E with bar on top subscript 1 right parenthesis thin space straight P left parenthesis straight E subscript 2 right parenthesis space straight P left parenthesis straight E subscript 3 right parenthesis
equals space straight P left parenthesis straight E subscript 1 right parenthesis thin space straight P left parenthesis straight E subscript 2 right parenthesis space left square bracket 1 space minus space straight P left parenthesis straight E subscript 3 right parenthesis right square bracket space plus space straight P left parenthesis straight E subscript 1 right parenthesis space left square bracket space 1 minus straight P left parenthesis straight E subscript 2 right parenthesis right square bracket space straight P left parenthesis straight E subscript 3 right parenthesis space plus space left square bracket 1 minus straight P left parenthesis straight E subscript 1 right parenthesis right square bracket space straight P left parenthesis straight E subscript 2 right parenthesis thin space straight P left parenthesis straight E subscript 3 right parenthesis
equals space 3 over 5 cross times 2 over 5 cross times open parentheses 1 minus 3 over 4 close parentheses plus 3 over 5 cross times open parentheses 1 minus 2 over 5 close parentheses space cross times 3 over 4 plus open parentheses 1 minus 3 over 5 close parentheses cross times 2 over 5 cross times 3 over 4
equals space 3 over 5 cross times 2 over 5 cross times 1 fourth plus 3 over 5 cross times 3 over 5 cross times 3 over 4 plus 2 over 5 cross times 2 over 5 cross times 3 over 4 equals 6 over 100 plus 27 over 100 plus 12 over 100
equals space fraction numerator 6 plus 27 plus 12 over denominator 100 end fraction space equals 45 over 100 space equals 9 over 20
    Question 161
    CBSEENMA12033735

    A can hit a target 4 times with 5 shots. B can hit 3 times with 5 shots and C can hit 3 times with 5 shots. Each fire a volley, what is the probability that 2 shots hit the target?

    Solution
    Let E1 , E2 , E3 be the events ‘A hits a shot’, ‘B hits a shot’, ‘C hits a shot’ respectively.
    therefore space space space straight P left parenthesis straight E subscript 1 right parenthesis space equals space 4 over 5 comma space space straight P left parenthesis straight E subscript 2 right parenthesis space equals space 3 over 5 comma space space straight P left parenthesis straight E subscript 3 right parenthesis space equals 3 over 5
    P(two shots hit)
                   equals space straight P left parenthesis straight E subscript 1 space straight E subscript 2 space straight E with bar on top subscript 3 right parenthesis space plus space straight P left parenthesis straight E subscript 1 space straight E with bar on top subscript 2 space straight E subscript 3 right parenthesis space plus space straight P left parenthesis straight E with bar on top subscript 1 space straight E subscript 2 space straight E subscript 3 right parenthesis
space equals space straight P left parenthesis straight E subscript 1 right parenthesis thin space straight P left parenthesis straight E subscript 2 right parenthesis thin space straight P left parenthesis straight E with bar on top subscript 3 right parenthesis thin space plus thin space straight P left parenthesis straight E subscript 1 right parenthesis thin space straight P left parenthesis straight E with bar on top subscript 2 right parenthesis thin space straight P left parenthesis straight E subscript 3 right parenthesis space plus space straight P left parenthesis straight E with bar on top subscript 1 right parenthesis thin space straight P left parenthesis straight E subscript 2 right parenthesis thin space straight P left parenthesis straight E subscript 3 right parenthesis
space equals space straight P left parenthesis straight E subscript 1 right parenthesis thin space straight P left parenthesis straight E subscript 2 right parenthesis space left square bracket 1 minus straight P left parenthesis straight E subscript 3 right parenthesis right square bracket space plus space straight P left parenthesis straight E subscript 1 right parenthesis space left square bracket 1 minus straight P left parenthesis straight E subscript 2 right parenthesis right square bracket space straight P left parenthesis straight E subscript 3 right parenthesis plus open square brackets 1 minus straight P left parenthesis straight E subscript 1 right parenthesis close square brackets space straight P left parenthesis straight E subscript 2 right parenthesis thin space straight P left parenthesis straight E subscript 3 right parenthesis
equals space open parentheses 4 over 5 close parentheses space open parentheses 3 over 5 close parentheses space open parentheses 1 minus 3 over 5 close parentheses space plus 4 over 5 space open parentheses 1 minus 3 over 5 close parentheses space open parentheses 3 over 5 close parentheses space plus space open parentheses 1 minus 4 over 5 close parentheses space open parentheses 3 over 5 close parentheses space open parentheses 3 over 5 close parentheses
equals space open parentheses 4 over 5 close parentheses space open parentheses 3 over 5 close parentheses space open parentheses 2 over 5 close parentheses space plus space open parentheses 4 over 5 close parentheses space open parentheses 2 over 5 close parentheses space open parentheses 3 over 5 close parentheses space plus space open parentheses 1 fifth close parentheses space open parentheses 3 over 5 close parentheses space open parentheses 3 over 5 close parentheses space equals 24 over 125 plus 24 over 125 plus 9 over 125 equals 57 over 125
    Question 162
    CBSEENMA12033736

    A and B toss a coin alternatively till one of them gets a head and wins the game. If A starts the game, find the probability of his winning at his third toss.

    Solution

    Let P(A),  straight P left parenthesis straight A with bar on top right parenthesis be the probabilities of A's getting the head and not getting the head respectively.
              Then straight P left parenthesis straight A right parenthesis space equals 1 half comma space space straight P left parenthesis straight A with bar on top right parenthesis space equals space 1 minus straight P left parenthesis straight A right parenthesis space equals space 1 minus 1 half space equals space 1 half.
    Similarly,  P(B) = 1 half comma space space space space straight P left parenthesis straight B with bar on top right parenthesis space equals space 1 half
    Now A starts the game and wins in his third toss i.e.,  in 5th row
    therefore  required probability  = straight P left parenthesis straight A with bar on top right parenthesis thin space straight P left parenthesis straight B with bar on top right parenthesis space straight P left parenthesis straight A with bar on top right parenthesis thin space straight P left parenthesis straight B with bar on top right parenthesis thin space straight P left parenthesis straight A right parenthesis
                                          equals space 1 half cross times 1 half cross times 1 half cross times 1 half cross times 1 half space equals space 1 over 32

    Question 163
    CBSEENMA12033737

    A and B throw a die alternately till one of them gets a ‘6’ and wins the game. Find their respective probabilities of winning if A starts first.

    Solution

    Let S denote the success (getting a '6') and F denote the failure (not getting a '6').
    therefore space space space straight P left parenthesis straight S right parenthesis space equals 1 over 6 comma space space straight P left parenthesis straight F right parenthesis space equals space 5 over 6
    P(A wins in the first throw) = P(S)= 1 over 6
    A gets the throw,  when the first throw by A and second throw by B result into failures. Therefore,
                  straight P left parenthesis straight A space wins space in space the space third space throw right parenthesis space equals space straight P left parenthesis FFS right parenthesis space equals 5 over 6.5 over 6.1 over 6 space equals open parentheses 5 over 6 close parentheses squared space open parentheses 1 over 6 close parentheses
straight P left parenthesis straight A space wins space in space the space 5 th space throw right parenthesis space equals space straight P left parenthesis FFFFS right parenthesis space equals space open parentheses 5 over 6 close parentheses to the power of 4 space open parentheses 1 over 6 close parentheses space and space so space on. space
    Hence space straight P left parenthesis straight A space wins right parenthesis space equals space 1 over 6 space plus open parentheses 5 over 6 close parentheses squared space open parentheses 1 over 6 close parentheses space plus space open parentheses 5 over 6 close parentheses to the power of 4 space open parentheses 1 over 6 close parentheses plus.... space equals space fraction numerator begin display style 1 over 6 end style over denominator 1 minus begin display style 25 over 36 end style end fraction space space space space space open square brackets because space space straight S space equals space fraction numerator straight a over denominator 1 minus straight r end fraction close square brackets
                                 equals space 6 over 11
    P(B wins) = 1 - P(A wins) = 1 minus 6 over 11 space equals 5 over 11.

    Question 164
    CBSEENMA12033738

    A and B toss a coin alternately till one of them gets a head and wins the game, if A starts first, find the probability that B will win the game.

    Solution

    Let P(A), straight P left parenthesis straight A with bar on top right parenthesis be the probabilities of A's getting the head and not getting the head respectively, then
                 straight P left parenthesis straight A right parenthesis space equals 1 half space space space space space space space space space space space space space space rightwards double arrow space space space space space space straight P left parenthesis straight A with bar on top right parenthesis space equals space 1 space minus space straight P left parenthesis straight A right parenthesis space equals 1 minus 1 half space equals 1 half
    Similarly, straight P left parenthesis straight B right parenthesis space equals space 1 half space and space straight P left parenthesis straight B with bar on top right parenthesis space equals space 1 half
    Let A start the game. He can win in the first throw, 3rd throw, 5th throw and so on. 
             Probability of A's winning in first throw = P(A) = 1 half
             Probability of A's winning in 3rd throw
                                              equals space straight P left parenthesis straight A with bar on top right parenthesis thin space straight P left parenthesis straight B with bar on top right parenthesis space straight P left parenthesis straight A with bar on top right parenthesis thin space straight P left parenthesis straight B with bar on top right parenthesis thin space straight P left parenthesis straight A right parenthesis
                                               equals space 1 half cross times 1 half cross times 1 half cross times 1 half cross times 1 half space equals space open parentheses 1 half close parentheses to the power of 5 space and space so space on.
    Since all these cases are mutually exclusive
    therefore   probability of A's winning the game first is
                                           equals space 1 half plus open parentheses 1 half close parentheses cubed plus open parentheses 1 half close parentheses to the power of 5 plus..... infinity
equals space fraction numerator begin display style 1 half end style over denominator 1 minus open parentheses begin display style 1 half end style close parentheses squared end fraction space space space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets because straight S space equals space fraction numerator straight a over denominator 1 minus straight r end fraction close square brackets
equals space fraction numerator begin display style 1 half end style over denominator begin display style 3 over 4 end style end fraction space equals 2 over 3
    Since either A or B wins
    therefore   probability of B's winning the game first  = 1 minus 2 over 3 space equals space 1 third

    Question 165
    CBSEENMA12033739

    A and B take turn in throwing two dice. The first to throw sum 9 being awarded. Show that if A has the first throw, their chances of winning are in the ratio 9:8.

    Solution

    Let E be the event of getting sum 9 in a throw of two dice.
    therefore          straight E space equals space open curly brackets left parenthesis 3 comma space 6 right parenthesis comma space left parenthesis 4 comma space 5 right parenthesis comma space left parenthesis 5 comma space 4 right parenthesis comma space left parenthesis 6 comma space 3 right parenthesis close curly brackets
    therefore space space straight P left parenthesis straight E right parenthesis space equals space 4 over 36 space equals space 1 over 9 comma space space space space space straight P left parenthesis straight E with bar on top right parenthesis space equals space 1 minus 1 over 9 space equals space 8 over 9
    Now A wins in first throw or third row or 5th throw or................
    therefore   proability of winning of A = P(E) + straight P left parenthesis straight E with bar on top space straight E with bar on top space straight E right parenthesis + straight P left parenthesis straight E with bar on top space straight E with bar on top space straight E with bar on top space straight E with bar on top space straight E right parenthesis plus.......
                           equals space straight P left parenthesis straight E right parenthesis space plus space straight P left parenthesis straight E with bar on top right parenthesis space space space straight P left parenthesis straight E with bar on top right parenthesis space straight P left parenthesis straight E right parenthesis plus space straight P left parenthesis straight E with bar on top right parenthesis space straight P left parenthesis straight E with bar on top right parenthesis thin space straight P space left parenthesis straight E with bar on top right parenthesis space straight P space left parenthesis straight E with bar on top right parenthesis space straight P left parenthesis straight E right parenthesis plus......
    equals space 1 over 9 plus 8 over 9 cross times 8 over 9 cross times 1 over 9 plus 8 over 9 cross times 8 over 9 cross times 8 over 9 cross times 1 over 9 plus...
equals space 1 over 9 open square brackets 1 plus open parentheses 8 over 9 close parentheses squared plus open parentheses 8 over 9 close parentheses to the power of 4 plus... close square brackets space equals 1 over 9 open square brackets fraction numerator 1 over denominator 1 minus open parentheses begin display style 8 over 9 end style close parentheses squared end fraction close square brackets space space space space space space space space space space space space space space space open square brackets because space space straight S space equals space fraction numerator straight a over denominator 1 minus straight r end fraction close square brackets
equals space 1 over 9 open square brackets 81 over 17 close square brackets space equals space 9 over 17
    therefore probability of winning of B = 1 minus 9 over 17 space equals space 8 over 17
    therefore required ratio = 9 over 17 colon 8 over 17 space equals 9 space colon space 8.
     

    Question 166
    CBSEENMA12033740

    Two persons throw a die alternatively till one of them gets a three and wins the game. Find their respective probability of winning.

    Solution
    Let E be the event of getting 3 in a throw of die.
       therefore space space straight P left parenthesis straight E right parenthesis space equals space 1 over 6 comma space space straight P left parenthesis straight E with bar on top right parenthesis space equals space 1 minus straight P left parenthesis straight E right parenthesis space equals space 1 minus 1 over 6 space equals 5 over 6

    Any person who starts the game can win in the first throw, 3rd throw, 5th throw and so on.
    therefore    probability of winning A
                                   space equals space straight P left parenthesis straight E right parenthesis space plus space straight P left parenthesis straight E with bar on top space straight E with bar on top space straight E right parenthesis space plus space straight P left parenthesis straight E with bar on top space straight E with bar on top space straight E with bar on top space straight E with bar on top straight E right parenthesis plus...
equals space 1 over 6 cross times 1 over 6 cross times 5 over 6 cross times 5 over 6 plus 1 over 6 cross times 5 over 6 cross times 5 over 6 cross times 5 over 6 cross times 5 over 6 plus...
equals space 1 over 6 open square brackets 1 plus open parentheses 5 over 6 close parentheses squared plus open parentheses 5 over 6 close parentheses to the power of 4 plus.... close square brackets
equals space 1 over 6 open square brackets fraction numerator 1 over denominator 1 minus begin display style 25 over 36 end style end fraction close square brackets space equals space 1 over 6 cross times 36 over 11 space equals space 6 over 11
    Since either of two person wins
        therefore         probability of winning B = 1 minus 6 over 11 space equals 5 over 11
       therefore          required probabilities are 6 over 11 comma space 5 over 11.

    Question 167
    CBSEENMA12033741

    There are three urns A, B and C. Urn A contains 4 white balls and 5 blue balls. Urn B contains 3 white balls and 4 blue balls. Urn C contains 3 white balls and 6 blue balls. One ball is drawn from each of these urns. What is the probability that out of these three balls drawn, two are white balls and one is a blue ball?

    Solution

                                                      Urn A                Urn B                  Urn C
    White                                          4                          3                       3
    Blue                                            5                          4                       6
    P(two third and one blue) = P(WWB) + P(WBW) + P(BWW)
                   = P(W) P(W) P(B) + P(W) P(B) P(W) + P(B) P(W) P(W)                equals space 4 over 9 cross times 3 over 7 cross times 6 over 9 plus 4 over 9 cross times 4 over 7 cross times 3 over 9 plus 5 over 9 cross times 3 over 7 cross times 3 over 9 space equals 72 over 567 plus 48 over 567 plus 45 over 567 equals 165 over 567 equals 55 over 189.

    Question 168
    CBSEENMA12033742

    There are three urns A, B and C. Urn A contains 4 white balls and 5 blue balls. Urn B contains 4 white balls and 3 blue balls. Urn C contains 2 white balls and 4 blue balls. One half is drawn from each of these urns. What is the probability that out of these three balls drawn, two are white balls and one is a blue ball?

    Solution

                                                      Urn A                Urn B                  Urn C
    White                                          4                          4                       2
    Blue                                            5                          3                       4
    P(two white and one blue) = P(WWB) + P(WBW) + P(BWW)
                = P(W) P(W) P(B) + P(W) P(B) P(W) + P(B) P(W) P(W)
               equals space 4 over 9 cross times 4 over 7 cross times 4 over 9 plus 4 over 9 cross times 3 over 7 cross times 2 over 6 plus 5 over 9 cross times 4 over 7 cross times 2 over 9
equals space 64 over 378 plus 24 over 378 plus 40 over 378 space equals fraction numerator 64 plus 24 plus 40 over denominator 378 end fraction space equals 128 over 378 space equals 64 over 189
                 

    Question 169
    CBSEENMA12033743

    In bag A, there are 5 white and 8 red balls, in bag B, 7 white and 6 red balls and in bag C, 6 white and 5 red balls. One ball is taken out at random from each bag. Find the probability that all the three balls are of the same colour.

    Solution

                                                Bag A              Bag B               Bag C
    White                                   5                        7                       6
    Red                                      8                        6                       5
    P(all three balls of the same colour)  = P(all white or all red)
                                 = P(all white) + P(all red)
                                 = P(WWW) + P(RRR)
                                 = P(W) P(W) P(W) + P(R) P(R) P(R)
                                 equals space 5 over 17 cross times 7 over 13 cross times 6 over 11 plus 8 over 13 cross times 6 over 13 cross times 5 over 11
equals space 210 over 1859 plus 240 over 1859 space equals space 450 over 1859.
                                 

    Question 170
    CBSEENMA12033744

    A person has undertaken a construction job. The probabilities are 0.65 that there will be strike, 0.80 that the construction job will be completed on time if there is no strike, and 0.32 that the construction job will be completed on time if there is a strike. Determine the probability that the construction job will be completed on time.

    Solution

    Let A be the event that the construction job will be completed on time, and B be the event that there will be a strike.
    Now    P(B) = 0.65
    P(no strike) = P(B’) = 1 - P(B) = 1 - 0.65 = 0.35
    P(A | B) = 0.32, P(A | B') = 0.80
    Since events B and B' form a partition of the sample space S,
    ∴  By theorem on total probability, we have
    P(A) = P(B) P(A | B) + P(B') P(A | B’)
    = 0.65 × 0.32 + 0.35 × 0.8
    = 0.208 + 0.28 = 0.488
    ∴  the probability that the construction job will be completed in time is 0.488.

    Question 171
    CBSEENMA12033745

    An urn contains 5 red and 5 black balls. A ball is drawn at random, its colour is noted and is returned to the urn. Moreover, 2 additional balls of the colour drawn are put in the urn and then a ball is drawn at random. What is the probability that the second ball is red?

    Solution

    Number of red balls = 5
    Number of black balls = 5
    ∴  total number of balls = 10
    Let A be the event that second drawn ball is red, and B be the event of drawing first ball as red and adding two red balls to urn.
    Required probability = P(A)= P(B) P(A | B) + P(B') P(A | B')
    = P (a red ball is drawn and returned along with 2 red balls and then a red ball is drawn) + P(a black ball is drawn and returned along with 2 black balls and then a red ball is drawn)
    equals space 5 over 10 cross times 7 over 12 plus 5 over 10 cross times 5 over 12 space equals fraction numerator 35 plus 25 over denominator 120 end fraction space equals 60 over 120 space equals 1 half.

    Question 172
    CBSEENMA12033746

    There are two bags I and II. Bag I contains 3 white and 2 red balls and Bag II contains 5 white and 4 red balls. One ball is drawn at random from one of the bags and is found to be red. Find the probability that it was drawn from bag II.

    Solution

    Bag  I,                                                  Bag II
    Number of white balls  = 3,         Number of white balls = 5
    Number of red balls = 2,            Number of red balls  = 4
    Total number of balls = 5,         Total number of balls = 9
    Let E1 and E2 be the events of the ball being drawn from bag I and bag II respectively and E be the event that the drawn ball is red.
    Since both the bags are equally likely to be selected
               therefore space space space space straight P left parenthesis straight E subscript 1 right parenthesis space equals space 1 half comma space space straight P left parenthesis straight E subscript 2 right parenthesis space equals space 1 half
           straight P left parenthesis straight E left enclose straight E subscript 1 end enclose right parenthesis space equals space Probability space of space drawing space straight a space red space ball space from space bag space straight I space equals space 2 over 5
straight P left parenthesis straight E space left enclose straight E subscript 2 end enclose right parenthesis space equals space Probability space of space drawing space straight a space red space ball space from space bag space II space equals space 4 over 9
    P(the red ball is drawn from bag II) = straight P left parenthesis straight E subscript 2 space end subscript left enclose straight E right parenthesis
                                               equals space fraction numerator straight P left parenthesis straight E subscript 2 right parenthesis. space space straight P left parenthesis straight E subscript 1 left enclose straight E subscript 2 end enclose right parenthesis over denominator straight P left parenthesis straight E subscript 1 right parenthesis. space straight P left parenthesis straight E left enclose straight E subscript 1 end enclose right parenthesis space plus space straight P left parenthesis straight E subscript 2 right parenthesis. space space straight P left parenthesis straight E left enclose straight E subscript 2 end enclose right parenthesis end fraction
equals space fraction numerator begin display style 1 half end style cross times begin display style 4 over 9 end style over denominator begin display style 1 half end style cross times begin display style 2 over 5 end style plus begin display style 1 half end style cross times begin display style 4 over 9 end style end fraction space equals fraction numerator begin display style 2 over 9 end style over denominator begin display style 1 fifth end style plus begin display style 2 over 9 end style end fraction space equals fraction numerator begin display style 2 over 9 end style over denominator begin display style fraction numerator 9 plus 10 over denominator 45 end fraction end style space end fraction equals space fraction numerator begin display style 2 over 9 end style over denominator begin display style 19 over 45 end style end fraction
equals space 2 over 9 cross times 45 over 19 space equals space 10 over 19

    Question 173
    CBSEENMA12033747

    There are two bags I and II. Bag I contains 4 white and 3 red balls and Bag II contains 6 white and 5 red balls. One ball is drawn at random from one of the bags and is found to be red. Find the probability that it was drawn from bag II.

    Solution

    Bag I

    Bag II

    Number of white balls = 4

    Number of white balls = 6

    Number of red balls = 3

    Number of red balls = 5

    Total number of balls = 7

    Total number of balls = 11

    Let E1 and E2 be the events of the ball being drawn from bag I and bag II respectively and E be the event that the drawn ball is red.
    Since both the bags are equally likely to be selected
    therefore space space space straight P left parenthesis straight E subscript 1 right parenthesis equals space 1 half comma space space space space straight P left parenthesis straight E subscript 2 right parenthesis space equals space 1 half
                 straight P left parenthesis straight E space left enclose straight E subscript 1 end enclose right parenthesis space equals space Probability space of space drawin space straight a space red space ball space from space bag space straight I space equals space 3 over 7
straight P left parenthesis straight E space left enclose straight E subscript 2 end enclose right parenthesis space equals space Probability space of space drawing space straight a space red space ball space from space bag space II space equals space 5 over 11
straight P left parenthesis the space red space ball space is space drawn space from space bag space II right parenthesis space equals space straight P left parenthesis straight E subscript 2 space end subscript left enclose straight E right parenthesis
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space fraction numerator straight P left parenthesis straight E subscript 2 right parenthesis. space straight P left parenthesis straight E subscript 1 left enclose straight E subscript 2 end enclose right parenthesis over denominator straight P left parenthesis straight E subscript 1 right parenthesis. space straight P left parenthesis straight E left enclose straight E subscript 1 right parenthesis space plus space straight P left parenthesis straight E subscript 2 right parenthesis. space straight P left parenthesis straight E left enclose straight E subscript 2 right parenthesis end enclose end enclose end fraction
                                        equals space fraction numerator begin display style 1 half end style cross times begin display style 5 over 11 end style over denominator begin display style 1 half end style cross times begin display style 3 over 7 end style plus begin display style 1 half end style cross times begin display style 5 over 11 end style end fraction space equals fraction numerator begin display style 5 over 11 end style over denominator begin display style 3 over 7 end style plus begin display style 5 over 11 end style end fraction space equals space fraction numerator begin display style 5 over 11 end style over denominator begin display style fraction numerator 33 plus 35 over denominator 77 end fraction end style end fraction space equals space fraction numerator begin display style 5 over 11 end style over denominator begin display style 68 over 77 end style end fraction
equals space 5 over 11 cross times 77 over 68 equals space 35 over 68

     
    Question 174
    CBSEENMA12033748

    There are two bags I and II. Bag I contains 2 white and 4 red balls and Bag II contains 5 white and 3 red balls. One ball is drawn at random from one of the bags and is found to be red. Find the probability that it was drawn from bag II.

    Solution

    Bag I

    Bag II

    Number of white balls = 2

    Number of white balls = 5

    Number of red balls = 4

    Number of red balls = 3

    Total number of balls = 6

    Total number of balls = 8

    Let E1 and E2 be the events of the ball being drawn from bag I and bag II respectively and E be the event that the drawn ball is red.
    Since both the bags are equally likely to be selected
    therefore space space space straight P left parenthesis straight E space left enclose straight E subscript 1 end enclose right parenthesis space equals space Probability space of space drawing space straight a space red space ball space from space bag space straight I space equals space 4 over 6 space equals 2 over 3
              straight P left parenthesis straight E space left enclose space straight E subscript 2 end enclose right parenthesis space equals space Probability space of space drawing space straight a space red space ball space from space bag space II space equals space 3 over 8
                 straight P left parenthesis the space red space ball space is space drawn space from space bag space II right parenthesis space equals space straight P left parenthesis straight E subscript 2 space left enclose space straight E end enclose right parenthesis
                                    equals space fraction numerator straight P left parenthesis straight E subscript 2 right parenthesis. space space straight P left parenthesis straight E subscript 2 space left enclose space straight E end enclose right parenthesis over denominator straight P left parenthesis straight E subscript 1 right parenthesis. space straight P left parenthesis straight E subscript 1 space left enclose straight E right parenthesis space plus space straight P left parenthesis straight E subscript 2 right parenthesis. space straight P left parenthesis straight E subscript 2 space left enclose straight E right parenthesis end enclose end fraction
equals space fraction numerator begin display style 1 half cross times 3 over 8 end style over denominator begin display style 1 half cross times plus cross times 2 over 3 1 half 3 over 8 end style end fraction space equals fraction numerator begin display style 3 over 8 end style over denominator begin display style 2 over 3 plus 3 over 8 end style end fraction space equals fraction numerator begin display style 3 over 8 end style over denominator begin display style fraction numerator 16 plus 9 over denominator 24 end fraction end style end fraction space equals fraction numerator begin display style 3 over 8 end style over denominator begin display style 25 over 24 end style end fraction
equals space 3 over 8 cross times 24 over 25 space equals 9 over 25
          

    Question 175
    CBSEENMA12033749

    Bag I contains 3 red and 4 black balls and bag II contains 4 red and 5 black balls. One ball is transferred from bag I to bag II, then a ball is drawn from bag II, the ball so drawn is found to be red in colour. Find the probability that the transferred ball is black.

    Solution

    Bag I contains 3 red and 4 black balls.
    Bag II contain 4 red and 5 black balls.
    Let E1 : Event that a red ball is drawn from bag I
    E: Event that a black ball is drawn from bag I
    therefore space space space space space straight P left parenthesis straight E subscript 1 right parenthesis space equals space 3 over 7 comma space space straight P left parenthesis straight E subscript 2 right parenthesis space equals space 4 over 7

    After transferring a red ball from bag I to bag II, the bag II will have 5 red and 5 black balls.
    Let A be the event of drawing red ball
             therefore space space space space straight P left parenthesis straight A space left enclose straight E subscript 1 end enclose right parenthesis space equals space 5 over 10 space equals 1 half
    Further when a black ball is transferred from bag I to bag II, it will contain 4 red and 6 black balls.
    straight P space open parentheses straight A space left enclose straight E subscript 2 end enclose close parentheses space equals space 4 over 10 space equals space 2 over 5
    Required probability  = straight P left parenthesis straight E subscript 2 space left enclose space straight A end enclose right parenthesis space equals space fraction numerator straight P left parenthesis straight E subscript 2 right parenthesis thin space straight P left parenthesis straight A space left enclose space straight E subscript 2 end enclose right parenthesis over denominator straight P left parenthesis straight E subscript 1 right parenthesis space straight P left parenthesis straight A space left enclose straight E subscript 1 end enclose right parenthesis space plus space straight P left parenthesis straight E subscript 2 right parenthesis thin space straight P left parenthesis straight A space left enclose straight E subscript 2 end enclose right parenthesis end fraction
space equals space fraction numerator begin display style 4 over 7 end style cross times begin display style 2 over 5 end style over denominator begin display style 3 over 7 end style cross times begin display style 1 half end style plus begin display style 4 over 7 end style cross times begin display style 2 over 5 end style end fraction space equals space fraction numerator begin display style 8 over 35 end style over denominator begin display style 13 over 14 end style plus begin display style 8 over 35 end style end fraction space equals space fraction numerator begin display style 8 over 35 end style over denominator begin display style fraction numerator 15 plus 16 over denominator 70 end fraction end style end fraction space equals 8 over 35 cross times 70 over 31 equals 16 over 31.

    Question 176
    CBSEENMA12033750

    A bag contains 4 red and 4 black balls, another bag contains 2 red and 6 black balls. One of the two bags is selected at random and a ball is drawn from the bag which is found to be red. Find the probability that the ball is drawn from the first bag.

    Solution
    Let E1 be the event of choosing the first bag, E2 the event of choosing the second bag and A be the event of drawing a red ball.
    therefore space space space straight P left parenthesis straight E subscript 1 right parenthesis space equals space straight P left parenthesis straight E subscript 2 right parenthesis space equals space 1 half
    Now, 
           straight P left parenthesis straight A space vertical line space straight E subscript 1 right parenthesis space equals space straight P left parenthesis drawing space straight a space red space ball space from space first space bag right parenthesis space equals 4 over 8 space equals 1 half
    and straight P left parenthesis straight A space vertical line space straight E subscript 2 right parenthesis space equals space straight P left parenthesis drawing space straight a space red space ball space from space second space bag right parenthesis space equals space 2 over 8 space equals space 1 fourth
    therefore space space space straight P left parenthesis straight E subscript 1 space vertical line space straight A right parenthesis space equals space fraction numerator straight P left parenthesis straight E subscript 1 right parenthesis space straight P left parenthesis straight A vertical line straight E subscript 1 right parenthesis over denominator straight P left parenthesis straight E subscript 1 right parenthesis thin space straight P left parenthesis straight A space vertical line thin space straight E subscript 1 right parenthesis space plus space straight P left parenthesis straight E subscript 2 right parenthesis thin space straight P left parenthesis straight A space vertical line thin space straight E subscript 2 right parenthesis end fraction
                            equals space fraction numerator begin display style 1 half end style cross times begin display style 1 half end style over denominator begin display style 1 half end style cross times begin display style 1 half end style plus begin display style 1 half end style cross times begin display style 1 fourth end style end fraction space equals fraction numerator begin display style 1 fourth end style over denominator begin display style 1 fourth end style plus begin display style 1 over 8 end style end fraction space equals space fraction numerator begin display style 1 fourth end style over denominator begin display style fraction numerator 2 plus 1 over denominator 8 end fraction end style end fraction space equals fraction numerator begin display style 1 fourth end style over denominator begin display style 3 over 8 end style end fraction space equals space 1 fourth cross times 8 over 3 space equals 2 over 3.
    Question 177
    CBSEENMA12033751

    Bag I contains 3 red and 4 black balls while another Bag II contains 5 red and 6 black balls. One ball is drawn at random from one of the bags and it is found to be red. Find the probability that it was drawn from Bag II.

    Solution
    Let E1 be the event of choosing the bag I, E2 the event of choosing the bag II and A be the event of drawing a red ball.
    Then    straight P left parenthesis straight E subscript 1 right parenthesis space space equals space straight P left parenthesis straight E subscript 2 right parenthesis space equals space 1 half
    Now,   straight P left parenthesis straight A space vertical line thin space straight E subscript 1 right parenthesis space equals space straight P left parenthesis drawing space straight a space red space ball space from space Bag space straight I right parenthesis space equals space 3 over 7
    and    
    Now, the probability of drawing a ball from Bag If, being given that it is red, is P(E| A).
    By using Bayes’ theorem, we have
    straight P left parenthesis straight E subscript 2 space vertical line space straight A right parenthesis space equals space fraction numerator straight P left parenthesis straight E subscript 2 right parenthesis thin space straight P left parenthesis straight A space vertical line space straight E subscript 2 right parenthesis over denominator straight P left parenthesis straight E subscript 1 right parenthesis thin space straight P left parenthesis straight A space vertical line space straight E subscript 1 right parenthesis space plus space straight P left parenthesis straight E subscript 2 right parenthesis thin space straight P left parenthesis straight A space vertical line space straight E subscript 2 right parenthesis end fraction
space space space space space space space space space space space space space space space space space space equals space fraction numerator begin display style 1 half end style cross times begin display style 5 over 11 end style over denominator begin display style 1 half end style cross times begin display style 3 over 7 end style plus begin display style 1 half end style cross times begin display style 5 over 11 end style end fraction space equals fraction numerator begin display style 5 over 22 end style over denominator begin display style 3 over 14 end style plus begin display style 5 over 22 end style end fraction space equals space fraction numerator begin display style 5 over 22 end style over denominator begin display style fraction numerator 33 plus 35 over denominator 154 end fraction end style end fraction space equals space fraction numerator begin display style 5 over 22 end style over denominator begin display style 68 over 154 end style end fraction
                     equals space 5 over 22 cross times 154 over 68 space equals 35 over 68
    Question 179
    CBSEENMA12033753

    Bag A contains 2 white and 3 red balls and bag B contains 4 white and 5 red balls. One ball is drawn at random from one of the bags and it is found to be red. Find the probability that it was drawn from the bag B.

    Solution

    Let E1 and E2 be the events of the ball being drawn from bag A and bag B respectively and E be the event that the drawn ball is red.
    Since both the bags are equally likely to be selected i.e., E1 and E2 are mutually exclusive and exhaustive events.
                      therefore space space space straight P left parenthesis straight E subscript 1 right parenthesis space equals space 1 half comma space space space space straight P left parenthesis straight E subscript 2 right parenthesis space equals space 1 half
    straight P left parenthesis straight E divided by straight E subscript 1 right parenthesis space equals space Prob. space of space drawing space straight a space red space ball space from space bag space straight A space equals space 3 over 5
straight P left parenthesis straight E divided by straight E subscript 2 right parenthesis space equals space Prob. space of space drawing space straight a space red space ball space from space bag space straight B space equals space 5 over 9
therefore space space space space space straight P left parenthesis straight E subscript 2 vertical line straight E right parenthesis space equals space fraction numerator straight P left parenthesis straight E subscript 2 right parenthesis. space space straight P left parenthesis straight E space vertical line space straight E subscript 2 right parenthesis over denominator straight P left parenthesis straight E subscript 1 right parenthesis. space straight P left parenthesis straight E space vertical line thin space straight E subscript 1 right parenthesis space plus space straight P left parenthesis straight E subscript 2 right parenthesis. space straight P left parenthesis straight E space vertical line thin space straight E subscript 2 right parenthesis end fraction
space space space space space space space space space space space space space space space space space space space space space space space space space equals space fraction numerator begin display style 1 half end style cross times begin display style 5 over 9 end style over denominator begin display style 1 half end style cross times begin display style 3 over 5 end style plus begin display style 1 half end style cross times begin display style 5 over 9 end style end fraction space equals space fraction numerator begin display style 5 over 9 end style over denominator begin display style 3 over 5 end style plus begin display style 5 over 9 end style end fraction space equals space fraction numerator begin display style 5 over 9 end style over denominator begin display style fraction numerator 27 plus 25 over denominator 45 end fraction end style end fraction equals space fraction numerator begin display style 5 over 9 end style over denominator begin display style 52 over 45 end style end fraction
space space space space space space space space equals space 5 over 9 cross times 45 over 52 space equals 25 over 52.

    Question 180
    CBSEENMA12033754

    In answering a question on a multiple choice test, a student either knows the answer or guesses. Let 3 over 4 be the probability that he knows the answer and 1 fourth be the probability that he guesses. Assuming that a student who guesses at the answer will be correct with probability 1 fourth. What is the probability  that the student knows the answer given that he answered it correctly?

    Solution

    Let E1, E2, E be the events
    E1 : ‘the student knows the answer’
    E2 : ‘the student guesses the answer’,
    E : ‘the answer is correct’
          therefore space space space space straight P left parenthesis straight E subscript 1 right parenthesis space equals space 3 over 4 space space and space straight P left parenthesis straight E subscript 2 right parenthesis space equals space 1 fourth
             straight P left parenthesis straight E space vertical line space straight E subscript 1 right parenthesis space equals space 1 space space space and space straight P left parenthesis straight E space vertical line space straight E subscript 2 right parenthesis space equals 1 fourth
                                                    open square brackets because space space when space the space student space knows space the space answer comma space it space is space straight a space sure space event close square brackets
    Required space probability space equals space straight P left parenthesis straight E subscript 1 vertical line straight E right parenthesis space equals space fraction numerator straight P left parenthesis straight E subscript 1 right parenthesis thin space straight P left parenthesis straight E vertical line straight E subscript 1 right parenthesis over denominator straight P left parenthesis straight E subscript 1 right parenthesis thin space straight P left parenthesis straight E space vertical line space straight E subscript 1 right parenthesis space plus space straight P left parenthesis straight E subscript 2 right parenthesis thin space straight P left parenthesis straight E space vertical line space straight E subscript 2 right parenthesis end fraction
                                                                                                  (By Baye's Theorem)
                                        equals space fraction numerator begin display style 3 over 4 end style cross times 1 over denominator begin display style 3 over 4 end style cross times 1 plus begin display style 1 fourth end style cross times begin display style 1 fourth end style end fraction equals space fraction numerator begin display style 3 over 4 end style over denominator begin display style 3 over 4 end style plus begin display style 1 over 16 end style end fraction equals fraction numerator begin display style 3 over 4 end style over denominator begin display style fraction numerator 12 plus 1 over denominator 16 end fraction end style end fraction
equals space 3 over 4 cross times 16 over 13 space equals 12 over 13.
                                      
                    

    Question 181
    CBSEENMA12033755

    A laboratory blood test is 99% effective in detecting a certain disease when it is in fact, present. However, the test also yields a false positive result for 0.5% of the healthy person tested (i.e. if a healthy person is tested, then, with probability 0.005, the test will imply he has the disease). If 0.1 percent of the population actually has the disease, what is the probability that a person has the disease given that his test result is positive?

    Solution

    Let E1, E2, E be the events
    E1 : ‘the person has the disease’
    E: ‘the person is healthy’,
    E : ‘test is positive’,
            therefore space space space space straight P left parenthesis straight E subscript 1 right parenthesis space equals space 0.1 space equals space 1 over 10 space space and space straight P left parenthesis straight E subscript 2 right parenthesis space equals space 1 minus 1 over 10 equals 9 over 10
                    straight P left parenthesis straight E space vertical line space straight E subscript 1 right parenthesis space equals space 99 over 100 space and space straight P left parenthesis straight E subscript 2 right parenthesis space equals space 0.005 space equals space 5 over 1000
    Required probability = straight P left parenthesis straight E subscript 1 space vertical line space straight E right parenthesis space equals space fraction numerator straight P left parenthesis straight E subscript 1 right parenthesis thin space straight P left parenthesis straight E space vertical line space straight E subscript 1 right parenthesis over denominator straight P left parenthesis straight E subscript 1 right parenthesis thin space straight P left parenthesis straight E space vertical line space straight E subscript 1 right parenthesis space plus space straight P left parenthesis straight E subscript 2 right parenthesis space straight P left parenthesis straight E space vertical line space straight E subscript 2 right parenthesis end fraction
                                                                                (By Bare's Theorem)
                                   equals space fraction numerator begin display style 1 over 10 end style cross times begin display style 99 over 100 end style over denominator begin display style 1 over 10 end style cross times begin display style 99 over 100 end style plus begin display style 9 over 10 end style cross times begin display style 5 over 1000 end style end fraction space equals fraction numerator begin display style 99 over 1000 end style over denominator begin display style fraction numerator 990 plus 45 over denominator 10000 end fraction end style end fraction equals space 99 over 1000 cross times 10000 over 1035 space equals 22 over 23.
                            

    Question 182
    CBSEENMA12033756

    Suppose that 5% of men and 0.25% of women have grey hair. A grey haired person is selected at random. What is the probability of this person being male? Assume that there are equal number of males and females.

    Solution

    Let E1, E2, E be the events
    E1 : ‘selected person is a male’
    E2 : ‘selected person is a female’,
    E : ‘selected person is grey haired’
    therefore  straight P left parenthesis straight E subscript 1 right parenthesis space equals space straight P left parenthesis straight E subscript 2 right parenthesis space equals space 1 half.
    and                straight P left parenthesis straight E space vertical line space straight E subscript 1 right parenthesis space equals space 5 over 100 space equals 1 over 20 comma space space space space straight P left parenthesis straight E space vertical line space straight E subscript 2 right parenthesis space equals fraction numerator 0.25 over denominator 100 end fraction equals 1 over 400.
    Required probaility = straight P left parenthesis straight E subscript 1 space vertical line space straight E right parenthesis
                                  fraction numerator equals space straight P left parenthesis straight E subscript 1 right parenthesis thin space straight P left parenthesis straight E space vertical line space straight E subscript 1 right parenthesis over denominator straight P left parenthesis straight E subscript 1 right parenthesis thin space straight P left parenthesis straight E space vertical line space straight E subscript 1 right parenthesis space plus space straight P left parenthesis straight E subscript 2 right parenthesis thin space straight P left parenthesis straight E space vertical line thin space straight E subscript 2 right parenthesis end fraction

equals space fraction numerator begin display style 1 half end style cross times begin display style 1 over 20 end style over denominator begin display style 1 half end style cross times begin display style 1 over 20 end style plus begin display style 1 half end style cross times begin display style 1 over 400 end style end fraction space equals fraction numerator begin display style 1 over 20 end style over denominator begin display style 1 over 20 end style plus begin display style 1 over 400 end style end fraction space equals fraction numerator begin display style 1 over 20 end style over denominator begin display style fraction numerator 20 plus 1 over denominator 400 end fraction end style end fraction space equals fraction numerator begin display style 1 over 20 end style over denominator begin display style 21 over 400 end style end fraction
equals space 1 half cross times 400 over 21 space equals 20 over 21.

    Question 183
    CBSEENMA12033757

    If a machine is correctly set up, it produces 90% acceptable items. If it is incorrectly set up, it produces only 40% acceptable items. Past experience shows that 80% of the set ups are correctly done. If after a certain set up, the machine produces 2 acceptable items, find the probability that the machine is correctly setup.

    Solution

    Let A be the event that the machine produces 2 acceptable items.
    Again, let B1 represent the event of correct setup and B2 represent the event of incorrect setup.
            Now,     straight P left parenthesis straight B subscript 1 right parenthesis space equals space 0.8 comma space space space straight P left parenthesis straight B subscript 2 right parenthesis space equals space 0.2
                          straight P left parenthesis straight A space vertical line space straight B subscript 1 right parenthesis space equals space 0.9 space cross times space 0.9 space space and space straight P left parenthesis straight A space vertical line space straight B subscript 2 right parenthesis space equals space 0.4 space cross times space 0.4
     therefore space space straight P left parenthesis straight B subscript 1 space vertical line space straight A right parenthesis space equals space fraction numerator straight P left parenthesis straight B subscript 1 right parenthesis thin space straight P left parenthesis straight A space vertical line thin space straight B subscript 1 right parenthesis over denominator straight P left parenthesis straight B subscript 1 right parenthesis thin space straight P left parenthesis straight A space vertical line thin space straight B subscript 1 right parenthesis space plus space straight P left parenthesis straight B subscript 2 right parenthesis space straight P left parenthesis straight A space vertical line thin space straight B subscript 2 right parenthesis end fraction
space space space space space space space space space space space space space space space space equals space fraction numerator 0.8 space cross times 0.9 space cross times 0.9 over denominator 0.8 cross times 0.9 cross times 0.9 plus 0.2 cross times 0.4 cross times 0.4 end fraction equals space fraction numerator 648 over denominator 648 plus 32 end fraction space equals space 648 over 680 equals space 0.95 

    Question 184
    CBSEENMA12033758

    Assume that the chances of a patient having a heart attack are 40%. It is also assumed that a meditation and yoga course reduce the risk of heart attack by 30% and prescription of a certain drug reduces its chance by 25%. At a time a patient can choose any one of the two options with equal probabilities. It is given that after going through one of the two options the patient selected at random suffers a heart attack. Find the probability that the patient followed a course of meditation and yoga?

    Solution

    Let E1 and E2 be the events
    E1 : Treatment of yoga and meditation
    E2 : Treatment of prescription of certain drugs
    therefore space space space space space space space space space space space space space space straight P left parenthesis straight E subscript 1 right parenthesis space equals space 1 half comma space space space straight P left parenthesis straight E subscript 2 right parenthesis space equals space 1 half
    Let A denotes that a person has heart attack
    ∴ P(A) = 40% = 0.40
    Yoga and mediation reduces the heart risk by 30%
    i.e. inspite of getting yoga and meditation treatment heart risk is 70% of the 0.40
    ∴ P(A | E1) = 0.40 × 0.70 = 0.28
    Drug prescription reduces the heart risk by 25%.
    Even after adopting the drug prescription heart risk is 75% of the 0.40
    ∴ P(A | E2) = 0.40 × 0.75 = 0.30
    therefore space space straight P left parenthesis straight E subscript 1 vertical line straight A right parenthesis space equals space fraction numerator straight P left parenthesis straight E subscript 1 right parenthesis thin space straight P left parenthesis straight A space vertical line straight E subscript 1 right parenthesis over denominator straight P left parenthesis straight E subscript 1 right parenthesis thin space straight P left parenthesis straight A space vertical line space straight E subscript 1 right parenthesis space plus space straight P left parenthesis straight E subscript 2 right parenthesis thin space straight P left parenthesis straight A thin space vertical line straight E subscript 2 right parenthesis end fraction
space space space space space space space space space space space space space space space equals space fraction numerator begin display style 1 half cross times 0.28 end style over denominator begin display style 1 half cross times 0.28 plus cross times 0.30 1 half end style end fraction equals space fraction numerator 0.28 over denominator 0.28 plus 0.30 end fraction equals fraction numerator 0.28 over denominator 0.58 end fraction equals 28 over 58 equals 14 over 29

    Question 187
    CBSEENMA12033761

    Suppose a girl throws a die. If she gets a 5 or 6, she tosses a coin three times and notes the number of heads. If she gets 1, 2, 3 or 4. she tosses a coin once and notes whether a head or tail is obtained. If she obtained exactly one head, what is the probability that she threw 1, 2, 3 or 4 with the die?

    Solution

    Let E1, E2, E be the events
    E1 : ‘1, 2, 3 or 4 is shown on die’,
    E: ‘5 or 6 is shown on die’,
    E : ‘exactly one head shows up’
                   therefore space space space space straight P left parenthesis straight E subscript 1 right parenthesis space equals space 4 over 6 space equals 2 over 3 space space space and space space space straight P left parenthesis straight E subscript 2 right parenthesis space equals 2 over 6 equals space 1 third
             straight P left parenthesis straight E vertical line straight E subscript 1 right parenthesis space equals space straight P left parenthesis head space shows space up space when space coin space is space tossed space once right parenthesis space equals space 1 half
    and   straight P left parenthesis straight E space vertical line thin space straight E subscript 2 right parenthesis space equals straight P left parenthesis exactly space one space head space shows space up space when space coin space is space tossed space thrice right parenthesis space space space space space space space space space space space space space space space space space space space space space space space space space
                             equals space straight P left parenthesis left parenthesis left curly bracket HTT comma space THT comma space space TTH right curly bracket right parenthesis
equals space 3 over 8
    Required probability = straight P left parenthesis straight E subscript 1 space vertical line thin space straight E right parenthesis
                                     equals space fraction numerator straight P left parenthesis straight E subscript 1 right parenthesis thin space straight P left parenthesis straight E space vertical line thin space straight E subscript 1 right parenthesis over denominator straight P left parenthesis straight E subscript 1 right parenthesis thin space straight P left parenthesis straight E vertical line straight E subscript 1 right parenthesis space plus space straight P left parenthesis straight E subscript 2 right parenthesis thin space straight P left parenthesis straight E vertical line straight E subscript 2 right parenthesis end fraction space left parenthesis By space Baye apostrophe straight s space Theorem right parenthesis
equals space fraction numerator begin display style 2 over 3 end style cross times begin display style 1 half end style over denominator begin display style 2 over 3 end style cross times begin display style 1 half end style plus begin display style 1 third end style cross times begin display style 3 over 8 end style end fraction space equals fraction numerator begin display style 1 third end style over denominator begin display style 1 third end style plus begin display style 1 over 8 end style end fraction space equals fraction numerator begin display style 1 third end style over denominator begin display style fraction numerator 8 plus 3 over denominator 24 end fraction end style end fraction space equals 1 third cross times 24 over 11 space equals 8 over 11.
        

     
    Question 188
    CBSEENMA12033762

    A card from a pack of 52 cards is lost. From the remaining cards of the pack, two cards are drawn and are found to be both diamonds. Find the probability of the lost card being a diamond.

    Solution

    Let E1, E2, E he the events
    E1 : ‘lost card is a diamond’,
    E: ‘lost card is not a diamond’,
    E : ‘two cards drawn from the remaining pack are diamonds’
                         therefore space space space straight P left parenthesis straight E subscript 1 right parenthesis space equals space 13 over 52 space equals space 1 fourth comma space space space straight P left parenthesis straight E subscript 2 right parenthesis space equals space 39 over 52 space equals space 3 over 4
    Also,         straight P left parenthesis straight E space vertical line thin space straight E subscript 1 right parenthesis space equals space fraction numerator straight C presuperscript 12 subscript 2 over denominator straight C presuperscript 51 subscript 2 end fraction space equals fraction numerator begin display style fraction numerator 12 space cross times space 11 over denominator 1 space cross times 2 end fraction end style over denominator begin display style fraction numerator 51 space cross times 50 over denominator 1 space cross times 2 end fraction end style end fraction space equals space fraction numerator 12 space cross times space 11 over denominator 51 space cross times space 50 end fraction
    and           straight P left parenthesis straight E vertical line straight E subscript 2 right parenthesis space equals space fraction numerator straight C presuperscript 13 subscript 2 over denominator straight C presuperscript 51 subscript 2 end fraction space equals space fraction numerator 13 space cross times space 12 over denominator 51 space cross times space 50 end fraction space
    Required probability  = straight P left parenthesis straight E subscript 1 space vertical line thin space straight E right parenthesis
                                      equals space fraction numerator straight P left parenthesis straight E subscript 1 right parenthesis thin space straight P left parenthesis straight E space vertical line thin space straight E subscript 1 right parenthesis over denominator straight P left parenthesis straight E subscript 1 right parenthesis thin space straight P left parenthesis straight E vertical line straight E subscript 1 right parenthesis space plus space straight P left parenthesis straight E subscript 2 right parenthesis thin space straight P left parenthesis straight E vertical line straight E subscript 2 right parenthesis end fraction
equals space fraction numerator begin display style 1 fourth end style cross times begin display style fraction numerator 12 cross times 11 over denominator 51 cross times 50 end fraction end style over denominator begin display style 1 fourth end style cross times begin display style fraction numerator 12 cross times 11 over denominator 51 cross times 50 end fraction end style plus begin display style 3 over 4 end style cross times begin display style fraction numerator 13 space cross times 12 over denominator 51 cross times 50 end fraction end style end fraction space equals fraction numerator 12 space cross times space 11 over denominator 12 space cross times 11 space plus space 13 space cross times 12 space cross times 3 end fraction
equals space fraction numerator 132 over denominator 132 plus 468 end fraction space equals 132 over 600 equals space 11 over 50.

    Question 189
    CBSEENMA12033763

    Suppose that the reliability of HIV test is specified as follows:
    Of people having HIV, 90% of the test detect the disease but 10% go undetected. Of people free of HIV, 99% of the test are judged HIV -ve but 1% are diagonsed as showing HIV +ve. From a large population of which only 0.1% have HIV, one person is selected at random, given the HIV test, and the pathologist reports him/her as HIV +ve. What is the probability that the person actually has HIV?

    Solution
    Let E denote the event that the person selected is actually having HIV and A the event that the person's HIV test is diagnosed as +ve.
               Now    straight P left parenthesis straight E right parenthesis space equals space 0.1 percent sign space equals space fraction numerator 0.1 over denominator 100 end fraction space equals space 0.001
                           straight P left parenthesis straight E apostrophe right parenthesis space equals space 1 minus space straight P left parenthesis straight E right parenthesis space equals space 0.999               
     straight P left parenthesis straight A space vertical line thin space straight E right parenthesis space equals space straight P left parenthesis person space tested space as space HIV space plus space ve space given space that space he divided by she space is space actually space having space HIV right parenthesis
                                           equals space 90 percent sign space equals space 90 over 100 space equals 0.9
    and         P(A | E') = P(person tested as HIV +ve given that he/she is actually not having HIV}
                                   equals space 1 percent sign space equals space 1 over 100 space equals space 0.01
    Now, by Baye's theorem
                     straight P left parenthesis straight E space vertical line space straight A right parenthesis space equals space fraction numerator straight P left parenthesis straight E right parenthesis space straight P left parenthesis straight A space left enclose straight E right parenthesis over denominator straight P left parenthesis straight E right parenthesis space straight P left parenthesis straight A space left enclose straight E right parenthesis space plus space straight P left parenthesis straight E apostrophe right parenthesis space straight P left parenthesis straight A space left enclose straight E apostrophe right parenthesis end fraction
space space space space space space space space space space space space space space space equals space fraction numerator 0.001 space cross times 0.9 over denominator 0.001 cross times 0.9 plus 0.999 cross times 0.01 end fraction equals space fraction numerator 0.0009 over denominator 0.009 plus 0.00999 end fraction equals fraction numerator 0.0009 over denominator 0.01089 end fraction
space space space space space space space space space space space space space space space space equals space fraction numerator begin display style 9 over 10000 end style over denominator begin display style 1089 over 100000 end style end fraction space equals 90 over 1089 space equals 0.83 space nearly
    ∴ the probability that a person selected at random is actually having HIV given that he/she is tested HIV +ve is 0·083.
    Question 190
    CBSEENMA12033764

    A man is known to speak truth 3 out of 4 times. He throws a die and reports that it is a six. Find the probability that it is actually a six.

    Solution
     Let E1 denote the event that six occurs and E2 denote the event that it is not a six.
    therefore         straight P left parenthesis straight E subscript 1 right parenthesis space equals 1 over 6 comma space space straight P left parenthesis straight E subscript 2 right parenthesis space equals 5 over 6
    Let A denote the event that the man reports that it is six.
       therefore space space straight P left parenthesis straight A divided by straight E subscript 1 right parenthesis space equals space Probability space that space the space man space speaks space truth space equals space 3 over 4
             straight P left parenthesis straight A divided by straight E subscript 2 right parenthesis space equals space Probability space that space the space man space tells space straight a space lie space equals space 1 fourth
    therefore      by Baye's Law
                    straight P left parenthesis straight E subscript 1 divided by straight A right parenthesis space equals space fraction numerator straight P left parenthesis straight E subscript 1 right parenthesis thin space straight P left parenthesis straight A divided by straight E subscript 1 right parenthesis over denominator straight P left parenthesis straight E subscript 1 right parenthesis. space straight P left parenthesis straight A divided by straight E subscript 1 right parenthesis space plus space straight P left parenthesis straight E subscript 2 right parenthesis. space straight P left parenthesis straight A divided by straight E subscript 2 right parenthesis end fraction
space space space space space space space space space space space space space space space space equals space fraction numerator begin display style 1 over 6 end style cross times begin display style 3 over 4 end style over denominator begin display style 1 over 6 end style cross times begin display style 3 over 4 end style plus begin display style 5 over 6 end style cross times begin display style 1 fourth end style end fraction space equals fraction numerator 3 over denominator 3 plus 5 end fraction equals space 3 over 8
    Question 191
    CBSEENMA12033765

    There are three coins. One is a two headed coin (having head on both faces), another is a biased coin that comes up heads 75% of the time and third is an unbiased coin. One of the three coins is chosen at random and tossed, it shows heads, what is the probability that it was the two headed coin?

    Solution

    Let E1, E2, E3, E be the events
    E1 : ‘coin chosen is two headed’,
    E2 : ‘coin chosen is biased’,
    E: ‘coin chosen is unbiased’,
    E : ‘tossed coin shows up a head’
                     straight P left parenthesis straight E subscript 1 right parenthesis space equals space straight P left parenthesis straight E subscript 2 right parenthesis space equals space straight P left parenthesis straight E subscript 3 right parenthesis space equals space 1 third.
                    straight P left parenthesis straight E space vertical line thin space straight E subscript 1 right parenthesis space equals space 1 comma space space space straight P left parenthesis straight E space vertical line thin space straight E subscript 2 right parenthesis space equals space 75 over 100 equals space 3 over 4 comma space space space straight P left parenthesis straight E space vertical line space straight E subscript 3 right parenthesis space equals 1 half
    Required probability  = straight P left parenthesis straight E subscript 1 space vertical line thin space straight E right parenthesis
                            equals space fraction numerator straight P left parenthesis straight E subscript 1 right parenthesis thin space straight P left parenthesis straight E thin space vertical line thin space straight E subscript 1 right parenthesis over denominator straight P left parenthesis straight E subscript 1 right parenthesis thin space straight P left parenthesis straight E space vertical line thin space straight E subscript 1 right parenthesis thin space plus space straight P left parenthesis straight E subscript 2 right parenthesis thin space straight P left parenthesis straight E space vertical line thin space straight E subscript 2 right parenthesis space plus space straight P left parenthesis straight E subscript 3 right parenthesis thin space straight P left parenthesis straight E space vertical line thin space straight E subscript 3 right parenthesis end fraction left parenthesis By space Baye apostrophe straight s space Theorem right parenthesis
equals space fraction numerator begin display style 1 third end style cross times 1 over denominator begin display style 1 third end style cross times 1 cross times begin display style 1 third end style cross times begin display style 3 over 4 end style plus begin display style 1 third end style cross times begin display style 1 half end style end fraction space equals fraction numerator 1 over denominator 1 plus begin display style 3 over 4 end style plus begin display style 1 half end style end fraction equals space fraction numerator 1 over denominator begin display style fraction numerator 4 plus 3 plus 2 over denominator 4 end fraction end style end fraction space equals 4 over 9 

    Question 192
    CBSEENMA12033766

    Given three identical boxes I, II and III, each containing two coins. In box I. both coins are gold coins, in box. II, both are silver coins and in the box III, there is one gold and one silver coin. A person chooses a box at random and takes out a coin, if the coin is of gold, what is the probability that the other coin in the box is also of gold?

    Solution
    Let E1, E2 and E3 be the events that boxes I, II and III are chosen, respectively.
    Then         straight P left parenthesis straight E subscript 1 right parenthesis space equals space straight P left parenthesis straight E subscript 2 right parenthesis space equals thin space straight P left parenthesis straight E subscript 3 right parenthesis space equals space 1 third
    Let A be the event that 'the coin drawn is of gold'
    Then                straight P left parenthesis straight A vertical line straight E subscript 1 right parenthesis space equals space straight P left parenthesis straight a space gold space coin space from space bag space straight I right parenthesis space equals space 2 over 2 space equals space 1
                           straight P left parenthesis straight A thin space vertical line thin space straight E subscript 2 right parenthesis space equals space straight P left parenthesis straight a space gold space coin space from space bag space II right parenthesis space equals space 0
                            straight P left parenthesis straight A thin space vertical line space straight E subscript 3 right parenthesis space equals space straight P left parenthesis straight a space gold space coin space from space bag space III right parenthesis space equals space 1 half

    Now. the probability that the other coin in the box is of gold
    = the probability that gold coin is drawn from the box I
    = P(E1 | A)
    By Bayes’ theorem, we know that
    straight P left parenthesis straight E subscript 1 vertical line straight A right parenthesis space equals space fraction numerator straight P left parenthesis straight E subscript 1 right parenthesis thin space straight P left parenthesis straight A thin space vertical line thin space straight E subscript 1 right parenthesis over denominator straight P left parenthesis straight E subscript 1 right parenthesis thin space straight P left parenthesis straight A space vertical line thin space straight E subscript 1 right parenthesis space plus space straight P left parenthesis straight E subscript 2 right parenthesis thin space straight P left parenthesis straight A space vertical line space straight E subscript 2 right parenthesis space plus space straight P left parenthesis straight E subscript 3 right parenthesis thin space straight P left parenthesis straight A space vertical line thin space straight E subscript 3 right parenthesis end fraction
                    equals space fraction numerator begin display style 1 third end style cross times 1 over denominator begin display style 1 third end style cross times 1 plus begin display style 1 third end style cross times 0 plus begin display style 1 third end style cross times begin display style 1 half end style end fraction space equals fraction numerator begin display style 1 third end style over denominator begin display style 1 third end style plus 0 plus begin display style 1 over 6 end style end fraction space equals fraction numerator begin display style 1 third end style over denominator begin display style fraction numerator 2 plus 1 over denominator 6 end fraction end style end fraction space equals fraction numerator begin display style 1 third end style over denominator begin display style 1 half end style end fraction space equals 3

    Question 193
    CBSEENMA12033767

    In a tape-recorder factory, three machines A, B, C produce 50%, 30%, 20% of the total production. The percentage of the defective output of these machines arc 3%, 4% and 5%. A tape recorder is selected at random and is found to be defective. Find the probability that the tape recorder was produced by machine A.

    Solution
    Let E1 , E2, E3 be the events that the tape recorder is produced by machines A, B, C respectively.
    therefore space space space space straight P left parenthesis straight E subscript 1 right parenthesis space equals space 50 over 100 space equals 1 half comma space space space straight P left parenthesis straight E subscript 2 right parenthesis space equals space 30 over 100 equals space 3 over 10 comma space space straight P left parenthesis straight E subscript 3 right parenthesis space equals space 1 fifth
therefore space space space space space space straight P left parenthesis straight E subscript 1 right parenthesis space plus space straight P left parenthesis straight E subscript 2 right parenthesis space plus space straight P left parenthesis straight E subscript 3 right parenthesis space equals space 1 half plus 3 over 10 plus 1 fifth space equals fraction numerator 5 plus 3 plus 2 over denominator 10 end fraction space equals 1
    ∴  events are exhaustive and mutually exclusive
    Let D be the event of the tape-recorder being defective.
             therefore space space space straight P left parenthesis straight D divided by straight E subscript 1 right parenthesis space equals space probability space that space it space produced space by space machine space straight A space equals space 3 over 100
               straight P left parenthesis straight D divided by straight E subscript 2 right parenthesis space equals space 4 over 100 comma space space space straight P left parenthesis straight D divided by straight E subscript 3 right parenthesis space equals space 5 over 100
    therefore space space space space straight P left parenthesis straight E subscript 1 divided by straight D right parenthesis space equals space fraction numerator straight P left parenthesis straight E subscript 1 right parenthesis. space space straight P left parenthesis straight D divided by straight E subscript 1 right parenthesis over denominator straight P left parenthesis straight E subscript 1 right parenthesis. space straight P left parenthesis straight D divided by straight E subscript 1 right parenthesis space plus space straight P left parenthesis straight E subscript 2 right parenthesis. space straight P left parenthesis straight D divided by straight E subscript 2 right parenthesis space plus space straight P left parenthesis straight E subscript 3 right parenthesis. space straight P left parenthesis straight D divided by straight E subscript 3 right parenthesis end fraction space space space space space space space space space space space space space space space space space space space space space space space space space
                          equals space fraction numerator begin display style 1 half end style cross times begin display style 3 over 100 end style over denominator begin display style 1 half end style cross times begin display style 3 over 100 end style plus begin display style 3 over 10 end style cross times begin display style 4 over 100 end style plus begin display style 1 fifth end style cross times begin display style 5 over 100 end style end fraction space equals fraction numerator begin display style 3 over 2 end style over denominator begin display style 3 over 2 end style plus begin display style 6 over 5 end style plus 1 end fraction
                           equals fraction numerator begin display style 3 over 2 end style over denominator begin display style fraction numerator 15 plus 12 plus 10 over denominator 10 end fraction end style end fraction space equals space 3 over 2 cross times 10 over 37 space equals space 15 over 37.
                   
    Question 195
    CBSEENMA12033769

    In a bulb factory, machines A, B and C manufacture 60%, 30% and 10% bulbs respectively. 1%, 2% and 3% of the bulbs produced respectively by A, B and C are found to be defective. A bulb is picked up at random from the total production and found to be defective. Find the probability that this bulb was produced by the machine A.

    Solution
    Let E1, E2 , E3 be the events of the bulb is produced by machines A, B, C respectively.
    therefore space space space straight P left parenthesis straight E subscript 1 right parenthesis space equals space 60 over 100 space equals space 6 over 10 comma space space space straight P left parenthesis straight E subscript 2 right parenthesis space equals space 30 over 100 space equals space 3 over 10 comma space space straight P left parenthesis straight E subscript 3 right parenthesis space equals space 10 over 100 space equals 1 over 10
    Let E be the event of bulb being defective.
    therefore space space space space space straight P left parenthesis straight E space vertical line space straight E subscript 1 right parenthesis space equals space 1 over 100 comma space space space straight P left parenthesis straight E space vertical line space straight E subscript 2 right parenthesis space equals space 2 over 100 comma space space straight P left parenthesis straight E space vertical line thin space straight E subscript 3 right parenthesis space equals space 3 over 100
              Required probability  = straight P left parenthesis straight E subscript 1 space vertical line thin space straight E right parenthesis
                                               equals space fraction numerator straight P left parenthesis straight E subscript 1 right parenthesis. space space straight P left parenthesis straight E vertical line straight E subscript 1 right parenthesis over denominator straight P left parenthesis straight E subscript 1 right parenthesis. space straight P left parenthesis straight E space vertical line thin space straight E subscript 1 right parenthesis space plus space straight P left parenthesis straight E subscript 2 right parenthesis. space straight P left parenthesis straight E space vertical line thin space straight E subscript 2 right parenthesis space plus space straight P left parenthesis straight E subscript 3 right parenthesis. space straight P left parenthesis straight E space vertical line thin space straight E subscript 3 right parenthesis end fraction
equals space fraction numerator open parentheses begin display style 6 over 10 end style close parentheses space open parentheses begin display style 1 over 100 end style close parentheses over denominator open parentheses begin display style 6 over 10 end style close parentheses space open parentheses begin display style 1 over 100 end style close parentheses space plus space open parentheses begin display style 3 over 10 end style close parentheses open parentheses begin display style 2 over 100 end style close parentheses plus open parentheses begin display style 1 over 10 end style close parentheses space open parentheses begin display style 3 over 100 end style close parentheses space end fraction
equals space fraction numerator 6 over denominator 6 plus 6 plus 3 end fraction equals space 6 over 15 space equals 2 over 5
    Question 196
    CBSEENMA12033770

    An insurance company insured 2000 scooter drivers. 4000 car drivers and 6000 truck drivers. The probability of an accidents are 0.01, 0.03 and 0.15 respectively. One of the insured persons meets with an accident. What is the probability that he is a scooter driver?

    Solution
    Let E1 , E2, E3 be the events that the insured person is scooter driver, car driver, truck driver respectively.
    therefore space space space straight P left parenthesis straight E subscript 1 right parenthesis space equals space fraction numerator 2000 over denominator 2000 plus 4000 plus 6000 end fraction space equals space 2000 over 12000 space equals space 1 over 6
space space space space space space straight P left parenthesis straight E subscript 2 right parenthesis space equals space fraction numerator 4000 over denominator 2000 plus 4000 plus 6000 end fraction space equals space 4000 over 12000 equals 1 third
space space space space space straight P left parenthesis straight E subscript 3 right parenthesis space equals space fraction numerator 6000 over denominator 2000 plus 4000 plus 6000 end fraction equals space 6000 over 12000 equals space 1 half
    Let E be the event that an insured person meets with an accident.
    straight P left parenthesis straight E divided by straight E subscript 1 right parenthesis space equals space 0.01 comma space space space space straight P left parenthesis straight E divided by straight E subscript 2 right parenthesis space equals space 0.03 comma space space space straight P left parenthesis straight E divided by straight E subscript 3 right parenthesis space equals space 0.15
    straight P left parenthesis straight E subscript 1 divided by straight E right parenthesis space equals space fraction numerator straight P left parenthesis straight E subscript 1 right parenthesis thin space straight P left parenthesis straight E divided by straight E subscript 1 right parenthesis over denominator straight P left parenthesis straight E subscript 1 right parenthesis thin space straight P left parenthesis straight E divided by straight E subscript 1 right parenthesis space plus space straight P left parenthesis straight E subscript 2 right parenthesis space straight P left parenthesis straight E divided by straight E subscript 2 right parenthesis space plus space straight P left parenthesis straight E subscript 3 right parenthesis thin space straight P left parenthesis straight E divided by straight E subscript 3 right parenthesis end fraction space space space space space space space space space space space space space space space space space
                    equals space fraction numerator open parentheses begin display style 1 over 6 end style close parentheses space left parenthesis 0.01 right parenthesis over denominator open parentheses begin display style 1 over 6 end style close parentheses space left parenthesis 0.01 right parenthesis space plus space begin display style 1 third end style left parenthesis 0.03 right parenthesis space plus space begin display style 1 half end style left parenthesis 0.15 right parenthesis end fraction space equals space fraction numerator begin display style 1 over 6 end style cross times begin display style 1 over 100 end style over denominator begin display style 1 over 6 end style cross times begin display style 1 over 100 end style plus begin display style 1 third end style cross times begin display style 3 over 100 end style plus begin display style 1 half end style cross times begin display style 15 over 100 end style end fraction
equals space fraction numerator begin display style 1 over 6 end style over denominator begin display style 1 over 6 end style plus begin display style 3 over 3 end style plus begin display style 15 over 2 end style end fraction equals space fraction numerator 1 over denominator 1 plus 6 plus 45 end fraction space equals space 1 over 52
    Question 197
    CBSEENMA12033771

    A manufacturer has three machine operators A, B and C. The first operator A produces 1% defective items, where as the other two operators B and C produce 5% and 7% defective items respectively. A is on the job for 50% of the time, B is on the job for 30% of the time and C is on the job for 20% of the time. A defective item is produced, what is the probability that it was produced by A?

    Solution

    Let E1, E2, E3, E be the events
    E1 : ‘Item is produced by operator A’,
    E: ‘Item is produced by operator B’,
    E3 : ‘Item is produced by operator C’,
    E : ‘Item chosen is found defective’
                     therefore space space space straight P left parenthesis straight E subscript 1 right parenthesis space equals space 50 over 100 comma space space straight P left parenthesis straight E subscript 2 right parenthesis space equals space 30 over 100 space space and space space straight P left parenthesis straight E subscript 3 right parenthesis space equals space 20 over 100.
               straight P left parenthesis straight E space vertical line space straight E subscript 1 right parenthesis space equals space 1 over 100 comma space space space space straight P left parenthesis straight E space vertical line space straight E subscript 2 right parenthesis space equals space 5 over 100 comma space space space straight P left parenthesis straight E space vertical line thin space straight E subscript 3 right parenthesis space equals space 7 over 100.
    Required probability  = straight P left parenthesis straight E subscript 1 space vertical line thin space straight E right parenthesis
                             equals space fraction numerator straight P left parenthesis straight E subscript 1 right parenthesis thin space straight P left parenthesis straight E space vertical line thin space straight E subscript 1 right parenthesis over denominator straight P left parenthesis straight E subscript 1 right parenthesis thin space straight P left parenthesis straight E space vertical line space straight E subscript 1 right parenthesis space plus space straight P left parenthesis straight E subscript 2 right parenthesis thin space straight P left parenthesis straight E space vertical line space straight E subscript 2 right parenthesis space plus space straight P left parenthesis straight E subscript 3 right parenthesis thin space straight P left parenthesis straight E space vertical line space straight E subscript 3 right parenthesis end fraction
                                                                                      (By Baye's Theorem)
                          equals space fraction numerator begin display style 50 over 100 end style cross times begin display style 1 over 100 end style over denominator begin display style 50 over 100 end style cross times begin display style 1 over 100 end style plus begin display style 30 over 100 end style cross times begin display style 5 over 100 end style plus begin display style 20 over 100 end style cross times begin display style 7 over 100 end style end fraction space equals fraction numerator 50 over denominator 50 plus 150 plus 140 end fraction space equals 50 over 340 space equals 5 over 34.

    Question 198
    CBSEENMA12033772
    Question 199
    CBSEENMA12033773

    A doctor is to visit a patient. From the past experience, it is known that the probabilities that he will Come by train, bus, scooter or by other means of transport are respectively 3 over 10 comma space 1 fifth comma space 1 over 10 space and space 2 over 5. The probability that he will be late are  1 fourth comma space 1 third space and space 1 over 12 comma space if he comes by train, bus and scooter respectively, but if he comes by other means of transport, then he will not be late. When he arrives, he is late. What is the probability that he comes by train ?

    Solution
    Let E be the event that the doctor visits the patient late and let T1, T2, T3, T4 be the events that the doctor comes by train, bus, scooter, and other means of transport respectively.
    Then               straight P left parenthesis straight T subscript 1 right parenthesis space equals space 3 over 10 comma space space straight P left parenthesis straight T subscript 2 right parenthesis space equals space 1 fifth comma space space straight P left parenthesis straight T subscript 3 right parenthesis equals space 1 over 10 space and space straight P left parenthesis straight T subscript 4 right parenthesis space equals space 2 over 5
              straight P left parenthesis straight E vertical line straight T subscript 1 right parenthesis space equals space Probability space that space the space doctor space arriving space late space comes space by space train space equals space 1 fourth
    Similarly, straight P left parenthesis straight E thin space vertical line thin space straight T subscript 2 right parenthesis space equals space 1 third comma space space straight P left parenthesis straight E thin space vertical line thin space straight T subscript 3 right parenthesis space equals space 1 over 12 space and space straight P left parenthesis straight E thin space vertical line thin space straight T subscript 4 right parenthesis space equals space 0, since he is not late if he comes by other means of transport.
           Therefore, by Baye's Theorem, we have
                      straight P left parenthesis straight T subscript 1 space vertical line thin space straight E right parenthesis space equals space Probability space that space the space doctor space arriving space late space comes space by space train
                                      equals space fraction numerator straight P left parenthesis straight T subscript 1 right parenthesis thin space straight P left parenthesis straight E vertical line straight T subscript 1 right parenthesis over denominator straight P left parenthesis straight T subscript 1 right parenthesis space straight P left parenthesis straight E thin space vertical line space straight T subscript 1 right parenthesis space plus space straight P left parenthesis straight T subscript 2 right parenthesis thin space straight P left parenthesis straight E thin space vertical line thin space straight T subscript 2 right parenthesis space plus space straight P left parenthesis straight T subscript 3 right parenthesis thin space straight P left parenthesis straight E space vertical line space straight T subscript 3 right parenthesis space plus space straight P left parenthesis straight T subscript 4 right parenthesis thin space straight P left parenthesis straight E vertical line straight T subscript 4 right parenthesis end fraction
equals space fraction numerator begin display style 3 over 10 end style cross times begin display style 1 fourth end style over denominator begin display style 3 over 10 end style cross times begin display style 1 fourth end style plus begin display style 1 fifth end style cross times begin display style 1 third end style plus begin display style 1 over 10 end style cross times begin display style 1 over 12 end style plus begin display style 2 over 5 end style cross times 0 end fraction space equals space fraction numerator begin display style 3 over 40 end style over denominator begin display style 3 over 40 end style plus begin display style 1 over 15 end style plus begin display style 1 over 120 end style plus 0 end fraction
equals space fraction numerator begin display style 3 over 40 end style over denominator begin display style fraction numerator 9 plus 8 plus 1 over denominator 120 end fraction end style end fraction space equals fraction numerator begin display style 3 over 40 end style over denominator begin display style 18 over 120 end style end fraction space equals 3 over 40 cross times 120 over 18 space equals 1 half
    therefore space space space space space the space required space probability space is space 1 half.
    Question 200
    CBSEENMA12033774

    In a test, an examinee either guesses or copies or knows the answer to a multiple choice question with four choices. The probability that he makes a guess is 1 third and the probability that he copies the answer is 1 over 6. The probability that his answer is correct (given that he copied it) is 1 over 8. Find the probability that he knew the answer to the question (given that he correctly answered it).

    Solution
    Let E1 be the event that the answer is guessed, E2 be the event that the answer is copied and E3 the event that the examinee knows the answer.
    therefore space space space straight P left parenthesis straight E subscript 1 right parenthesis space equals space 1 third comma space space space straight P left parenthesis straight E subscript 2 right parenthesis space equals space 1 over 6 comma space space straight P left parenthesis straight E subscript 3 right parenthesis space equals space 1 minus 1 third minus 1 over 6 space equals fraction numerator 6 minus 2 minus 1 over denominator 6 end fraction space equals space 1 half
    Let A be the event that the examinee answers correctly
    We assume that only one of the multiple answers is correct.
    straight P left parenthesis straight A divided by straight E subscript 1 right parenthesis space equals space Probability space of space answering space correctly space by space guessing space equals 1 fourth
straight P left parenthesis straight A divided by straight E subscript 2 right parenthesis space equals space Probability space of space answering space correct space by space copying space space equals space 1 over 8
straight P left parenthesis straight A divided by straight E subscript 3 right parenthesis space equals space Probability space of space answering space correctly space by space knowing space equals space 1
     therefore space space straight P left parenthesis straight E subscript 3 divided by straight A right parenthesis space equals space fraction numerator straight P left parenthesis straight E subscript 3 right parenthesis. space space straight P left parenthesis straight A divided by straight E subscript 3 right parenthesis over denominator straight P left parenthesis straight E subscript 1 right parenthesis. space straight P left parenthesis straight A divided by straight E subscript 1 right parenthesis space plus space straight P left parenthesis straight E subscript 2 right parenthesis. space straight P left parenthesis straight A divided by straight E subscript 2 right parenthesis space plus space straight P left parenthesis straight E subscript 3 right parenthesis. space straight P left parenthesis straight A divided by straight E subscript 3 right parenthesis end fraction
                           equals space fraction numerator begin display style 1 half end style cross times 1 over denominator begin display style 1 third end style cross times begin display style 1 fourth end style plus begin display style 1 over 6 end style cross times begin display style 1 over 8 end style plus begin display style 1 half end style cross times 1 end fraction space equals space fraction numerator begin display style 1 half end style over denominator begin display style 1 over 12 end style plus begin display style 1 over 48 end style plus begin display style 1 half end style end fraction
equals space fraction numerator begin display style 1 half end style over denominator begin display style fraction numerator 4 plus 1 plus 24 over denominator 48 end fraction end style end fraction space equals 1 half cross times 48 over 29 space equals 24 over 29.
                            
    Question 201
    CBSEENMA12033775

    A letter is known to have come from either TATANAGAR or CALCUTTA. On the envelope, just two consecutive letters, TA are visible. Find the probability that the letter has come from CALCUTTA.

    Solution

    Let E1 be the event that the letter has come from TATANAGAR and E2 be the event that it has come from CALCUTTA.
    Let A denote the event that the two consecutive letters on the envelope are TA.
    ∴   E1 and E2 are mutually exclusive and exhaustive events
    straight P left parenthesis straight E subscript 1 right parenthesis space equals space 1 half comma space space straight P left parenthesis straight E subscript 2 right parenthesis space equals space 1 half
    P(A/E1) = Probability that the consecutive letters TA visible on the envelope belong to TATANAGAR.
    equals space 2 over 8 space equals 1 fourth space space space space space space space space space space space space space space space space space space space open curly brackets table row cell There space are space 8 space consecutive space letters space namely end cell row cell TA comma space AT comma space TA comma space AN comma space NA comma space AG comma space GA comma space AR end cell row cell out space of space which space 2 space cases space are space favourable end cell end table space close curly brackets
    Similarly P(A/E2) = Probability that the consecutive letters TA are visible belong to CALCUTTA
    equals space 1 over 7 space space space space space space space space space space space space space space space space space space space space space space space open curly brackets table row cell There space are space seven space consecutive space letters end cell row cell CA comma space AL comma space LC comma space CU comma space UT comma space TT comma space TA end cell row cell out space of space which space 1 space case space is space favourable end cell end table close curly brackets       
    therefore space space space straight P left parenthesis straight E subscript 2 divided by straight A right parenthesis space equals space fraction numerator straight P left parenthesis straight E subscript 2 right parenthesis thin space straight P left parenthesis straight A divided by straight E subscript 2 right parenthesis over denominator straight P left parenthesis straight E subscript 1 right parenthesis. space straight P left parenthesis straight A divided by straight E subscript 1 right parenthesis space plus space straight P left parenthesis straight E subscript 2 right parenthesis. space straight P left parenthesis straight A divided by straight E subscript 2 right parenthesis end fraction
                            equals space fraction numerator begin display style 1 half end style cross times begin display style 1 over 7 end style over denominator begin display style 1 half end style cross times begin display style 1 fourth end style plus begin display style 1 half end style cross times begin display style 1 over 7 end style end fraction space equals fraction numerator begin display style 1 over 7 end style over denominator begin display style 1 fourth end style plus begin display style 1 over 7 end style end fraction space equals fraction numerator begin display style 1 over 7 end style over denominator begin display style fraction numerator 7 plus 4 over denominator 28 end fraction end style end fraction space equals 1 over 7 cross times 28 over 11 space equals 4 over 11                      

    Question 202
    CBSEENMA12033776

    A man is known to speak the truth 5 out of 6 times. He throws a die and reports that it is a six. Find the probability that it is actually a six.

    Solution
    Let E1 denote the event that six occurs and E2 denote the event that it is not a six.
    therefore space space space space straight P left parenthesis straight E subscript 1 right parenthesis space equals space 1 over 6 comma space space space space straight P left parenthesis straight E subscript 2 right parenthesis space equals space 5 over 6
    Let A denote the event that the man reports that it is six.
    therefore space space space space space straight P left parenthesis straight A divided by straight E subscript 1 right parenthesis space equals space Probability space that space the space man space speaks space truth space equals space 5 over 6
space space space space space space space space space straight P left parenthesis straight A divided by straight E subscript 2 right parenthesis space equals space Probability space that space the space man space tells space straight a space lie space equals space 1 over 6
therefore space space space space space by space Baye apostrophe straight s space Law
space space space space space space space space space space space space space space straight P left parenthesis straight E subscript 1 divided by straight A right parenthesis space equals fraction numerator straight P left parenthesis straight E subscript 1 right parenthesis. space space space straight P left parenthesis straight A divided by straight E subscript 1 right parenthesis over denominator straight P left parenthesis straight E subscript 1 right parenthesis. space space straight P left parenthesis straight A divided by straight E subscript 1 right parenthesis space plus space straight P left parenthesis straight E subscript 2 right parenthesis. space straight P left parenthesis straight A divided by straight E subscript 2 right parenthesis end fraction
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space fraction numerator begin display style 1 over 6 end style cross times begin display style 5 over 6 end style over denominator begin display style 1 over 6 end style cross times begin display style 5 over 6 end style plus begin display style 5 over 6 end style cross times begin display style 1 over 6 end style end fraction equals space fraction numerator begin display style 5 over 6 end style cross times begin display style 1 over 6 end style over denominator 2 space open parentheses begin display style 5 over 6 end style cross times begin display style 1 over 6 end style close parentheses end fraction space equals 1 half
    Question 203
    CBSEENMA12033777

    Let there be three urns containing 1 white, 2 black, 3 red balls ; 2 white, 1 black, 1 red ball ; 4 white, 5 black, 3 red balls. One urn is chosen at random and two balls are drawn. These happen to be white and a red. What is the probability that they come from urn number 3.

    Solution
    Let E1 , E2, E3 be events of selecting urns I, II, III respectively.
                                 White  Black   Red
    Urn I:                       1       2         3
    Urn II:                      2       1         1
    Urn III:                     4       5         3  

    Let A be the event that the drawn balls are, one red and one white.
    Since, the urns are equally likely
    straight P left parenthesis straight E subscript 1 right parenthesis space equals space 1 third comma space space straight P left parenthesis straight E subscript 2 right parenthesis space equals space 1 third comma space space straight P left parenthesis straight E subscript 3 right parenthesis space equals space 1 third
    ∴    P( A/E1) = Probability that one red and one white ball are drawn from first urn
                           equals fraction numerator space straight C presuperscript 1 subscript 1 cross times straight C presuperscript 3 subscript 1 over denominator straight C presuperscript 6 subscript 2 end fraction space equals space 3 over 15 space equals space 1 fifth
    straight P left parenthesis straight A divided by straight E subscript 2 right parenthesis space equals space fraction numerator straight C presuperscript 1 subscript 1 cross times straight C presuperscript 2 subscript 1 over denominator straight C presuperscript 4 subscript 2 end fraction space equals 1 third comma space space space space straight P left parenthesis straight A divided by straight E subscript 3 right parenthesis space equals space fraction numerator straight C presuperscript 3 subscript 1 cross times straight C presuperscript 4 subscript 1 over denominator straight C presuperscript 12 subscript 2 end fraction equals space 2 over 11
    straight P left parenthesis straight E subscript 3 divided by straight A right parenthesis space equals space fraction numerator straight P left parenthesis straight E subscript 3 right parenthesis. space space space straight P left parenthesis straight A divided by straight E subscript 3 right parenthesis over denominator straight P left parenthesis straight E subscript 1 right parenthesis. space straight P left parenthesis straight A divided by straight E subscript 1 right parenthesis space plus space straight P left parenthesis straight E subscript 2 right parenthesis. space straight P left parenthesis straight A divided by straight E subscript 2 right parenthesis space plus space straight P left parenthesis straight E subscript 3 right parenthesis. space straight P left parenthesis straight A divided by straight E subscript 3 right parenthesis end fraction
space space space space space space space space space space space space space space space space space equals space fraction numerator begin display style 1 third end style cross times begin display style 2 over 11 end style over denominator begin display style 1 third end style cross times begin display style 1 fifth end style plus begin display style 1 third end style cross times begin display style 1 third end style plus begin display style 1 third end style cross times begin display style 2 over 11 end style end fraction space equals fraction numerator begin display style 2 over 11 end style over denominator begin display style 1 fifth end style plus begin display style 1 third end style plus begin display style 2 over 11 end style end fraction space equals fraction numerator begin display style 2 over 11 end style over denominator begin display style fraction numerator 33 plus 55 plus 30 over denominator 165 end fraction end style end fraction
                       equals space 2 over 11 cross times 165 over 118 space equals 15 over 59

    Question 204
    CBSEENMA12033778

    A pack of playing cards was found to contain only 51 cards. If the first 13 cards which are examined are all red, what is the probability that the missing card is black.

    Solution

     Let E1 the event that the missing card is black and E2 be the event that the missing card is red.
    Let A be the event the first 13 cards which are examined are all red.
    therefore space space space space straight P left parenthesis straight E subscript 1 right parenthesis space equals space 1 half semicolon space space space space space straight P left parenthesis straight E subscript 2 right parenthesis space equals space 1 half
    P(A/E1) = Probability of selecting 13 red cards, when the missing card is black
    equals fraction numerator space straight C presuperscript 26 subscript 13 over denominator straight C presuperscript 51 subscript 13 end fraction
    P(A/E2) = Probability of selecting 13 red cards, when the missing card is red
    equals space fraction numerator straight C presuperscript 25 subscript 13 over denominator straight C presuperscript 51 subscript 13 end fraction                  
      

    Question 205
    CBSEENMA12033779

    Coloured balls are distributed in four boxes as shown in the following table:

    Box

     

    Colour

     
     

    Black

    White

    Red

    Blue

    I

    3

    4

    5

    6

    II

    2

    2

    2

    2

    III

    1

    2

    3

    1

    IV

    4

    3

    1

    5

     

    A box is selected at random and then a ball is randomly drawn from the selected box. The colour of the ball is black, what is the probability that ball drawn is from the box III?

    Solution

    Let A, E1, E2, E3 and E4 be the events as defined below:
    A : a black ball is selected    E1 : box I is selected
    E: box II is selected    E: box II is selected
    E4 : box IV is selected
    Since the boxes are chosen at random.
    therefore space space space space straight P left parenthesis straight E subscript 1 right parenthesis space equals space straight P left parenthesis straight E subscript 2 right parenthesis space equals straight P left parenthesis straight E subscript 3 right parenthesis space equals space straight P left parenthesis straight E subscript 4 right parenthesis space equals space 1 fourth
    Also,  straight P left parenthesis straight A vertical line straight E subscript 1 right parenthesis space equals space 3 over 18 comma space space straight P left parenthesis straight A vertical line straight E subscript 2 right parenthesis space equals space 2 over 8 comma space space straight P left parenthesis straight A vertical line straight E subscript 3 right parenthesis space equals space 1 over 7 comma space space straight P left parenthesis straight A vertical line straight E subscript 4 right parenthesis space equals space 4 over 13
    P(box III is selected, given that the drawn ball is black) = P(E3 | A).
              equals space fraction numerator straight P left parenthesis straight E subscript 3 right parenthesis. space straight P left parenthesis straight A vertical line straight E subscript 3 right parenthesis over denominator straight P left parenthesis straight E subscript 1 right parenthesis thin space straight P left parenthesis straight A thin space vertical line straight E subscript 1 right parenthesis space plus space straight P left parenthesis straight E subscript 2 right parenthesis thin space straight P left parenthesis straight A vertical line straight E subscript 2 right parenthesis space plus space straight P left parenthesis straight E subscript 3 right parenthesis thin space straight P left parenthesis straight A vertical line straight E subscript 3 right parenthesis space plus space straight P left parenthesis straight E subscript 4 right parenthesis thin space straight P left parenthesis straight A vertical line straight E subscript 4 right parenthesis end fraction
                                                                                                     open square brackets because space of space Baye apostrophe straight s space Theorem right square bracket close square brackets
    equals space fraction numerator begin display style 1 fourth end style cross times begin display style 1 over 7 end style over denominator begin display style 1 fourth end style cross times begin display style 3 over 18 end style plus begin display style 1 fourth end style cross times begin display style 1 fourth end style cross times begin display style 1 over 7 end style plus begin display style 1 fourth end style cross times begin display style 4 over 13 end style end fraction space equals fraction numerator begin display style 1 over 7 end style over denominator begin display style 1 over 6 end style plus begin display style 1 fourth end style plus begin display style 1 over 7 end style plus begin display style 4 over 13 end style end fraction
    equals space fraction numerator 0.14 over denominator 0.17 plus 0.25 plus 0.14 plus 0.30 end fraction
equals space fraction numerator 0.14 over denominator 0.86 end fraction space equals 0.16
                      

    Question 206
    CBSEENMA12033780

    Suppose we have four boxes A, B, C and D containing coloured marbles as given below:

    Box

    Marble Colour

     

    Red

    White

    Black

    A

    1

    6

    3

    B

    6

    2

    2

    C

    8

    1

    1

    D

    0

    6

    4

    One of the boxes has been selected at random and a single marble is drawn from it. If the marble is red. what is the probability that it was drawn from box A? box B? box C?

    Solution

    Let E, E1, E2, E3 and E4 be the events as defined below:
    E : ‘ball drawn is red’, E1 : ‘box A is selected’, E2: ‘box B is selected’,
    E: ‘box C is selected ‘ and E4 : ‘box D is selected’,
    therefore space space space space straight P left parenthesis straight E subscript 1 right parenthesis space equals space straight P left parenthesis straight E subscript 2 right parenthesis space equals space straight P left parenthesis straight E subscript 3 right parenthesis space equals space straight P left parenthesis straight E subscript 4 right parenthesis space equals space 1 fourth
    and  straight P left parenthesis straight E space vertical line thin space straight E subscript 1 right parenthesis space equals space fraction numerator 1 over denominator 1 plus 6 plus 3 end fraction space equals space 1 over 10
               straight P left parenthesis straight E thin space vertical line thin space straight E subscript 2 right parenthesis space equals space fraction numerator 6 over denominator 6 plus 2 plus 2 end fraction equals space 6 over 10
straight P left parenthesis straight E thin space vertical line thin space straight E subscript 3 right parenthesis space equals space fraction numerator 8 over denominator 8 plus 1 plus 1 end fraction equals space 8 over 10
    and    straight P left parenthesis straight E space vertical line space straight E subscript 4 right parenthesis space equals space fraction numerator 0 over denominator 0 plus 6 plus 4 end fraction space equals 0
    P(ball is drawn from box A) = straight P left parenthesis straight E subscript 1 space vertical line thin space straight E right parenthesis
                       equals space fraction numerator straight P left parenthesis straight E subscript 1 right parenthesis thin space straight P left parenthesis straight E vertical line straight E subscript 1 right parenthesis over denominator straight P left parenthesis straight E subscript 1 right parenthesis thin space straight P left parenthesis straight E vertical line straight E subscript 1 right parenthesis space plus space straight P left parenthesis straight E subscript 2 right parenthesis thin space straight P left parenthesis straight E vertical line straight E subscript 2 right parenthesis space plus space straight P left parenthesis straight E subscript 3 right parenthesis thin space straight P left parenthesis straight E vertical line straight E subscript 3 right parenthesis space plus space straight P left parenthesis straight E subscript 4 right parenthesis thin space straight P left parenthesis straight E vertical line straight E subscript 4 right parenthesis end fraction
                                                                                    open square brackets because space of space Baye apostrophe straight s space Theorem close square brackets
                    equals space fraction numerator begin display style 1 fourth end style cross times begin display style 1 over 10 end style over denominator begin display style 1 fourth end style cross times begin display style 1 over 10 end style plus begin display style 1 fourth end style cross times begin display style 6 over 10 end style plus begin display style 1 fourth end style cross times begin display style 8 over 10 end style plus begin display style 1 fourth end style cross times 0 end fraction space equals fraction numerator 1 over denominator 1 plus 6 plus 8 end fraction space equals 1 over 15
    P(ball is drawn from box C) = straight P left parenthesis straight E subscript 2 vertical line straight E right parenthesis
    equals space fraction numerator straight P left parenthesis straight E subscript 2 right parenthesis thin space straight P left parenthesis straight E vertical line straight E subscript 2 right parenthesis over denominator straight P left parenthesis straight E subscript 1 right parenthesis thin space straight P left parenthesis straight E vertical line straight E subscript 1 right parenthesis space plus space straight P left parenthesis straight E subscript 2 right parenthesis thin space straight P left parenthesis straight E vertical line straight E subscript 2 right parenthesis space plus space straight P left parenthesis straight E subscript 3 right parenthesis thin space straight P left parenthesis straight E vertical line straight E subscript 3 right parenthesis space plus space straight P left parenthesis straight E subscript 4 right parenthesis thin space straight P left parenthesis straight E vertical line straight E subscript 4 right parenthesis end fraction
                                                                           open square brackets because space space of space Baye apostrophe straight s space Theorem close square brackets
    equals space fraction numerator begin display style 1 fourth end style cross times begin display style 6 over 10 end style over denominator begin display style 1 fourth end style cross times begin display style 1 over 10 end style plus begin display style 1 fourth end style cross times begin display style 6 over 10 end style plus begin display style 1 fourth end style cross times begin display style 8 over 10 end style plus begin display style 1 fourth end style cross times 0 end fraction space equals fraction numerator 6 over denominator 1 plus 6 plus 8 end fraction space equals 6 over 15
    and P(ball is drawn from box A) =  straight P left parenthesis straight E subscript 3 vertical line straight E right parenthesis
     equals space fraction numerator straight P left parenthesis straight E subscript 3 right parenthesis thin space straight P left parenthesis straight E vertical line straight E subscript 3 right parenthesis over denominator straight P left parenthesis straight E subscript 1 right parenthesis thin space straight P left parenthesis straight E vertical line straight E subscript 1 right parenthesis space plus space straight P left parenthesis straight E subscript 2 right parenthesis thin space straight P left parenthesis straight E vertical line straight E subscript 2 right parenthesis space plus space straight P left parenthesis straight E subscript 3 right parenthesis thin space straight P left parenthesis straight E vertical line straight E subscript 3 right parenthesis space plus space straight P left parenthesis straight E subscript 4 right parenthesis thin space straight P left parenthesis straight E vertical line straight E subscript 4 thin space right parenthesis end fraction
                                                                 open square brackets because space space of space Baye apostrophe straight s space Theorem close square brackets
    equals space fraction numerator begin display style 1 fourth end style cross times begin display style 8 over 10 end style over denominator begin display style 1 fourth end style cross times begin display style 1 over 10 end style plus begin display style 1 fourth end style cross times begin display style 6 over 10 end style plus begin display style 1 fourth end style cross times begin display style 8 over 10 end style plus begin display style 1 fourth end style cross times 0 end fraction space equals fraction numerator 8 over denominator 1 plus 6 plus 8 end fraction space equals 8 over 15.
                                                  

    Question 207
    CBSEENMA12033781

    Probability that A speaks truth is 4 over 5. A coin is tossed. A reports that a head appears. The probability that actually there was head is 
    • 4 over 5
    • 1 half
    • 1 fifth
    • 2 over 5

    Solution

    A.

    4 over 5

    Let E1, E2, E be the events
    E1 : ‘coin comes up with a head’,
    E: ‘coin comes up with a tail’,
    E : ‘A reports that a head appears’
                      straight P left parenthesis straight E subscript 1 right parenthesis space equals space straight P left parenthesis straight E subscript 2 right parenthesis space equals space 1 half.
                     straight P left parenthesis straight E vertical line straight E subscript 1 right parenthesis space equals space straight P left parenthesis head space comes space up space and space straight A space speaks space truth right parenthesis space equals space 4 over 5
    and           straight P left parenthesis straight E vertical line straight E subscript 2 right parenthesis space equals space straight P left parenthesis tail space comes space up space and space straight A space tells space straight a space lie right parenthesis space equals space 1 fifth
    space therefore space space Required space probability space space equals space straight P left parenthesis straight E subscript 1 space vertical line thin space straight E right parenthesis
                                                   equals space fraction numerator straight P left parenthesis straight E subscript 1 right parenthesis thin space straight P left parenthesis straight E thin space vertical line thin space straight E subscript 1 right parenthesis over denominator straight P left parenthesis straight E subscript 1 right parenthesis thin space straight P left parenthesis straight E vertical line straight E subscript 1 right parenthesis space plus space straight P left parenthesis straight E subscript 2 right parenthesis space straight P left parenthesis straight E vertical line straight E subscript 2 right parenthesis end fraction space equals space fraction numerator begin display style 1 half end style cross times begin display style 4 over 5 end style over denominator begin display style 1 half end style cross times begin display style 4 over 5 end style plus begin display style 1 half end style cross times begin display style 1 fifth end style end fraction
equals space fraction numerator 4 over denominator 4 plus 1 end fraction space equals 4 over 5.
    ∴ (A) is correct answer.

    Question 208
    CBSEENMA12033782

    A person plays a game of tossing a coin thrice. For each head, he is given Rs. 2 by the organiser of the game and for each tail, he has to give Rs. 1.50 to the organiser. Let X denote the amount gained or lost by the person. Show that X is a random variable and exhibit it as a function on the sample space of the experiment.

    Solution

    X is a number whose values are defined on the outcomes of a random experiment.
    ∴ X is a random variable.
    Now S = {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}
    Then X(HHH) = Rs. (2 × 3) = Rs. 6 X(HHT) = X(HTH) = X(THH)
    = Rs. (2 × 2 - 1 × 1.50) = Rs. 2.50
    X(HTT) = X(THT) = (TTH) = Rs. (1 × 2 - 2 × 1.50)
    = - Re 1
    and X(TTT) = - Rs. (3 × 1.50) = - Rs. 4.50
    where, minus sign shows the loss to the player. Thus, for each element of the sample space, X takes a unique value, hence, X is a function on the sample space whose range is {- 1, 2.50, - 4.50, 6}.

    Question 209
    CBSEENMA12033783

    An urn contains 5 red and 2 black balls. Two balls are randomly drawn. Let X represent the number of black balls. What are the possible values of X ? Is X a random variable?

    Solution

    Number of red balls = 5
    Number of black balls = 2
    These two balls may be selected as RR, RB, BR, BB, where R represents red and B represents black ball.
    Variable X has the value 0, 1, 2 i.e., there may be no black balls, may be one black ball, or both the balls are black.
    Yes, X is a random variable.

    Question 210
    CBSEENMA12033784

    Let X represent the difference between the number of heads and the number of tails obtained when a coin is tossed 6 times. What are possible values of X?

    Solution

    Let a denote the number of heads and b, the number of tails when a coin is tossed 6 times, then
    X = difference between a and b = |a - b|.
    Here, both a and b can take values 0, 1, 2, 3, 4, 5, 6 but a + b is always equal to 6.
    ∴ we have the table:
    Table

    a

    0

    1

    2

    3

    4

    5

    6

    b

    6

    5

    4

    3

    2

    1

    0

    X

    6

    4

    2

    0

    2

    4

    6

    ∴ X takes values 0, 2, 4 and 6.

    Question 211
    CBSEENMA12033785

    A bag contains 2 white and 1 red balls. One ball is drawn at random and then put back in the box after noting its colour. The process is repeated again. If X denotes the number of red balls recorded in the two draws, describe X.

    Solution

    Let the balls in the bag be denoted by w1, w2, r.
    ∴ S = {w1 w1 , w1 w2 , w2 w2, w2 w1, w1 r, w2 r, r w1, r w2, r r}
    Now, for ω ∈ S
    X(ω) = number of red balls
    ∴ X({ww1}) = X({w1 w2}) = X({w2 w2}) = X({w2 w1}) = 0
    X({w1 r}) = X({w2 r}) = X({r w1}) = X({r w2}) = 1
    and X({r r}) = 2
    ∴ X is a random variable which can take values 0, 1 or 2.

    Question 212
    CBSEENMA12033786

    State which of the following are not the probability distribution of a random variable. Give reasons for your answer.

    X

    0

    1

    2

    P(X)

    0.4

    0.4


    0.2

     

    Solution

    X

    0

    1

    2

    P(X)

    0.4

    0.4

    0.2

    Now    0 ≤ P(X) ≤ 1
    and    Σ P(X) = 0.4 + 0.4 + 0.2 = 1
    ∴ given distribution is a probability distribution of a random variable.

    Question 213
    CBSEENMA12033787

    State which of the following are not the probability distribution of a random variable. Give reasons for your answer.

    X

    0

    1

    2

    3

    4

    P(X)

    0.1

    0.5

    0.2

    -0.1

    0.3

    Solution

    X

    0

    1

    2

    3

    4

    P(X)

    0.1

    0.5

    0.2

    -0.1

    0.3

    Here    P(X) = -0.1 for X = 3
    This is not possible as 0 ≤ P(X) ≤ 1
    ∴ given distribution is not a probability distribution of a random variable

    Question 214
    CBSEENMA12033788

    State which of the following are not the probability distribution of a random variable. Give reasons for your answer.

    Y

    -1

    0

    1

    P(Y)

    0.6

    0.1

    0.2

    Solution

    Y

    -1

    0

    1

    P(Y)

    0.6

    0.1

    0.2

    ΣP(Y) = 0.6 + 0.1 + 0.2 = 0.9 ≠ 1
    This is not possible as ΣP(Y) = 1
    ∴ given distribution is not a probability distribution of a random variable.

    Question 215
    CBSEENMA12033789

    State which of the following are not the probability distribution of a random variable. Give reasons for your answer.

    Z

    3

    2

    1

    0

    -1

    P(Z)

    0.3

    0.2

    0.4

    0.1

    0.05

    Solution

    Z

    3

    2

    1

    0

    -1

    P(Z)

    0.3

    0.2

    0.4

    0.1

    0.05

    ΣP(Z) = 0.3 + 0.2 + 0.4 + 0.1 + 0.04 = 1.05 > 1
    This is not possible as Σ P(Z) = 1
    ∴ given distribution is not a probability distribution of a random variable.

    Question 216
    CBSEENMA12033790

    Let X denote the number of hours you study during a randomly selected school day. The probability that X can take the value x, has the following form, where k is some unknown constant.
    straight P left parenthesis straight X space space equals space straight x right parenthesis space open curly brackets table attributes columnalign left end attributes row cell 0.1 comma space space space if space straight x space equals space 0 end cell row cell straight k space straight x comma space space space if space straight x space equals space 1 space or space space 2 end cell row cell straight k space left parenthesis 5 minus straight x right parenthesis comma space space if space straight x space equals space 3 space or space 4 end cell row cell 0 comma space space space space space otherwise end cell end table close

    (a)    Find the value of k.
    (b).    What is the probability that you study at least two hours ? Exactly two hours ? At most two hours?

    Solution

    The probability distribution of X is

    X

    0

    1

    2

    3

    4

    P(X)

    0.1

    k

    2 k

    2k

    k

    (a) We know that
                   sum from straight i space equals space 1 to straight n of space straight p subscript straight i space equals space 1
    therefore space space 0.1 space plus space straight k space plus space 2 straight k space plus space 2 straight k space space plus straight k space equals 1 space space space space space space space space space space rightwards double arrow space space space 6 space straight k space equals space 0.9
therefore space space space space space space space straight k space equals space 0.15

    (b) P(you study at least two hours) = P(X ≥ 2)
    = P(X = 2) + P(X = 3) + P(X = 4)
    = 2k + 2k + k = 5k = 5 × 0.15 = 0.75
    P(you study exactly two hours) = P(X = 2)
    = 2k = 2 × 0.15 = 0.3
    P(you study at most two hours) = P(X ≤ 2)
    = P(X = 0) + P(X = 1) + P(X = 2)
    = 0.1 + k + 2k = 0.1 + 3k
    = 0.1 + 3 × 0.15 = 0.55

     
    Question 217
    CBSEENMA12033791

    A random variable X has the following probability distribution:

    X

    0

    1

    2

    3

    4

    5

    6

    1

    P(X)

    0

    k

    2k

    2k

    3k

    k2

    2k2

    7k2 + k


    Determine (i) k  (ii) P(X < 3)  (iii) P(X > 6)   (iv) P(0 < X < 3)

    Solution

    (i) Since Σ P(X) = 1
    ∴ P(0) + P(1) + P(2) + P(3) + P(4) + P(5) + P(6) + P(7) = 1
    ⇒ 0 + k + 2k + 2k + 3k + k2 + 2k2 + 7 k2 + k = 1
    rightwards double arrow space space 10 space straight k squared plus 9 straight k minus 1 space equals space 0 space space space space rightwards double arrow space space space space space straight k space equals space fraction numerator negative 9 plus-or-minus square root of 81 plus 40 end root over denominator 2 cross times 10 end fraction
rightwards double arrow space space space space space space space space space straight k space equals space fraction numerator negative 9 plus-or-minus square root of 21 over denominator 20 end fraction space space space space space space space rightwards double arrow space space space straight k space equals space fraction numerator negative 9 plus-or-minus 11 over denominator 20 end fraction space equals 1 over 10 comma space minus 1
    But k cannot be negative as probability is always non-negative.
    therefore space space space space space space straight k space equals space 1 over 10
    ∴   probability distribution of X is

       left parenthesis straight i right parenthesis space straight P left parenthesis straight X less than 3 right parenthesis space equals space straight P left parenthesis 0 right parenthesis space plus space straight P left parenthesis 1 right parenthesis space plus space straight P left parenthesis 2 right parenthesis space equals space 0 plus 1 over 10 plus 2 over 10 equals 3 over 10.
left parenthesis ii right parenthesis space straight P left parenthesis straight X greater than 6 right parenthesis space equals space straight P left parenthesis 7 right parenthesis space equals space 17 over 100
left parenthesis iii right parenthesis space straight P left parenthesis 0 less than straight X less than 3 right parenthesis space equals space straight P left parenthesis 1 right parenthesis space plus space straight P left parenthesis 2 right parenthesis space equals space 1 over 10 plus 2 over 10 space equals 3 over 10.

      

    Question 218
    CBSEENMA12033792

    The random variable X has probability distribution P(X) of the following rm, where k is some number:
    straight P left parenthesis straight X right parenthesis space equals space open curly brackets table row cell straight k comma space if space straight x space equals space 0 end cell row cell 2 straight k comma space if space straight x space equals space 1 end cell row cell table attributes columnalign left end attributes row cell 3 straight k comma space if space straight x space equals space 2 end cell row cell 0 comma space space otherwise end cell end table end cell end table close

    (a)    Determine the value of k.
    (b)    Find P(X < 2), P(X ≤ 2), P(X ≥ 2).

    Solution

    The probability distribution of X is

    X

    0

    1

    2

    P(X)

    k

    2k

    3k 


    (a) We know that sum from blank to blank of straight P left parenthesis straight X right parenthesis space equals space 1
      therefore               straight k plus 2 straight k plus 3 straight k space equals space 1 space space space space space or space space space space 6 space straight k space equals 1 space space space rightwards double arrow space space space space straight k space equals space 1 over 6
    (b)    straight P left parenthesis straight X less than 2 right parenthesis space equals space straight P left parenthesis straight X space equals space 0 right parenthesis space plus space straight P left parenthesis straight X space equals space 1 right parenthesis space equals space straight k space plus space space 2 space straight k space equals 1 over 6 plus 2 over 6 space equals 3 over 6 space equals 1 half
                straight P left parenthesis straight X space less or equal than space 2 right parenthesis space equals space straight P left parenthesis straight X space equals space 0 right parenthesis space plus space straight P left parenthesis straight X space equals space 1 right parenthesis space plus space straight P left parenthesis straight X space equals space 2 right parenthesis
                                equals straight k plus 2 straight k plus 3 straight k
equals space 1 over 6 plus 2 over 6 plus 3 over 6 space equals fraction numerator 1 plus 2 plus 3 over denominator 6 end fraction space equals 6 over 6 space equals space 1
    straight P left parenthesis straight X space greater or equal than space 2 right parenthesis space equals space straight P left parenthesis straight X space equals 2 right parenthesis space equals space 3 over 6 space equals 1 half
    Question 219
    CBSEENMA12033793

    A die (fair) is tossed once. If the random variable is “getting an even number” (denoted by Y), find the probability distribution of Y.

    Solution
    We know that whenever a die is tossed, either we get an even number or we do not get an even number.
    therefore space space straight Y space takes space the space value space 1 space space or space 0.
space space space space space space straight P left parenthesis straight Y space equals space 0 right parenthesis space equals space straight P left parenthesis 1 comma space 3 space or space 5 right parenthesis space equals 1 half
space space space space space space straight P left parenthesis straight Y space equals 1 right parenthesis space equals space straight P left parenthesis 2 comma space 4 comma space 6 right parenthesis space equals space space 1 half comma space space which space is space the space required space probability space distribution space of space straight Y.
    In the form of table it is


    Question 220
    CBSEENMA12033794

    An unbiased coin is thrown thrice. If the random variable X denotes the number of heads obtained, describe the probability distribution of X.
    Or
    A coin is tossed three times. Getting a H “head” is a success. If x denotes the number of successes, find the probability distribution of x.

    Solution

    Here X denotes the number of heads obtained in three tosses of a coin. Thus X can take the values 0, 1, 2, 3.
    Let p be the probabilities of getting a head and q be the probability of not getting a head,
    therefore space space space straight p space equals space 1 half comma space space straight q space equals space 1 minus straight P space equals space 1 minus 1 half equals space 1 half
      straight P left parenthesis straight X space equals space 0 right parenthesis space equals space straight q space cross times space straight q space cross times space straight q space equals space 1 half cross times 1 half cross times 1 half space equals 1 over 8
straight P left parenthesis straight X space equals space 1 right parenthesis space equals space straight p space straight q space straight q space space plus space straight q space straight p space straight q space plus space straight q space straight q space straight p
space space space space space space space space space space space space equals space 1 half cross times 1 half cross times 1 half plus 1 half cross times 1 half cross times 1 half plus 1 half cross times 1 half cross times 1 half equals space 1 over 8 plus 1 over 8 plus 1 over 8 space equals 3 over 8
straight P left parenthesis straight X space equals space 2 right parenthesis space equals space straight p space straight p space straight q space plus space straight p space straight q space straight p space plus space straight q space straight p space straight p space
space space space space space space space space space space space space space space space space space space equals space space 1 half cross times 1 half cross times 1 half plus 1 half cross times 1 half cross times 1 half plus 1 half cross times 1 half cross times 1 half equals space 1 over 8 plus 1 over 8 plus 1 over 8 space equals 3 over 8
straight P left parenthesis straight X space equals space 3 right parenthesis space equals space straight p space straight p space straight p space space equals space 1 half cross times 1 half cross times 1 half space equals space 1 over 8
    ∴ probability distribution table is

    Question 221
    CBSEENMA12033795

    A coin is tossed 4 times. X is the number of heads observed. Find the probability distribution of X.

    Solution

    Here X denotes the number of heads obtained in three tosses of a coin. X can take the values 0, 1, 2, 3, 4.
    Let p be the probability of getting a head and q be the probability of not getting a head.
    therefore space space space straight p space equals space 1 half comma space space straight q space equals space 1 space minus space straight p space equals space 1 space minus space 1 half space equals 1 half
straight P left parenthesis straight X space equals space 0 right parenthesis space equals space straight q space cross times space straight q space cross times space straight q space cross times space straight q space space equals space 1 half cross times 1 half cross times 1 half cross times 1 half space equals 1 over 16
straight P left parenthesis straight X space equals space 1 right parenthesis space equals space straight p space straight q space straight q space straight q space space plus space straight q space straight p space straight q space straight q space plus space straight q space straight q space straight p space straight q space plus space straight q space straight q space straight q space straight p
space space space space space space space space space space space space space space space space space space equals space 1 half cross times 1 half space cross times 1 half cross times 1 half plus 1 half cross times 1 half space cross times 1 half cross times 1 half plus 1 half cross times 1 half space cross times 1 half cross times 1 half plus 1 half cross times 1 half space cross times 1 half cross times 1 half
space space space space space space space space space space space space space space space space space space equals space 1 over 16 plus 1 over 16 plus 1 over 16 plus 1 over 16 space equals 4 over 16
    P(X = 2) = p p q q  + p q p q  + q p p q + p q q p + q p q p + q q p p
                    
    equals space 1 half cross times 1 half cross times 1 half cross times 1 half plus 1 half cross times 1 half cross times 1 half cross times 1 half plus 1 half cross times 1 half cross times 1 half cross times 1 half plus 1 half cross times 1 half cross times 1 half cross times 1 half
                                                           plus 1 half cross times 1 half cross times 1 half cross times 1 half plus 1 half cross times 1 half cross times 1 half cross times 1 half space equals 6 over 16
    P(X  = 3) = p p p q + p p q p + p q p p + q p p p 
                   equals space 1 half cross times 1 half cross times 1 half cross times 1 half plus 1 half cross times 1 half cross times 1 half cross times 1 half plus 1 half cross times 1 half cross times 1 half cross times 1 half plus 1 half cross times 1 half cross times 1 half cross times 1 half
equals space 1 over 16 plus 1 over 16 plus 1 over 16 plus 1 over 16 space equals 4 over 16
    P(X = 4) =  p p p p = 1 half cross times 1 half cross times 1 half cross times 1 half space equals space 1 over 16
     ∴ probability distribution of X is

    Question 222
    CBSEENMA12033796

    A coin is tossed 5 times. X is the number of heads observed. Find the probability distribution of X.

    Solution

    Here X denotes the number of heads obtained in five tosses of a coin. X can take the values 0, 1, 2, 3, 4, 5.
    Let p be the probability of getting a head and q be the probability of not getting a head.
    therefore space space space straight p space equals space 1 half comma space space space straight q space equals space 1 minus straight p space equals space 1 minus 1 half space equals 1 half
    straight P left parenthesis straight X space equals space 0 right parenthesis space equals straight q space straight q space straight q space straight q space straight q space equals space 1 half cross times 1 half cross times 1 half cross times 1 half cross times 1 half equals space 1 over 32
straight P left parenthesis straight X space equals space 1 right parenthesis space equals space straight p space straight q space straight q space straight q space straight q space plus space straight q space straight p space straight q space straight q space straight q space space plus space straight q space straight q space straight p space straight q space straight q space space plus space straight q space straight q space straight q space straight p space straight q space plus space straight q space straight q space straight q space straight q space straight p
space space space space space space space space space space space space space space space space space equals space 1 over 32 plus 1 over 32 plus 1 over 32 plus 1 over 32 plus 1 over 32 space equals 5 over 32
straight P left parenthesis straight X space equals space 2 right parenthesis space equals space straight p space straight p space straight q space straight q space straight q space space plus space space.......... space plus space straight q space straight q space straight q space straight p space straight p space
space space space space space space space space space space space space space space space space space space equals space 1 over 32 plus 1 over 32 plus..... plus 1 over 32 space equals space 10 over 32
straight P left parenthesis straight X space equals space 3 right parenthesis space equals space straight p space straight p space space straight p space straight q space straight q space plus............ plus straight q space straight q space straight p space straight p space straight p space
space space space space space space space space space space space space space space space space space space space equals space 1 over 32 plus 1 over 32 plus.... plus 1 over 32 space equals space 10 over 32
straight P left parenthesis straight X space equals space 4 right parenthesis space equals space straight p space straight p space straight p space straight p space straight q space plus space. space... space plus space straight q space straight p space straight p space straight p space straight p space equals space 1 over 32 plus 1 over 32 plus 1 over 32 plus 1 over 32 plus 1 over 32 space equals 5 over 32
straight P left parenthesis straight X space equals space 5 right parenthesis space equals space straight p space straight p space straight p space straight p space straight p space equals space 1 half cross times 1 half cross times 1 half cross times 1 half cross times 1 half cross times 1 half space equals 1 over 32
    ∴ probability distribution of X is

    Question 223
    CBSEENMA12033797

    Find the probability distribution of X, the number of heads, in the two tosses of a coin (or a simultaneous toss of two coins).

    Solution
    Here X can take the values 0, 1 or 2.
    straight P left parenthesis straight X space equals space 0 right parenthesis space equals space straight P left parenthesis no space heads right parenthesis
                      = P(tails on first loss and tails on the second toss)
                      = P(tails on first toss) x P(tails on second toss)
                      equals space 1 half cross times 1 half space equals 1 fourth
    P(X = 1) = P(1 head) = P(HT or TH)
                   = P(HT) + P(TH)
                    equals space 1 fourth plus 1 fourth space equals space 1 half
    P(X = 2) = P(2 heads) = P(HH) = 1 fourth


                     
    Question 224
    CBSEENMA12033798

    Find the probability distribution of the number of tails when three coins are tossed.

    Solution

    Here X denotes the number of tails obtained in three tosses of a coin. Thus X can take the values 0, 1, 2, 3.
    Let p be the probability of getting tail and q be the probability of not getting a tail.
    therefore space space space space straight p space equals space 1 half comma space space space straight q space equals space 1 minus space straight p space equals space 1 space minus space 1 half space equals space 1 half
straight P left parenthesis straight X space equals space 0 right parenthesis space equals space straight q space straight q space straight q space space equals space 1 half cross times 1 half cross times 1 half space equals space 1 over 8
straight P left parenthesis straight X space equals space 1 right parenthesis space equals space straight p space straight q space straight q space space plus space straight q space straight p space straight q space plus space straight q space space straight q space straight p
space space space space space space space space space space space space space space space space space space equals space 1 half cross times 1 half cross times 1 half plus 1 half cross times 1 half cross times 1 half plus 1 half cross times 1 half cross times 1 half space equals space 1 over 8 plus 1 over 8 plus 1 over 8 equals space 3 over 8
straight P left parenthesis straight X space equals space 2 right parenthesis space equals space straight p space straight p space straight q space plus space straight p space straight q space straight p space space plus space straight q space straight p space space straight p
equals space 1 half cross times 1 half cross times 1 half plus 1 half cross times 1 half cross times 1 half plus 1 half cross times 1 half cross times 1 half space equals space 1 over 8 plus 1 over 8 plus 1 over 8 equals space 3 over 8
straight P left parenthesis straight X space equals 3 right parenthesis space equals space straight p space straight p space straight p space equals space 1 half cross times 1 half cross times 1 half space equals 1 over 8
space space space space space space space space space space space space
    ∴ probability distribution table is

             

    Question 225
    CBSEENMA12033799

    Find the probability distribution of the sum of numbers obtained when two dice are thrown.

    Solution
    Let X denote the sum of the numbers obtained on the two dice. X can take values 2, 3, ......, 12
              straight P left parenthesis straight X space equals space 2 right parenthesis space equals space straight P open curly brackets left parenthesis 1 comma space 1 right parenthesis close curly brackets space equals space 1 over 36
straight P left parenthesis straight X space equals space 3 right parenthesis space equals space straight P open curly brackets left parenthesis 1 comma space 2 right parenthesis comma space left parenthesis 2 comma space 1 right parenthesis close curly brackets space equals 2 over 36
straight P left parenthesis straight X space equals space 4 right parenthesis space equals space straight P left curly bracket left parenthesis 1 comma space 3 right parenthesis comma space left parenthesis 2 comma space 2 right parenthesis comma space left parenthesis 3 comma space 1 right parenthesis right curly bracket space equals space 3 over 36
straight P left parenthesis straight X space equals space 5 right parenthesis space equals space straight P left curly bracket left parenthesis 1 comma space 4 right parenthesis comma space left parenthesis 2 comma space 3 right parenthesis comma space left parenthesis 3 comma space 2 right parenthesis comma space left parenthesis 4 comma space 1 right parenthesis right curly bracket space equals space 4 over 36
straight P left parenthesis straight X space equals space 6 right parenthesis space equals space straight P left curly bracket left parenthesis 1 comma space 5 right parenthesis comma space left parenthesis 2 comma space 4 right parenthesis comma space left parenthesis 3 comma space 3 right parenthesis comma space left parenthesis 4 comma space 2 right parenthesis comma space left parenthesis 5 comma space 1 right parenthesis right curly bracket space equals space 5 over 36
straight P left parenthesis straight X space equals space 7 right parenthesis space equals space straight P left curly bracket left parenthesis 1 comma space 6 right parenthesis comma space left parenthesis 2 comma space 5 right parenthesis comma space left parenthesis 3 comma space 4 right parenthesis comma space left parenthesis 4 comma space 3 right parenthesis comma space left parenthesis 5 comma space 2 right parenthesis comma space left parenthesis 6 comma space 1 right parenthesis space equals space 6 over 36
straight P left parenthesis straight X space equals space 8 right parenthesis space equals space straight P left curly bracket left parenthesis 2 comma space 6 right parenthesis comma space left parenthesis 3 comma space 5 right parenthesis comma space left parenthesis 4 comma space 4 right parenthesis comma space left parenthesis 5 comma space 3 right parenthesis comma space left parenthesis 6 comma space 2 right parenthesis space equals space 5 over 36
straight P left parenthesis straight X space equals space 9 right parenthesis space equals space straight P left curly bracket left parenthesis 3 comma space 6 right parenthesis comma space left parenthesis 4 comma space 5 right parenthesis comma space left parenthesis 5 comma space 4 right parenthesis comma space left parenthesis 6 comma space 3 right parenthesis right curly bracket space equals space 4 over 36
straight P left parenthesis straight X space equals space 10 right parenthesis space equals space straight P left curly bracket left parenthesis 4 comma space 6 right parenthesis comma space left parenthesis 5 comma space 5 right parenthesis comma space left parenthesis 6 comma space 4 right parenthesis right curly bracket space equals space 3 over 36
straight P left parenthesis straight X space equals space 11 right parenthesis space equals space straight P left curly bracket left parenthesis 5 comma space 6 right parenthesis comma space left parenthesis 6 comma space 5 right parenthesis right curly bracket space equals space 2 over 36
straight P left parenthesis straight X space equals space 12 right parenthesis space equals space straight P left curly bracket left parenthesis 6 comma space 6 right parenthesis right curly bracket space equals space 1 over 36
    Probability distribution of X is

    Question 226
    CBSEENMA12033800

    Find the probability distribution of the number of times “a total of 9” appears in two draws of two dice.

    Solution
    Let X denote the number of times ‘a total of 9’ appears. X takes the values 0, 1, 2. Let p denote the probability of getting ‘a total of 9’ and q denote the probability of not getting ‘a total of 9’.
            therefore space space space space space space space space straight p space equals space straight P thin space left curly bracket left parenthesis 3 comma space 6 right parenthesis comma space left parenthesis 4 comma space 5 right parenthesis comma space left parenthesis 5 comma space 4 right parenthesis comma space left parenthesis 6 comma space 3 right parenthesis right curly bracket space equals space 4 over 36 space equals 1 over 9
                      straight q space equals space 1 minus straight p space equals space 1 minus 1 over 9 space equals space 8 over 9
       straight P left parenthesis straight X space equals space 0 right parenthesis space equals space straight q space straight q space equals space 8 over 9 cross times 8 over 9 space equals 64 over 81
straight P left parenthesis straight X space equals space 1 right parenthesis space equals space straight p space straight q space plus space straight q space straight p space equals space 1 over 9 cross times 8 over 9 plus 8 over 9 cross times 1 over 9 space equals 8 over 81 plus 8 over 81 space equals 16 over 81
straight P left parenthesis straight X space equals space 2 right parenthesis space equals space straight p space straight p space equals space 1 over 9 cross times 1 over 9 space equals space 1 over 81
    ∴ probabilities distribution is

    Question 227
    CBSEENMA12033801

    Find the probability distribution of the number of sixes in three tosses of a die.

    Solution
    Let X denote the number of sixes obtained. X takes the values 0, 1, 2, 3.
    Probability of 'getting a six' in a single toss of a die = 1 over 6
    therefore space space space space straight p space space space straight i. straight e. comma space space space probability space of space success space equals space 1 over 6
            q i.e., probability of failure  = 1 minus 1 over 6 space equals space 5 over 6
    therefore space space space straight P left parenthesis straight X space equals space 0 right parenthesis space equals space straight q space cross times space straight q space cross times space straight q space space equals space 5 over 6 cross times 5 over 6 cross times 5 over 6 space equals space 125 over 216
straight P left parenthesis straight X space equals space 1 right parenthesis space space equals space straight p space cross times space straight q space cross times straight q space plus space straight q space cross times space straight p space space cross times space straight q space plus space straight q space cross times space straight q space cross times space straight p
space space space space space space space space space space space space space space space space space space space equals 1 over 6 cross times 5 over 6 cross times 5 over 6 plus 5 over 6 cross times 1 over 6 cross times 5 over 6 plus 5 over 6 cross times 5 over 6 cross times 1 over 6 equals 25 over 216 plus 25 over 216 plus 25 over 216 equals 75 over 216
straight P left parenthesis straight X space equals space 2 right parenthesis space equals space straight p space cross times space straight p space cross times space straight q space plus space straight p space cross times space straight q space cross times straight p space plus space straight q space cross times space straight p space cross times space straight p
space space space space space space space space space space space space space space space space space space space equals space 1 over 6 cross times 1 over 6 cross times 5 over 6 plus 1 over 6 cross times 5 over 6 cross times 1 over 6 plus 5 over 6 cross times 1 over 6 cross times 1 over 6 space equals 5 over 216 plus 5 over 216 plus 5 over 216 equals space 15 over 216
straight P left parenthesis straight X space equals space 3 right parenthesis space equals space straight p space cross times space straight p space cross times space straight p space equals space 1 over 6 cross times 1 over 6 cross times 1 over 6 space equals space 1 over 216
    ∴ probability distribution is

    Question 228
    CBSEENMA12033802

    Two cards are drawn successively with replacement from a well shuffled pack of 52 cards. Find the probability distribution of the number of kings.

    Solution
    Let X denote the number of kings obtained in two draws. X takes the values 0, 1, 2. Let p denote the probability of getting king and q denote the probability of not getting the king.
    therefore space space space straight p space equals space 4 over 52 equals space 1 over 13 comma space space space straight q space equals space 1 minus straight p space equals space 1 minus 1 over 13 space equals space 12 over 13
straight P left parenthesis straight X space equals space 0 right parenthesis space equals space straight q space straight q space equals space 12 over 13 cross times 12 over 13 space equals 144 over 169
straight P left parenthesis straight X space equals space 1 right parenthesis space equals space straight p space straight q space plus space straight q space straight p space equals space 1 over 13 plus 12 over 13 plus 12 over 13 cross times 1 over 13 space equals 12 over 169 plus 12 over 169 space equals 24 over 169
straight P left parenthesis straight X space equals space 2 right parenthesis space equals space straight p space straight p space equals space 1 over 13 cross times 1 over 13 space equals space 1 over 169
    ∴ probability distribution is

    Question 232
    CBSEENMA12033806

    An urn contains 3 white and 4 red balls. 3 balls are drawn one by one with replacement. Find the probability distribution of the number of red balls.

    Solution

    Let X denote the random variable ‘number of red balls’. X can take the values 0, 1, 2, 3.
    Let p be the probability of getting red ball.
               therefore            straight p space equals space 4 over 7 comma space space space straight q space equals space 1 minus space straight p space space equals space 1 minus space 4 over 7 space equals space 3 over 7
    straight P left parenthesis straight X space space equals 0 right parenthesis space equals space straight q space straight q space straight q space equals space 3 over 7 cross times 3 over 7 cross times 3 over 7 space equals space 27 over 343
straight P left parenthesis straight X space equals space 1 right parenthesis space equals space space straight p space straight q space straight q space space plus space straight q space straight p space straight q space plus space straight q space straight q space straight p
space space space space space space space space space space space space space space space space space space equals space 4 over 7 cross times 3 over 7 cross times 3 over 7 space plus space 3 over 7 cross times 4 over 7 cross times 3 over 7 plus 3 over 7 cross times 3 over 7 cross times 4 over 7 space equals space 36 over 343 plus 36 over 343 plus 36 over 343 space equals space 108 over 343
straight P left parenthesis straight X space equals space 2 right parenthesis space equals space straight p space straight p space straight q space plus space straight p space straight q space straight p space space plus space straight q space straight p space straight p space
space space space space space space space space space space space space space space space space space equals space 4 over 7 cross times 4 over 7 cross times 3 over 7 plus 4 over 7 cross times 3 over 7 cross times 4 over 7 plus 3 over 7 cross times 4 over 7 cross times 4 over 7 space equals space 48 over 343 plus 48 over 343 plus 48 over 343 space equals space 144 over 343
straight P left parenthesis straight X space equals space 3 right parenthesis space equals space straight p space straight p space straight p space equals space 4 over 7 cross times 4 over 7 cross times 4 over 7 space equals space 64 over 343
    ∴ probability distribution is

    Question 233
    CBSEENMA12033807

    Find the probability distribution of green balls drawn when 3 balls are drawn one by one without replacement from a bag containing 3 green and 5 white balls.

    Solution

    Let X denote the random variable ‘number of green balls’. X can take the values 0, 1, 2, 3.
    Let p be the probability of getting first green ball and q the probability of not getting first green ball.
    therefore space space space straight p space equals space 3 over 8 comma space space space space straight q space equals space 1 minus straight p space equals 1 minus 3 over 8 space equals 5 over 8
    straight P left parenthesis straight X space equals 0 right parenthesis space equals space straight q space straight q space straight q space space equals 5 over 8 cross times 4 over 7 cross times 3 over 6 space equals space 10 over 56
    straight P left parenthesis straight X space equals space 1 right parenthesis space equals space straight p space straight q space straight q space space plus space straight q space straight p space straight q space plus space straight q space straight q space straight p
space space space space space space space space space space space space space space space space space space equals space 3 over 8 cross times 5 over 7 cross times 4 over 6 plus 5 over 8 cross times 3 over 7 cross times 4 over 6 plus 5 over 8 cross times 4 over 7 cross times 3 over 6 space equals 10 over 56 plus 10 over 56 plus 10 over 56 equals 30 over 56
straight P left parenthesis straight X space equals space 2 right parenthesis space equals space straight p space straight p space straight q space plus space straight p space straight q space straight p space plus space straight q space straight p space straight p space
space space space space space space space space space space space space space space space space space space equals space 3 over 8 cross times 2 over 7 cross times 5 over 6 plus 3 over 8 cross times 5 over 7 cross times 2 over 6 plus 5 over 8 cross times 3 over 7 cross times 2 over 6 space equals 5 over 56 plus 5 over 56 plus 5 over 56 space equals 15 over 56
straight P left parenthesis straight X space equals space 3 right parenthesis space equals space straight p space straight p space straight p space space equals space 3 over 8 cross times 2 over 7 cross times 1 over 6 space equals space 1 over 56
    ∴ probability distribution is
             

    Question 234
    CBSEENMA12033808

    Find the probability distribution of white balls drawn when 3 balls are drawn one by one without replacement from a bag containing 4 white and 6 red balls.

    Solution

    Let X denote the random variable ‘number of white balls’. X can take the values 0, 1, 2, 3.
    Let p be the probability of getting first white ball and q the probability of not getting first white ball.
    therefore space space space space space straight p space space equals space 4 over 10 comma space space space straight q space equals space 1 space minus space straight p space equals space 1 space minus space 4 over 10 space equals space 6 over 10
    straight P left parenthesis straight X space equals space 0 right parenthesis space equals space straight q space straight q space straight q space space equals space 6 over 10 cross times 5 over 9 cross times 4 over 8 space equals space 5 over 30
straight P left parenthesis straight X space equals space 1 right parenthesis space equals space straight p space straight q space straight q space plus space straight q space straight p space straight q space space plus space straight q space space straight q space straight p
space space space space space space space space space space space space space space equals space 4 over 10 cross times 6 over 9 cross times 5 over 8 plus 6 over 10 cross times 4 over 9 cross times 5 over 8 plus 6 over 10 cross times 5 over 9 cross times 4 over 8 space equals space 5 over 30 plus 5 over 30 plus 5 over 30 space equals space 15 over 30
straight P left parenthesis straight X space equals space 2 right parenthesis space equals space straight p space straight p space straight q space plus space straight p space straight q space straight p space space plus space straight q space straight p space space straight p
space space space space space space space space space space space space space space space space space equals space 4 over 10 cross times 3 over 9 cross times 6 over 8 plus 4 over 10 cross times 6 over 9 cross times 3 over 8 plus 6 over 10 cross times 4 over 9 cross times 3 over 8 space equals space 3 over 30 plus 3 over 30 plus 3 over 30 space equals 9 over 30
straight P left parenthesis straight X space equals space 3 right parenthesis space equals space straight p space straight p space straight p space equals space 4 over 10 cross times 3 over 9 cross times 2 over 8 space equals space 1 over 30
    ∴     probability distribution is

    Question 235
    CBSEENMA12033809

    A bag contains 2 white, 3 red and 4 blue balls. Two balls are drawn at random from the bag. If the random variable X denotes the number of white balls among the two balls drawn, describe the probability distribution of X.

    Solution

    Number of white balls = 2
    Number of red balls = 3
    Number of blue balls = 4
    Total number of balls = 2 + 3 + 4 = 9
    Let X denote the event ‘the number of white balls’. X can take the values 0, 1, 2.
    Let p be the probabilities of getting white ball and q be the probabilities of not getting white ball.
    therefore space space space space straight p space equals space 2 over 9 comma space space space straight q space equals space 1 space minus space straight p space equals space 1 minus 2 over 9 space equals 7 over 9
    straight P left parenthesis straight X space equals space 0 right parenthesis space equals space space straight q space straight q space equals space 7 over 9 cross times 7 over 9 space equals space 49 over 81
straight P left parenthesis straight X space equals space 1 right parenthesis space equals space straight p space straight q space plus space straight q space straight p space equals space 2 over 9 cross times 7 over 9 plus 7 over 9 cross times 2 over 9 space equals space 14 over 81 plus 14 over 81 space equals space 28 over 81
straight P left parenthesis straight X space equals space 2 right parenthesis space equals space straight p space straight p space space equals space 2 over 9 cross times 2 over 9 space equals space 4 over 81
    ∴      probability distribution is

    Question 236
    CBSEENMA12033810

    Two bad eggs are mixed accidentally with 10 good one. Find the probability distribution of the number of bad eggs in 3, drawn at random, from this lot.

    Solution

    Total number of eggs = 12
    Number of good eggs = 10
    ∴  number of bad eggs = 2
    Let X denote the random variable. X takes the values 0, 1, 2.
    straight P left parenthesis straight X space equals space 0 right parenthesis space equals space 10 over 12 cross times 9 over 11 cross times 8 over 10 equals 12 over 22
straight P left parenthesis straight X space equals space 1 right parenthesis space equals space 2 over 12 cross times 10 over 11 cross times 9 over 10 plus 10 over 12 cross times 2 over 11 cross times 9 over 10 plus 10 over 12 cross times 9 over 11 cross times 2 over 10
space space space space space space space space space space space space space space space space space space equals space 3 over 22 plus 3 over 22 plus 3 over 22 space equals 9 over 22
straight P left parenthesis straight X space equals space 2 right parenthesis space equals space 2 over 12 cross times 1 over 11 cross times 10 over 10 plus 2 over 12 cross times 10 over 11 cross times 1 over 10 plus 10 over 12 cross times 2 over 11 cross times 1 over 10
space space space space space space space space space space space space space space space space space space equals space 1 over 66 plus 1 over 66 plus 1 over 66 space equals space 1 over 22
    ∴    probability distribution table is


    Question 237
    CBSEENMA12033811

    From a lot of 30 bulbs which include 6 defectives, a sample of 4 bulbs is drawn at random with replacement. Find the probability distribution of the number of defective bulbs.

    Solution
    There are 30 bulbs which include 6 defective bulbs.
    Probability of getting a defective bulb  = 6 over 30 space equals 1 fifth
    Probability of getting a good bulbs = 1 minus 1 fifth space equals space 4 over 5
    Let X be random variable of defective bulbs in a sample of 4 bulbs.
    X can take the values 0, 1, 2, 3, 4.
    therefore space space space space space space space space space space space straight P left parenthesis straight X space equals space 0 right parenthesis space equals space open parentheses 4 over 5 close parentheses to the power of 4 space equals space 256 over 625
    straight P left parenthesis straight X space equals space 1 right parenthesis space equals space straight C presuperscript 4 subscript 1 space open parentheses 4 over 5 close parentheses cubed space open parentheses 1 fifth close parentheses space equals space 4 space cross times space 64 over 125 space cross times space 1 fifth space equals space 256 over 625
straight P left parenthesis straight X space equals space 2 right parenthesis space equals space straight C presuperscript 4 subscript 2 space open parentheses 4 over 5 close parentheses squared space open parentheses 1 fifth close parentheses squared space equals space 6 cross times 16 over 25 cross times 1 over 25 space equals 96 over 625
straight P left parenthesis straight X space equals space 3 right parenthesis space equals space straight C presuperscript 4 subscript 3 space open parentheses 4 over 5 close parentheses space open parentheses 1 fifth close parentheses cubed space equals space 4 cross times 4 over 5 cross times 1 over 125 space equals 16 over 625
straight P left parenthesis straight X space equals space 4 right parenthesis space equals space open parentheses 1 fifth close parentheses to the power of 4 space equals space 1 over 625
    ∴     probability distribution of defective bulbs is

              
    Question 238
    CBSEENMA12033812

    Find the probability distribution of number of doublets in three throws of a pair of dice.

    Solution

     Let X denote the number of doublets. X can take the value 0, 1, 2, or 3.
    Possible doublets are (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)
    Probability of getting a doublet  = 6 over 36 space equals 1 over 6
    Probability of not getting a doublet  = 1 minus 1 over 6 space equals 5 over 6
    Now,   P(X = 0) = P(no doublet) = 5 over 6 cross times 5 over 6 cross times 5 over 6 space equals space 125 over 216
               straight P left parenthesis straight X space equals space 1 right parenthesis space equals space straight P left parenthesis one space doublet space and space two space non minus doublets right parenthesis
space space space space space space space space space space space space space space space space space space equals space 1 over 6 cross times 5 over 6 cross times 5 over 6 plus 5 over 6 cross times 1 over 6 cross times 5 over 6 plus 5 over 6 cross times 5 over 6 cross times 1 over 6
space space space space space space space space space space space space space space space space space space space equals 25 over 216 plus 25 over 216 plus 25 over 216 space equals 75 over 216
               straight P left parenthesis straight X space equals space 2 right parenthesis space equals space straight P left parenthesis two space doublets space and space one space non minus doublet right parenthesis
space space space space space space space space space space space space space space space space space equals space 1 over 6 cross times 1 over 6 cross times 5 over 6 plus 1 over 6 cross times 5 over 6 cross times 1 over 6 plus space 5 over 6 cross times 1 over 6 cross times 1 over 6
space space space space space space space space space space space space space space space space space equals space 5 over 216 plus 5 over 216 plus 5 over 216 space equals space 15 over 216
    and straight P left parenthesis straight X space equals space 3 right parenthesis space equals space straight P left parenthesis three space doublets right parenthesis
                             equals space 1 over 6 cross times 1 over 6 cross times 1 over 6 space equals space 1 over 216
    ∴ the required probability distribution is

    Question 239
    CBSEENMA12033813

    A coin is biased so that the head is 3 times as likely to occur as tail. If the coin is tossed twice, find the probability distribution of number of tails.

    Solution

    Let p be the probability of obtaining a head when a coin is tossed once and q that of obtaining a tail
    From given condition,
                    p = 3 q,       p + q = 1
    therefore space space space space space 3 space straight q space plus space straight q space equals space 1 space space space space space space space space space space space space space space space rightwards double arrow space space space space 4 space straight q space equals space 1 space space space space space rightwards double arrow space space space space straight q space equals space 1 fourth
therefore space space space space straight p space equals space 3 space straight q space equals space 3 over 4.
    Let X denote the number of tails in two tosses of the coin, then X can take values 0, 1 and 2.
                                straight P left parenthesis straight X space equals 0 right parenthesis space equals space space straight P left parenthesis no space tail right parenthesis space equals space straight P left parenthesis HH right parenthesis space equals space straight p space straight p space space equals space 3 over 4 cross times 3 over 4 space equals 9 over 16
straight P left parenthesis straight X space equals space 1 right parenthesis space equals space straight P left parenthesis one space tail space and space one space head right parenthesis
space space space space space space space space space space space space space space space space space equals space straight P left parenthesis HT comma space TH right parenthesis space equals space straight P left parenthesis HT right parenthesis space plus space straight P left parenthesis TH right parenthesis
space space space space space space space space space space space space space space space space space equals space straight p space straight q space plus space straight q space straight p space space equals space 2 space straight p space straight q space equals space 2 cross times 3 over 4 cross times 1 fourth space equals 6 over 16
    and          straight P left parenthesis straight X space equals space 2 right parenthesis space equals space straight P left parenthesis two space tails right parenthesis space equals space straight P left parenthesis TT right parenthesis space equals space qq space equals 1 fourth cross times 1 fourth space equals 1 over 16
    ∴   probability distribution of X is

          

    Question 240
    CBSEENMA12033814

    Three cards are drawn successively with replacement from a well-shuffled deck of 52 cards. A random variable X denotes the number of spades in three cards. Determine the probability distribution of X.

    Solution
    Here X takes the values 0, 1, 2, 3.
    Let p denote the probability of getting spade.
    Now,    straight p space equals 13 over 52 space equals 1 fourth comma space space space space straight q space equals space 1 minus space 1 fourth space equals space 3 over 4
    P(X = 0) = straight q space cross times space straight q space cross times space straight q space equals space 3 over 4 cross times 3 over 4 cross times 3 over 4 space equals space 27 over 64
    P(X = 1) = straight p space cross times space straight q space cross times space straight q space plus space straight q space cross times space straight p space cross times straight q space plus space straight q space cross times straight q space cross times straight p
                   equals space 1 fourth cross times 3 over 4 cross times 3 over 4 plus 3 over 4 cross times 1 fourth cross times 3 over 4 plus 3 over 4 cross times 3 over 4 cross times 1 fourth space equals space 9 over 64 plus 9 over 64 plus 9 over 64 equals 27 over 64
    P(X = 2) = straight p space cross times space straight p space cross times space straight q space space plus space straight p space cross times space straight q space cross times space straight p space plus space straight q space cross times space straight p space cross times space straight p
                   equals space 1 fourth cross times 1 fourth cross times 3 over 4 plus 1 fourth cross times 3 over 4 cross times 1 fourth plus 3 over 4 cross times 1 fourth cross times 1 fourth space equals space 9 over 64
    P(X = 3) = straight p space cross times space straight p space cross times space straight p space equals 1 fourth cross times 1 fourth cross times 1 fourth space equals space 1 over 64
    ∴ probability distribution is
         
    Question 241
    CBSEENMA12033815

    Find the probability distribution of the number of successes in two tosses of a die, where a success is defined as:
    number greater than 4

    Solution
     Let X be the random variable, which takes values 0, 1, 2.
    therefore space space space straight P left parenthesis straight S right parenthesis space equals space straight P left parenthesis 5 space or space 6 right parenthesis space equals space 2 over 6 space equals space 1 third
            straight P left parenthesis straight S with bar on top right parenthesis space equals space 1 minus 1 third space equals space 2 over 3
    therefore space space space space space space straight P left parenthesis straight X space equals space 0 right parenthesis space equals space straight P left parenthesis straight S with bar on top. space straight S with bar on top right parenthesis space equals space 2 over 3 cross times 2 over 3 space equals 4 over 9
              straight P left parenthesis straight X space equals space 1 right parenthesis space equals space straight P left parenthesis straight S. space straight S with bar on top right parenthesis space plus space straight P left parenthesis straight S with bar on top. space straight S right parenthesis space equals space 1 third cross times 2 over 3 plus 2 over 3 cross times 1 third space equals 4 over 9
straight P left parenthesis straight X space equals space 2 right parenthesis space equals space straight P left parenthesis straight S. space straight S right parenthesis space equals space 1 third cross times 1 third space equals space 1 over 9
    ∴ X takes the values 0, 1, 2 with probabilities 4 over 9 comma space 4 over 9 space and space 1 over 9 respectively.

    Question 242
    CBSEENMA12033816

    Find the probability distribution of the number of successes in two tosses of a die, where a success is defined as:
    six appears on at least one die

    Solution
    Let X be the random variable, which takes values 0, 1.
                         straight P left parenthesis straight X space equals space 0 right parenthesis space equals space straight P left parenthesis no space six right parenthesis
space space space space space space space space space space space space space space space space space space equals space left curly bracket 1 space minus space straight P left parenthesis getting space straight a space six space on space straight a space single space throw right parenthesis right curly bracket
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space cross times space left curly bracket 1 minus straight P left parenthesis getting space straight a space six space on space single space throw right parenthesis right curly bracket
space space space space space space space space space space space space space space space space equals space open parentheses 1 minus 1 over 6 close parentheses space open parentheses 1 minus 1 over 6 close parentheses space equals 25 over 36
    and             
                   straight P left parenthesis straight X space equals space 1 right parenthesis space equals space straight P left parenthesis six space on space at space least space one space throw right parenthesis
space space space space space space space space space space space space space space space space equals space 1 space minus space straight P left parenthesis not space getting space straight a space six space on space any space throw right parenthesis
space space space space space space space space space space space space space space space space equals space 1 minus 5 over 6 cross times 5 over 6 space equals 11 over 36
    ∴ probability distribution of X is
    Question 243
    CBSEENMA12033817

    Find the mean μ, variance σ2 for the following probability distribution:


    Solution

    Mean  straight mu space equals space sum from blank to blank of XP left parenthesis straight X right parenthesis

                  equals space 12 over 8 space equals space 3 over 2 space equals space 1.5
    Variance   straight sigma squared space equals space sum from blank to blank of straight X squared space straight P left parenthesis straight X right parenthesis space space minus space left parenthesis sum from blank to blank of straight X thin space straight P left parenthesis straight X right parenthesis right parenthesis squared space space
                           equals space 24 over 8 space minus space left parenthesis 1.5 right parenthesis squared
space equals 3 minus 2.25 space equals space 0.75
    Question 244
    CBSEENMA12033818

    Find the mean μ, variance σ2 for the following probability distribution:


    Solution

    (i) Mean            straight mu space equals space sum from blank to blank of straight X thin space straight P left parenthesis straight X right parenthesis space equals space 36 over 30 space equals space 1.2

    (ii) Variance       straight sigma squared space equals space sum from blank to blank of straight X squared straight P left parenthesis straight X right parenthesis space minus space left square bracket sum from blank to blank of straight X thin space straight P left parenthesis straight X right parenthesis right square bracket squared
                                   equals space 60 over 30 minus left parenthesis 1.2 right parenthesis squared space space equals space 2 minus 1.44 space equals space 0.56.
                       
    Question 245
    CBSEENMA12033819

    Two dice are thrown simultaneously. If X denotes the number of sixes, find the expectation of X.

    Solution

    When a dice is rolled once, probability of obtaining six = 1 over 6
    and probability of obtaining a non-six = 5 over 6
    Now X can take values 0, 1, 2.
    P(X = 0) = P(six does not appear a die) = P(non-six on both dice)
                              equals space 5 over 6 cross times 5 over 6 space equals space 25 over 36
    P(X = 1) = P(six appear exactly on one die)
                    = P(six on first die and non-six on the second die)
                                                       + P(six on the second die and non-six on the first die)
                  equals space 1 over 6 cross times 5 over 6 plus 1 over 6 cross times 5 over 6 space equals space 5 over 36 plus 5 over 36 space equals 10 over 36
    P(X = 2) = P(six on both the dice) = 1 over 6 cross times 1 over 6 space equals 1 over 36
    ∴    probability distribution of X is

    ∴            Expectation of X = mean of the variable X
    equals space sum from blank to blank of XP left parenthesis straight X right parenthesis space equals space 0 space cross times 25 over 36 plus 1 cross times 10 over 36 plus 2 cross times 1 over 36
equals space 0 plus 10 over 36 plus 2 over 36 space equals 12 over 36 space equals 1 third.

    Question 246
    CBSEENMA12033820

    Find the mean number of heads in three tosses of a fair coin.

    Solution

    Here X denotes the number of heads obtained in three tosses of a coin. Thus X can take the values 0, 1, 2, 3.
    Let p be the probabilities of getting a head and q be the probability of not getting a head,
    therefore space space space space straight p space equals space 1 half comma space space straight q space equals space 1 space minus space straight p space equals space 1 space space minus 1 half space equals space 1 half
    straight P left parenthesis straight X space equals space 0 right parenthesis space equals space straight q space cross times space straight q space cross times space straight q space space equals space 1 half cross times 1 half cross times 1 half space equals 1 over 8
straight P left parenthesis straight X space equals space 1 right parenthesis space equals space straight p space straight q space straight q space space plus space straight q space straight p space straight q space plus space straight q space space straight q space straight p
space space space space space space space space space space space space space space space equals space 1 half cross times 1 half cross times 1 half plus 1 half cross times 1 half cross times 1 half plus 1 half cross times 1 half cross times 1 half space equals 1 over 8 plus 1 over 8 plus 1 over 8 space equals 3 over 8
straight P left parenthesis straight X space equals space 2 right parenthesis space equals space straight p space straight p space straight q space plus space straight p space straight q space straight p space plus space straight q space straight p space straight p space
space space space space space space space space space space space space space space equals space 1 half cross times 1 half cross times 1 half plus 1 half cross times 1 half cross times 1 half plus 1 half cross times 1 half cross times 1 half space equals 1 over 8 plus 1 over 8 plus 1 over 8 space equals 3 over 8
straight P left parenthesis straight X space equals space 3 right parenthesis space equals space straight p space straight p space straight p space equals space 1 half cross times 1 half cross times 1 half space equals 1 over 8
    ∴    probability distribution table is

    therefore space space space straight mu space equals space sum from blank to blank of space straight x space straight p subscript straight i space equals space 3 over 8 plus 6 over 8 plus 3 over 8 space equals 12 over 8 space equals 3 over 2 space equals space 1.5
          

    Question 247
    CBSEENMA12033821

    Two numbers are selected at random (without replacement) from the first six positive integers. Let X denote the larger of the two numbers obtained. Find E(X).

    Solution

    Since 1 cannot be greater than the other selected number.
    ∴    X can take values 2, 3, 4, 5, 6.
    ∴    P(X = 2) = P(2 and a number less than 2 are selected)
    = P(1 and 2 are selected)
    Syntax error from line 1 column 349 to line 1 column 452. Unexpected '<mlongdiv '.
    P(X = 3) = P(3 and a number less than 3 are selected)
          equals space fraction numerator 2 over denominator straight C presuperscript 6 subscript 2 end fraction space equals 2 over 15
    [∵ (1, 3) and (2, 3) can be selected]
    P(X = 4) = P(4 and a number less than 4 are selected)
    equals space fraction numerator 3 over denominator straight C presuperscript 6 subscript 2 end fraction space equals space 3 over 15
    [∵ (1, 4), (2, 4) and (3, 4) can be selected]
    P(X = 5) = P(5 and a number less than 5 are selected)
    equals space fraction numerator 4 over denominator straight C presuperscript 6 subscript 2 end fraction space equals 4 over 15.
    [∵ (1, 5), (2, 5), (3, 5) and (4, 5) can be selected]
    P(X = 6) = P(6 and a number less than 6 are selected)
    equals space fraction numerator 5 over denominator straight C presuperscript 6 subscript 2 end fraction space equals space 5 over 15
    [∵ (1, 6), (2, 6), (3, 6), (4, 6) and (5, 6) can be selected]
    ∴ probability distribution table is

    therefore  Expectation of X = E(X)  = sum from blank to blank of cross times space straight P left parenthesis straight X right parenthesis
                              equals space 2 cross times 1 over 15 plus 2 space cross times space 2 over 15 plus 4 space cross times 3 over 15 plus 5 space cross times 4 over 15 plus 6 space cross times space 5 over 15
equals space fraction numerator 2 plus 6 plus 12 plus 20 plus 30 over denominator 15 end fraction space equals 70 over 15 space equals 14 over 3.

    Question 248
    CBSEENMA12033822

    Let a pair of dice be thrown and the random variable X be the sum of the numbers that appear on the two dice. Find the mean or expectation of X.

    Solution
    Let X denote the sum of the numbers obtained on the two dice. X can take values 2, 3, ....., 12
       straight P left parenthesis straight X space equals space 2 right parenthesis space equals space straight P left curly bracket left parenthesis 1 comma space 1 right parenthesis right curly bracket space equals space 1 over 36
straight P left parenthesis straight X space equals space 3 right parenthesis space equals space straight P left curly bracket left parenthesis 1 comma space 2 right parenthesis comma space left parenthesis 2 comma space 1 right parenthesis right curly bracket space equals space 2 over 36
straight P left parenthesis straight X space equals space 4 right parenthesis space equals space straight P left curly bracket left parenthesis 1 comma space 3 right parenthesis comma space left parenthesis 2 comma space 2 right parenthesis comma space left parenthesis 3 comma space 1 right parenthesis right curly bracket space equals 3 over 36
straight P left parenthesis straight X space equals space 5 right parenthesis space equals space straight P left curly bracket left parenthesis 1 comma space 4 right parenthesis comma space left parenthesis 2 comma space 3 right parenthesis comma space left parenthesis 3 comma space 2 right parenthesis comma space left parenthesis 4 comma space 1 right parenthesis right curly bracket space equals 4 over 36
straight P left parenthesis straight X space equals space 6 right parenthesis space equals space straight P left curly bracket left parenthesis 1 comma space 5 right parenthesis comma space left parenthesis 2 comma space 4 right parenthesis comma space left parenthesis 3 comma space 3 right parenthesis comma space left parenthesis 4 comma space 2 right parenthesis comma space left parenthesis 5 comma space 1 right parenthesis right curly bracket space equals space 5 over 36
straight P left parenthesis straight X space equals space 7 right parenthesis space equals space straight P left curly bracket left parenthesis 1 comma space 6 right parenthesis comma space left parenthesis 2 comma space 5 right parenthesis comma space left parenthesis 3 comma space 4 right parenthesis comma space left parenthesis 4 comma space 3 right parenthesis comma space left parenthesis 5 comma space 2 right parenthesis comma space left parenthesis 6 comma space 1 right parenthesis right curly bracket space equals space 6 over 36
straight P left parenthesis straight X space equals space 8 right parenthesis space equals space straight P left curly bracket left parenthesis 2 comma space 6 right parenthesis comma space left parenthesis 3 comma space 5 right parenthesis comma space left parenthesis 4 comma space 4 right parenthesis comma space left parenthesis 5 comma space 3 right parenthesis comma space left parenthesis 6 comma space 2 right parenthesis right curly bracket space equals space 5 over 36
straight P left parenthesis straight X space equals space 9 right parenthesis space equals space straight P left curly bracket left parenthesis 3 comma space 6 right parenthesis comma space left parenthesis 4 comma space 5 right parenthesis comma space left parenthesis 5 comma space 4 right parenthesis comma space left parenthesis 6 comma space 3 right parenthesis right curly bracket space equals space 4 over 36
straight P left parenthesis straight X space equals space 10 right parenthesis space equals space straight P left curly bracket left parenthesis 4 comma space 6 right parenthesis space left parenthesis 5 comma space 5 right parenthesis comma space left parenthesis 6 comma space 4 right parenthesis right curly bracket space equals space 3 over 36
straight P left parenthesis straight X space equals space 11 right parenthesis space equals space straight P left curly bracket left parenthesis 5 comma space 6 right parenthesis comma space left parenthesis 6 comma space 5 right parenthesis right curly bracket space equals space 2 over 36
straight P left parenthesis straight X space equals space 12 right parenthesis space equals space straight P left curly bracket left parenthesis 6 comma space 6 right parenthesis right curly bracket space equals space 1 over 36
    Probability distribution of X is

    therefore space space straight mu space equals space straight E left parenthesis straight X right parenthesis space equals space sum from straight i space equals space 1 to straight n of space straight x subscript straight i space straight p subscript straight i space equals space 2 space cross times 1 over 36 plus 3 cross times 2 over 36 plus 4 cross times 3 over 36 plus 5 cross times 4 over 36
space space space space space space space space space space space plus space 6 space cross times 5 over 36 plus 7 cross times 6 over 36 plus 8 cross times 5 over 36 plus 9 cross times 4 over 36 plus 10 cross times 3 over 36 plus 11 cross times 2 over 36 plus 12 space cross times 1 over 36
space equals fraction numerator 2 plus 6 plus 12 plus 20 plus 30 plus 42 plus 40 plus 36 plus 30 plus 22 plus 12 over denominator 36 end fraction space equals 252 over 36 space equals 7
    ∴   the mean of the sum of the numbers that appear on throwing two fair dice is 7.
    Question 249
    CBSEENMA12033823

    Two cards are drawn simultaneously (or successively without replacement) from a well shuffled pack of 52 cards. Find the mean, variance and standard deviation of the number of kings.

    Solution
    Let X denote the number of kings obtained in two draws. X takes the values 0, 1, 2.
    Let p denote probability of first king.
    therefore space space space straight p space equals space 4 over 52 comma space space space space straight q space equals space 48 over 52
    straight P left parenthesis straight X space equals space 0 right parenthesis space equals space 48 over 52 cross times 47 over 51 space equals 12 over 13 cross times 47 over 51 space equals space 188 over 221
straight P left parenthesis straight X space equals 1 right parenthesis space equals space 4 over 52 cross times 48 over 51 plus 48 over 52 cross times 4 over 51 space equals 16 over 221 plus 16 over 221 equals space 32 over 221
straight P left parenthesis straight X space equals 2 right parenthesis space equals space 4 over 52 cross times 3 over 51 space equals 1 over 31 cross times 1 over 17 space equals 1 over 221
    ∴      probability distribution is

    Now,   Mean of X = E(X) = sum from straight i space equals space 1 to straight n of straight x subscript straight i space straight p left parenthesis straight x subscript straight i right parenthesis
                                equals space 0 cross times 188 over 121 plus 1 cross times 32 over 221 plus 2 cross times 1 over 221 space equals space 0 plus 32 over 221 plus 2 over 221 space equals 34 over 221
    Also,    straight E left parenthesis straight X squared right parenthesis space equals space sum from straight i space equals space 1 to straight n of space straight x subscript straight i squared space straight p left parenthesis straight x subscript straight i right parenthesis
                          equals space 0 squared cross times 188 over 121 plus 1 squared cross times 32 over 221 plus 2 squared cross times 1 over 221 equals space 0 space plus space 32 over 221 plus 4 over 221 space equals 36 over 221
    therefore space space space space space Var space left parenthesis straight X right parenthesis space equals space straight E left parenthesis straight X right parenthesis squared space minus space left square bracket straight E left parenthesis straight X right parenthesis right square bracket squared
space space space space space space space space space space space space space space space space space space space space space space space equals space 36 over 221 space minus space open parentheses 34 over 221 close parentheses squared equals space 36 over 221 space minus space 1156 over 48841 space equals space fraction numerator 7956 minus 1156 over denominator 48841 end fraction space equals 6800 over 48841
    therefore space space space space space straight sigma squared space equals space square root of Var left parenthesis straight X right parenthesis end root space equals space fraction numerator square root of 6800 over denominator 221 end fraction space equals space fraction numerator 82.46 over denominator 221 end fraction space equals space 0.37

    Question 250
    CBSEENMA12033824

    Let X denote the sum of the numbers obtained when two fair dice are rolled. Find the variance and standard deviation of X.

    Solution
    Let X denote the sum of the numbers obtained on the two dice. X can take values 2, 3, ....., 12
      straight P left parenthesis straight X space equals space 2 right parenthesis space equals space straight P thin space left curly bracket left parenthesis 1 comma space 1 right parenthesis right curly bracket space equals space 1 over 36
straight P left parenthesis straight X space equals space 3 right parenthesis space equals space straight P left curly bracket left parenthesis 1 comma space 2 right parenthesis comma space left parenthesis 2 comma space 1 right parenthesis right curly bracket space equals space 2 over 36
straight P left parenthesis straight X space equals space 4 right parenthesis space equals space straight P left curly bracket left parenthesis 1 comma space 3 right parenthesis comma space left parenthesis 2 comma space 2 right parenthesis comma space left parenthesis 3 comma space 1 right parenthesis right curly bracket space equals space 3 over 36
straight P left parenthesis straight X space equals space 5 right parenthesis space equals space straight P left curly bracket left parenthesis 1 comma space 4 right parenthesis comma space left parenthesis 2 comma space 3 right parenthesis comma space left parenthesis 3 comma space 2 right parenthesis comma space left parenthesis 4 comma space 1 right parenthesis right curly bracket space equals space 4 over 36
straight P left parenthesis straight X space equals space 6 right parenthesis space equals space straight P left curly bracket left parenthesis 1 comma space 5 right parenthesis comma space left parenthesis 2 comma space 4 right parenthesis comma space left parenthesis 3 comma space 3 right parenthesis comma space left parenthesis 4 comma space 2 right parenthesis comma space left parenthesis 5 comma space 1 right parenthesis right curly bracket space equals space 5 over 36
straight P left parenthesis straight X space equals space 7 right parenthesis space equals space straight P left curly bracket left parenthesis 1 comma space 6 right parenthesis comma space left parenthesis 2 comma space 5 right parenthesis comma space left parenthesis 3 comma space 4 right parenthesis comma space left parenthesis 4 comma space 3 right parenthesis comma space left parenthesis 5 comma space 2 right parenthesis comma space left parenthesis 6 comma space 1 right parenthesis right curly bracket space equals space 6 over 36
straight P left parenthesis straight X space equals space 8 right parenthesis space equals space straight P left curly bracket left parenthesis 2 comma space 6 right parenthesis comma space left parenthesis 3 comma space 5 right parenthesis comma space left parenthesis 4 comma space 4 right parenthesis comma space left parenthesis 5 comma space 3 right parenthesis comma space left parenthesis 6 comma space 2 right parenthesis right curly bracket space equals space 5 over 36
straight P left parenthesis straight X space equals space 9 right parenthesis space equals space straight P left curly bracket left parenthesis 3 comma space 6 right parenthesis comma space left parenthesis 4 comma space 5 right parenthesis comma space left parenthesis 5 comma space 4 right parenthesis comma space left parenthesis 6 comma space 3 right parenthesis right curly bracket space equals space 4 over 36
straight P left parenthesis straight X space equals space 10 right parenthesis space equals space straight P left curly bracket left parenthesis 4 comma space 6 right parenthesis comma space left parenthesis 5 comma space 5 right parenthesis comma space left parenthesis 6 comma space 4 right parenthesis right curly bracket space equals space 3 over 36
straight P left parenthesis straight X space equals space 11 right parenthesis space equals space straight P left curly bracket left parenthesis 5 comma space 6 right parenthesis comma space left parenthesis 6 comma space 5 right parenthesis right curly bracket space equals space 2 over 36
straight P left parenthesis straight X space equals space 12 right parenthesis space equals space straight P left curly bracket left parenthesis 6 comma space 6 right parenthesis right curly bracket space equals space 1 over 36
    Probability distribution of X is

    Mean X = sum from blank to blank of straight X thin space straight P left parenthesis straight X right parenthesis
         equals space fraction numerator 2 space cross times 1 plus 3 cross times 2 plus 4 cross times 3 plus 5 cross times 4 space plus space 6 space cross times 5 space plus space 7 space cross times 6 space plus space 8 space cross times 5 space plus space 9 cross times 4 space plus space 10 space cross times 3 space plus 11 space cross times 2 space plus 12 space cross times space 1 over denominator 36 end fraction
space equals 252 over 36 space equals space 7
    Variance straight X space equals space sum from blank to blank of straight X squared space straight P left parenthesis straight X right parenthesis space minus space left parenthesis mean right parenthesis squared
                       fraction numerator left parenthesis 2 squared cross times 1 space plus space 3 squared space cross times 2 space plus space 4 squared cross times 3 space plus space 5 squared space cross times space 4 space plus space 6 squared space cross times space 5 space plus space 7 squared space cross times 6 space plus space 8 space squared space cross times 5 plus 9 squared space cross times 4 space plus space 10 squared space cross times 3 space plus space 11 squared cross times 2 space plus space 12 squared space cross times 1 right parenthesis over denominator 36 end fraction minus 7 squared
     = fraction numerator 4 plus 18 plus 48 plus 100 plus 180 plus 294 plus 320 plus 324 plus 300 plus 242 plus 144 over denominator 36 end fraction minus 49
     = 1974 over 36 minus 49 space equals space fraction numerator 1974 minus 1764 over denominator 36 end fraction space equals 210 over 36 space equals space 35 over 6.
    therefore space space straight S. straight D. space space equals space square root of Variance space equals square root of 35 over 6 end root space equals space 1.4
    Question 253
    CBSEENMA12033827

    Find the variance of the number obtained on a throw of an unbiased die.

    Solution

    Here S = {1, 2, 3, 4, 5, 6}.
    Let X denote the number obtained on the throw. Then X is a random variable which can take values 1, 2, 3, 4, 5 or 6.
    Also,         P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = 1 over 6
    ∴   the probability distribution of X is

    Now, straight E left parenthesis straight X right parenthesis space equals space sum from straight i space equals space 1 to straight n of space straight x subscript straight i space straight p left parenthesis straight x subscript straight i right parenthesis space equals space 1 space cross times 1 over 6 space plus space 2 space cross times 1 over 6 plus 3 space cross times 1 over 6 plus 4 space cross times 1 over 6 space plus space 5 space cross times space 1 over 6 space plus space 6 space cross times space 1 over 6 space space space space
                      equals space 1 over 6 plus 2 over 6 plus 3 over 6 plus 4 over 6 plus 5 over 6 plus 6 over 6 space equals 21 over 6
    Also, straight E left parenthesis straight X right parenthesis squared space equals space 1 squared cross times 1 over 6 plus 2 squared cross times 1 over 6 plus 3 squared cross times 1 over 6 plus 4 squared cross times 1 over 6 plus 5 squared cross times 1 over 6 plus 6 squared cross times 1 over 6
                        equals space 1 over 6 plus 4 over 6 plus 9 over 6 plus 16 over 6 plus 25 over 6 plus 36 over 6 space equals 91 over 6
    therefore space space space space Var left parenthesis straight X right parenthesis space equals space straight E left parenthesis straight X right parenthesis squared space minus space left parenthesis straight E left parenthesis straight X right parenthesis right parenthesis squared
                           equals space 91 over 6 minus open parentheses 21 over 6 close parentheses squared space equals space 91 over 6 minus 441 over 36 space equals space fraction numerator 546 minus 441 over denominator 36 end fraction space equals 105 over 36 space equals 35 over 12.

    Question 254
    CBSEENMA12033828

    A die is tossed twice. Getting a number greater than 4 is considered a success. Find the variance of the probability distribution of the number of successes.

    Solution
    The number of successes is a random variable. Let us denote it by X. X can take the values 0, 1, 2.
    The number greater than 4 is 5 or 6. Let S denote the successes in getting 5 or 6.
    therefore space space space straight P left parenthesis straight S right parenthesis space equals space straight P left parenthesis 5 space or space 6 right parenthesis space equals space 2 over 6 space equals space 1 third
space space space space space space space space straight P open parentheses straight S with bar on top close parentheses space equals space 1 minus 1 third space equals space 2 over 3
therefore space space space space straight P left parenthesis straight X space equals space 0 right parenthesis space equals space straight P left parenthesis straight S with bar on top space. space straight S with bar on top right parenthesis space equals space 2 over 3 cross times 2 over 3 space equals space 4 over 9
space space space space space space space space straight P left parenthesis straight X space equals space 1 right parenthesis space equals space straight P left parenthesis straight S. space straight S with bar on top right parenthesis space plus space straight P left parenthesis straight S with bar on top space. space straight S right parenthesis space equals space 1 third cross times 2 over 3 plus 2 over 3 cross times 1 third space equals 4 over 9
space space space space space space space space space straight P left parenthesis straight X space equals space 2 right parenthesis space equals space straight P left parenthesis straight S. space straight S right parenthesis space equals space 1 third cross times 1 third space equals space 1 over 9
    therefore      X takes the values 0, 1, 2 with probabilities 4 over 9 comma space 4 over 9 space and space 1 over 9 respectively.

    straight mu space equals space sum straight x space straight p subscript straight i space equals space 2 over 3
therefore space space space space straight sigma squared space equals space sum space straight x squared space straight p subscript straight i space minus space straight mu squared space equals space 8 over 9 minus 4 over 9 space equals 4 over 9
therefore space space space variance space equals space 4 over 9.
    Question 255
    CBSEENMA12033829

    Two bad eggs are mixed accidentally with 10 good ones. Three eggs are drawn at random without replacement from this lot. Find the mean and variance for the number of bad eggs.

    Solution
    Let X represent the number of bad eggs. X takes the values 0, 1, 2.
     P(X = 0) = P(3 good eggs)
                   equals space fraction numerator straight C presuperscript 10 subscript 3 over denominator straight C presuperscript 12 subscript 3 end fraction space equals fraction numerator 10 space cross times 9 space cross times space 8 over denominator 12 space cross times space 11 space cross times 10 end fraction space equals space 12 over 22
    P(X = 1) = P(2 good eggs and one bad egg)
                   equals space fraction numerator straight C presuperscript 10 subscript 2 space cross times straight C presuperscript 2 subscript 1 over denominator straight C presuperscript 12 subscript 3 end fraction space equals fraction numerator begin display style fraction numerator 10 space cross times space 9 over denominator 1 space cross times space 2 end fraction end style cross times begin display style 2 over 1 end style over denominator begin display style fraction numerator 12 space cross times space 11 space cross times space 10 over denominator 1 space cross times space 2 space cross times 3 end fraction end style end fraction space equals space 9 over 22
    P(X = 2) = P(one good egg and two bad eggs)
                   equals space fraction numerator straight C presuperscript 10 subscript 1 space cross times space straight C presuperscript 2 subscript 2 over denominator straight C presuperscript 12 subscript 3 end fraction space equals space fraction numerator begin display style 10 over 1 end style cross times 1 over denominator begin display style fraction numerator 12 space cross times space 11 space cross times space 10 over denominator 1 space cross times 2 space cross times space 3 end fraction end style end fraction space equals space 1 over 22
    therefore space space we space have

    straight mu space equals space sum straight x space straight p subscript straight i space equals space 1 half
straight sigma squared space equals space sum from blank to blank of straight x squared space straight p subscript straight i space minus space straight mu squared space equals space 13 over 22 minus 1 fourth space equals fraction numerator 26 minus 11 over denominator 44 end fraction space equals 15 over 44

    Question 256
    CBSEENMA12033830

    Three bad eggs got mixed up with 7 good eggs. If three eggs are drawn (without replacement) from 10 eggs, find the mean and variance for the number of bad eggs among them.

    Solution

    Number of good eggs = 7
    Number of bad eggs = 3
    ∴ total number of eggs = 7 + 3 = 10
    Let X denote the random variable ‘bad egg is obtained’. X takes the values 0, 1, 2, 3.
    straight P left parenthesis straight X space equals space 0 right parenthesis space equals space 7 over 10 cross times 6 over 9 cross times 5 over 8 space equals 210 over 720
straight P left parenthesis straight X space equals space 1 right parenthesis space equals space 3 over 10 cross times 7 over 9 cross times 6 over 8 plus 7 over 10 cross times 3 over 9 cross times 6 over 8 plus 7 over 10 cross times 6 over 9 cross times 3 over 8 space equals 126 over 720 plus 126 over 720 plus 126 over 720 space equals space 378 over 720
straight P left parenthesis straight X space equals space 2 right parenthesis space equals space 3 over 10 cross times 2 over 9 cross times 7 over 8 plus 3 over 10 cross times 7 over 9 cross times 2 over 8 plus 7 over 10 cross times 3 over 9 cross times 2 over 8 space equals 42 over 720 plus 42 over 720 plus 42 over 720 space equals 126 over 720
straight P left parenthesis straight X space equals space 3 right parenthesis space equals space 3 over 10 cross times 2 over 9 cross times 1 over 8 space equals 6 over 720
    therefore     X takes the values 0, 1, 2, 3 with probabilities 210 over 720 comma space 378 over 720 comma space 126 over 720 comma space 6 over 720

    straight mu space equals space sum from blank to blank of straight x space straight p subscript straight i space equals space 648 over 720 space equals space 9 over 10
straight sigma squared space equals space sum from blank to blank of straight x squared space straight p subscript straight i space minus space straight mu squared space equals space 936 over 720 minus 81 over 720 space equals space 13 over 10 minus 81 over 100 space equals space fraction numerator 130 minus 81 over denominator 100 end fraction space equals space 49 over 100
therefore space space space space space mean space equals space straight mu space equals space 9 over 10 comma space space variance space equals space 49 over 100

    Question 257
    CBSEENMA12033831

    Five defective bulbs are accidentally mixed with twenty good ones. It is not possible to just look at a bulb and tell whether or not a bulb is defective. Four bulbs are drawn at random from this lot. Find the mean number of defective bulbs drawn.

    Solution
    Let us denote by X, the number of defective bulbs. Clearly X can take the values 0, 1, 2, 3, 4.
    P(X = 0) = (no defective bulb) = P(all 4  goods ones)
                                                  equals space fraction numerator straight C presuperscript 20 subscript 4 over denominator straight C presuperscript 25 subscript 4 end fraction space equals space fraction numerator 20 cross times 19 cross times 18 cross times 17 over denominator 25 cross times 24 cross times 32 cross times 22 end fraction space equals space 969 over 2530
    P(X = 1) = P(1 defective and 3 good ones)
                  equals space fraction numerator straight C presuperscript 5 subscript 1 cross times straight C presuperscript 20 subscript 3 over denominator straight C presuperscript 25 subscript 4 end fraction space equals space fraction numerator begin display style 5 over 1 end style cross times begin display style fraction numerator 20 cross times 19 cross times 18 over denominator 1 cross times 2 cross times 3 end fraction end style over denominator begin display style fraction numerator 25 cross times 24 cross times 23 cross times 22 over denominator 1 cross times 2 cross times 3 cross times 4 end fraction end style end fraction space equals space 1140 over 2530
    P(X = 2) = P(2 defective and 2  good ones)
                   equals space fraction numerator straight C presuperscript 5 subscript 2 cross times straight C presuperscript 20 subscript 2 over denominator straight C presuperscript 25 subscript 4 end fraction space equals space fraction numerator begin display style fraction numerator 5 cross times 4 over denominator 1 cross times 2 end fraction end style cross times begin display style fraction numerator 20 cross times 19 over denominator 1 cross times 2 end fraction end style over denominator begin display style fraction numerator 25 cross times 24 cross times 23 cross times 22 over denominator 1 cross times 2 cross times 3 cross times 4 end fraction end style end fraction space equals space 380 over 2530
    P(X  = 3) = P(3 defective and one good one)
                   equals space fraction numerator straight C presuperscript 5 subscript 3 cross times straight C presuperscript 20 subscript 1 over denominator straight C presuperscript 25 subscript 4 end fraction space equals space fraction numerator begin display style fraction numerator 5 cross times 4 over denominator 1 cross times 2 end fraction end style cross times begin display style 20 over 1 end style over denominator begin display style fraction numerator 25 cross times 24 cross times 23 cross times 22 over denominator 1 cross times 2 cross times 3 cross times 4 end fraction end style end fraction space equals 40 over 2530
    P(X = 4) = P(all 4 defective)
                          equals space fraction numerator straight C presuperscript 5 subscript 4 over denominator straight C presuperscript 25 subscript 4 end fraction space equals space fraction numerator begin display style 5 over 1 end style over denominator begin display style fraction numerator 25 cross times 24 cross times 23 cross times 22 over denominator 1 cross times 2 cross times 3 cross times 4 end fraction end style end fraction space equals 1 over 2530
    ∴ Probability distribution table is

    therefore space mean space sum straight x space straight p subscript straight i space equals space 4 over 5
    Question 258
    CBSEENMA12033832

    Two cards are drawn simultaneously (or successively, without replacement) from a well-shuffled deck of 52 cards. Compute σ2 for the number of aces.

    Solution

    Let X denote the number of aces obtained in two draws. X takes the values 0, 1, 2.
    Let p denote probability of first ace.
    therefore space space space straight p space equals space 4 over 52 comma space space straight q space equals space 48 over 52
    straight P left parenthesis straight X space equals space 0 right parenthesis space equals space 48 over 52 cross times 47 over 51 space equals 12 over 13 cross times 47 over 51 space equals space 188 over 221
straight P left parenthesis straight X space equals space 1 right parenthesis space equals space 4 over 52 cross times 48 over 51 plus 48 over 52 cross times 4 over 51 space equals 16 over 221 plus 16 over 221 space equals space 32 over 221
straight P left parenthesis straight X space equals space 2 right parenthesis space equals space 4 over 52 cross times 3 over 51 space equals space 1 over 31 cross times 1 over 17 space equals 1 over 221
    ∴      probability distribution is

    therefore space space space space straight X space takes space the space values space 0 comma space 1 comma space 2 space with space probabilities space 188 over 221 comma space 32 over 221 comma space 1 over 221

    straight mu space equals sum from blank to blank of straight x space straight p subscript straight i space equals space 34 over 221
straight sigma squared space equals sum from blank to blank of straight x squared space straight p space subscript straight i space minus space straight mu squared space equals space 36 over 221 space minus space open parentheses 34 over 221 close parentheses squared space equals space 36 over 221 minus open parentheses 2 over 13 close parentheses squared space equals 36 over 221 minus 4 over 169
space space space space space equals space fraction numerator 6084 minus 884 over denominator 37349 end fraction space equals 5200 over 37349 space equals 400 over 2873

    Question 259
    CBSEENMA12033833

    In a game, a man wins a rupee for a six and loses a rupee for any other number when a fair die is thrown. The man decided to throw a die thrice but to quit as and when he gets a six. Find the expected value of the amount he wins/loses.

    Solution
    If X is the number of throws, then X may take values 1, 2, 3.
    P(X = 1) = P(man gets a six on first throw) =  1 over 6
    P(X = 2) = P(man gets a six  on first throw but gets a six on second throw)
                        equals space open parentheses 1 minus 1 over 6 close parentheses space open parentheses 1 over 6 close parentheses space equals space 5 over 6 space cross times space 1 over 6 space equals space 5 over 36
    P(X  = 3) = P(man does not get a six on first and second throws)
                            equals space open parentheses 1 minus 1 over 6 close parentheses space open parentheses 1 minus 1 over 6 close parentheses space equals space 5 over 6 cross times 5 over 6 space equals space 25 over 36
    ∴   probability distribution of X is

    When X = 1, the man gains Re 1.
    When X = 2, the man does not gain anything.
    [∵ on first throw he loses Re 1 and on second throw he gains Re 1]
    When X = 3,
    (i) the man may lose Re 3 when all the three throws show a non-six, which happens with probability 5 over 6 cross times 5 over 6 cross times 5 over 6 space equals space 125 over 216.
    (ii) the man may lose Re 1 when first two throws show a non-six and third shows a six, which happens with probability 5 over 6 cross times 5 over 6 cross times 1 over 6 space equals space 25 over 216.
    If Y is the amount gained or lost, then Y takes values 1, 0, - 3, - 1.
    ∴ probability distribution of Y is

    Expected value of Y = 1 cross times 1 over 6 plus 0 cross times 5 over 36 plus left parenthesis negative 3 right parenthesis space cross times 125 over 216 plus left parenthesis negative 1 right parenthesis space cross times space 25 over 216
                                   equals space 1 over 6 plus 0 minus 375 over 216 minus 25 over 216
equals space fraction numerator 36 minus 375 minus 25 over denominator 216 end fraction space equals space minus 364 over 216 space equals space minus 91 over 54
    Hence,  the man is expected to lose Rs. 91 over 54

    Question 260
    CBSEENMA12033834

    The mean of the numbers obtained on throwing a die having written 1 on three faces, 2 on two faces and 5 on one face is
    • 1

    • 2

    • 5

    • 8 over 3

    Solution

    B.

    2

    Let X denote the number on the die, then X takes values 1, 2 and 5 only.
    P(X = 1) = 3 over 6 space equals space 1 half comma space space space space straight P left parenthesis straight X space equals space 2 right parenthesis space equals 2 over 6 space equals 1 third comma space space straight P left parenthesis straight X space equals space 5 right parenthesis space equals space 1 over 6
    ∴     probability distribution of X is
               
    Mean space straight X space equals space sum from blank to blank of straight X space straight P left parenthesis straight X right parenthesis space equals space 1 space cross times 1 half plus 2 cross times 1 third plus 5 space cross times 1 over 6 space equals space 1 half plus 2 over 3 plus 5 over 6 space equals fraction numerator 3 plus 4 plus 5 over denominator 6 end fraction space equals 12 over 6 space equals 2
    ∴ (B) is correct answer.
    Question 261
    CBSEENMA12033835

    Suppose that two cards are drawn at random from a deck of cards. Let X be the number of aces obtained. Then the value of E(X) is
    • 37 over 221
    • 5 over 13
    • 1 over 13
    • 2 over 13

    Solution
    X is the number of aces obtained. So, X can take values 0, 1, 2.
                  straight P left parenthesis straight X space equals space 0 right parenthesis space equals space straight P left parenthesis no space ace space is space drawn right parenthesis space equals space fraction numerator straight C presuperscript 48 subscript 2 over denominator straight C presuperscript 52 subscript 2 end fraction space equals fraction numerator 48 space cross times space 47 over denominator 52 space cross times space 51 end fraction space equals space 188 over 221
straight P left parenthesis straight X space equals space 1 right parenthesis space equals space straight P left parenthesis one space ace space and space non minus ace right parenthesis space equals space fraction numerator straight C presuperscript 4 subscript 1 cross times straight C presuperscript 48 subscript 1 over denominator straight C presuperscript 52 subscript 2 end fraction space equals space fraction numerator 4 space cross times space 48 over denominator begin display style fraction numerator 52 space cross times 51 over denominator 1 space cross times 2 end fraction end style end fraction
space space space space space space space space space space space space space space space space space equals space fraction numerator 4 space cross times space 48 space cross times space 1 space cross times space 2 over denominator 52 space cross times space 51 end fraction space equals space 32 over 221
    and straight P left parenthesis straight X space equals space 2 right parenthesis space equals space straight P left parenthesis two space aces space are space drawn right parenthesis space equals space fraction numerator straight C presuperscript 4 subscript 2 over denominator straight C presuperscript 52 subscript 2 end fraction space equals fraction numerator 4 space cross times space 3 over denominator 52 space cross times space 51 end fraction space equals space 1 over 221
    ∴      probability distribution of X is

    therefore space space space straight E left parenthesis straight X right parenthesis space equals space sum straight x space straight P left parenthesis straight X right parenthesis space equals space 0 space cross times 188 over 221 plus 1 space cross times space 32 over 221 plus 2 space cross times 1 over 221
space space space space space space space space space space space space space space space space equals space 0 plus 32 over 221 plus 2 over 221 space equals space 34 over 221 space equals 2 over 13.
    ∴    (D) is correct answer.
    Question 262
    CBSEENMA12033836

    Six balls are drawn successively from an urn containing 7 red and 9 black balls. Tell whether or not the trials of drawing balls arc Bernoulli trials when after each drawn the ball drawn is (i) replaced   (ii) not replaced in the urn.

    Solution
    The number of trials is finite. When the drawing is done with replacement, the probability of success (say, red ball) is straight p space equals 7 over 16 which is same for all six trials (draws).
    Hence, the drawing of balls with replacements are Bernoulli trails.
    (ii) When the drawing is done without replacement, the probability of success (i.e., red ball) in first trial is 7 over 16 comma in 2nd trial is 6 over 15 if the first ball drawn is red or  7 over 15 if the first ball drawn is black and so on.  Clearly, the probability of success is not same for all trials, hence the trials are not Bernoulli trials.
    Question 264
    CBSEENMA12033838

    A pair of dice is thrown 4 times. If a doublet is considered a success, find the probability of 2 successes.

    Solution

    Here n = 4
    Let p be the probability that doublet is obtained
    therefore space space straight p space equals space straight P open curly brackets left parenthesis 1 comma space 1 right parenthesis comma space left parenthesis 2 comma space 2 right parenthesis comma space left parenthesis 3 comma space 3 right parenthesis comma space left parenthesis 4 comma space 4 right parenthesis comma space left parenthesis 5 comma space 5 right parenthesis comma space left parenthesis 6 comma space 6 right parenthesis close curly brackets space equals space 6 over 36 equals 1 over 6
therefore space space space space straight q space equals space 1 space minus space straight p space equals space 1 space minus space 1 over 6 space equals 5 over 6
Required space probability space space equals space straight P left parenthesis 2 right parenthesis space equals space straight C presuperscript 4 subscript 2 space open parentheses 5 over 6 close parentheses squared space open parentheses 1 over 6 close parentheses squared space equals space fraction numerator 4 space cross times space 3 over denominator 1 cross times 2 end fraction cross times 25 over 36 space equals 25 over 216

    Question 265
    CBSEENMA12033839

    A pair of dice is thrown 10 times. If getting a doublet is considered a success, find the probability of getting 4 successes.

    Solution

     Here n = 10
    Let p be the probability that doublet is obtained
    therefore space space space straight p space equals space straight P left curly bracket left parenthesis 1 comma space 1 right parenthesis comma space left parenthesis 2 comma space 2 right parenthesis comma space left parenthesis 3 comma space 3 right parenthesis comma space left parenthesis 4 comma space 4 right parenthesis comma space left parenthesis 5 comma space 5 right parenthesis comma space left parenthesis 6 comma space 6 right parenthesis right curly bracket
space space space space space space space space space space equals 6 over 36 space equals space 1 over 6
straight q space equals space 1 minus space straight p space equals space 1 minus 1 over 6 space equals space 5 over 6
    Required probability  = P(4) = straight C presuperscript 10 subscript 4 space open parentheses 5 over 6 close parentheses to the power of 6 space open parentheses 1 over 6 close parentheses to the power of 4
                                     equals space fraction numerator 10 space cross times space 9 space cross times space 8 space cross times space 7 over denominator 1 space cross times 2 space cross times 3 space cross times 4 end fraction cross times 5 to the power of 6 over 6 to the power of 6 cross times 1 over 6 to the power of 4 space equals 3281250 over 6 to the power of 10

    Question 267
    CBSEENMA12033841

    A bag contains 5 white, 7 red and 8 black balls. If four balls are drawn one by one with replacement, what is the probability that
    i) none is white?    (ii) all are white?  (iii) only 2 are white?    (iv) at least one is white?

    Solution

    Here,  n = 4,  p = fraction numerator 5 over denominator 5 plus 7 plus 8 end fraction space equals 1 fourth
                 straight q space equals space 1 minus straight p space equals space 1 minus 1 fourth space equals space 3 over 4
    (i) P(none is white) = P(0) = straight C presuperscript 4 subscript 0 space open parentheses 3 over 4 close parentheses to the power of 4 minus 0 end exponent space open parentheses 1 fourth close parentheses to the power of 0 space equals space 1 cross times open parentheses 3 over 4 close parentheses to the power of 4 space cross times space 1 space equals space 81 over 256
    (ii) P(all white) = P(4) = straight C presuperscript 4 subscript 4 space open parentheses 3 over 4 close parentheses to the power of 4 minus 4 end exponent space open parentheses 1 fourth close parentheses to the power of 4 space equals space 1 cross times 1 cross times 1 over 256 space equals 1 over 256
    (iii) P(only 2 are white) = P(2) = straight C presuperscript 4 subscript 2 open parentheses 3 over 4 close parentheses to the power of 4 minus 2 end exponent space open parentheses 1 fourth close parentheses squared space equals space fraction numerator 4 cross times 3 over denominator 1 cross times 2 end fraction cross times 9 over 16 cross times 1 over 6 space equals 27 over 128
    (iv) P(at least one is white) = P(1) + P(2) + P(3) + P(4)
                                                 equals space 1 minus straight P left parenthesis 0 right parenthesis space equals space 1 minus 81 over 256 space equals fraction numerator 256 minus 81 over denominator 256 end fraction space equals 175 over 256

    Question 268
    CBSEENMA12033842

    Five cards are drawn successively with replacement from a well shuffled deck of 52 cards. What is the probability that
    (i) all the five cards are spades?
    (ii) only 3 cards are spades?
    (iii) none is a spade?

    Solution

    Here n = 5
    p = P(a spade in a single draw) = 13 over 52 equals space 1 fourth
    therefore space space space space straight q space equals space 1 minus space straight p space equals space 1 minus space 1 fourth space equals space 3 over 4
    (i) P(all the five cards are spades)
    equals straight P left parenthesis 5 right parenthesis space equals space straight C presuperscript 5 subscript 5 space open parentheses 3 over 4 close parentheses to the power of 5 minus 5 end exponent space open parentheses 1 fourth close parentheses to the power of 5 space equals space 1 space cross times space 1 space cross times space 1 over 1024 space equals space 1 over 1024
    (ii) P (only 3 cards are spades)
                 equals space straight P left parenthesis 3 right parenthesis space equals space straight C presuperscript 5 subscript 3 space open parentheses 3 over 4 close parentheses to the power of 5 minus 3 end exponent space open parentheses 1 fourth close parentheses cubed space equals space fraction numerator 5 space cross times space 4 space cross times 3 over denominator 1 space cross times 2 space cross times 3 end fraction cross times 9 over 16 cross times 1 over 64 space equals space fraction numerator 90 over denominator 16 space cross times space 64 end fraction space equals space 45 over 512     
                
    (iii) P (none is a spade)
              equals straight P left parenthesis 0 right parenthesis space equals space straight C presuperscript 5 subscript 0 space open parentheses 3 over 4 close parentheses to the power of 5 minus 0 end exponent space space open parentheses 1 fourth close parentheses to the power of 0 space equals space 1 cross times 243 over 1024 cross times 1 space equals space 243 over 1024

    Question 269
    CBSEENMA12033843

    Find the probability of getting 5 exactly twice in 7 throws of a die.

    Solution

    Here,   n = 7
              p =  P(5) = 1 over 6 comma   straight q space equals space 1 minus 1 over 6 space equals 5 over 6
    P(exactly twice) = straight P left parenthesis 2 right parenthesis space equals space straight C presuperscript 7 subscript 2 space space open parentheses 5 over 6 close parentheses to the power of 5 space open parentheses 1 over 6 close parentheses squared space equals space fraction numerator 7 cross times 6 over denominator 1 cross times 2 end fraction cross times 5 to the power of 5 over 6 to the power of 5 cross times 1 over 6 squared space equals space 21 space open parentheses 5 to the power of 5 over 6 to the power of 7 close parentheses.

    Question 272
    CBSEENMA12033846

    The items produced by a company contain 5% defective items. Show that the probability of getting 2 defective items in a sample of 10 items is fraction numerator 45 space cross times space 19 to the power of 8 over denominator 20 to the power of 10 end fraction.

    Solution

    Here n = 10
                          straight p space equals space 5 over 100 space equals 1 over 20 comma space space straight q space equals space 1 space minus space straight p space equals 1 space minus 1 over 20 space equals space 19 over 20
    Required probability  = straight P left parenthesis 2 right parenthesis space equals space straight C presuperscript 10 subscript 2 space open parentheses 19 over 20 close parentheses to the power of 8 space open parentheses 1 over 20 close parentheses squared
                                        equals space fraction numerator 10 space cross times space 9 over denominator 1 space cross times 2 end fraction cross times 19 to the power of 8 over 20 to the power of 8 cross times 1 over 20 squared space equals fraction numerator 45 space cross times space 19 to the power of 18 over denominator 20 to the power of 10 end fraction

    Question 273
    CBSEENMA12033847

    It is known that 10% of certain articles manufactured are defective. What is the probability that in a random sample of 12 such articles, 9 are defective?

    Solution

    Here n = 12
                   straight p space equals space 10 over 100 space equals 1 over 10 comma space space straight q space equals space 1 minus straight p space equals space 1 minus 1 over 10 space equals space 9 over 10
    straight P left parenthesis 9 space articles space are space defective right parenthesis space equals space straight P left parenthesis 9 right parenthesis space equals space straight C presuperscript 12 subscript 9 space open parentheses 9 over 10 close parentheses cubed space open parentheses 1 over 10 close parentheses to the power of 9 space
                                                equals space straight C presuperscript 12 subscript 3 space cross times space 9 cubed over 10 cubed cross times 1 over 10 to the power of 9 space equals fraction numerator 12 cross times 11 cross times 10 over denominator 1 cross times 2 cross times 3 end fraction space cross times 9 cubed over 10 to the power of 12
equals space 220 space cross times space 729 over 10 to the power of 12 space equals 160380 over 10 to the power of 12 space equals 16038 over 10 to the power of 11

    Question 274
    CBSEENMA12033848

    A bag consists of 10 balls each marked with one of the digits 0 to 9. If four balls are drawn successively with replacement from the bag, what is the probability that none is marked with the digit 0?

    Solution

    Here n = 45
    p = P (ball drawn is marked with 0)  = 1 over 10
                                                          left parenthesis because space only space one space ball space out space of space 10 space is space marked space with space 0 right parenthesis
    therefore space space space straight q space equals space 1 minus straight p space equals space 1 minus 1 over 10 space equals 9 over 10
    P(none is marked with the digit 0) = P(0) = straight C presuperscript 4 subscript 0 space open parentheses 9 over 10 close parentheses to the power of 4
                           equals space 1 space cross times space open parentheses 9 over 10 close parentheses to the power of 4 space equals space open parentheses 9 over 10 close parentheses to the power of 4 space equals 6561 over 10000.

    Question 275
    CBSEENMA12033849

    On a multiple choice examination with three possible answers for each of the five questions, what is the probability that a candidate would get four or more correct answers just by guessing?

    Solution

    Here n = 5
            straight p space equals 1 third comma space space straight q space equals space 1 minus straight p space equals space 1 minus 1 third space equals space 2 over 3
    P(four or more correct answers) = P(4) + P(5)
                                  equals space straight C presuperscript 5 subscript 4 space open parentheses 2 over 3 close parentheses space open parentheses 1 third close parentheses to the power of 4 space plus space straight C presuperscript 5 subscript 5 space open parentheses 1 third close parentheses to the power of 5
space equals space 5 over 1 cross times 2 over 3 cross times 1 over 81 plus space 1 space cross times space 1 over 243 space equals space 10 over 243 plus 1 over 243 space equals 11 over 243

    Question 276
    CBSEENMA12033850

    There are 5% defective items in a large bulk of items. What is the probability that a sample of 10 items will include not more than one defective item ?

    Solution

    Here straight p space equals 5 over 100 space equals 1 over 20 comma space space straight q space equals space 1 minus straight p space equals space 1 minus 1 over 20 space equals space 19 over 20 comma space space straight n space equals space 10
    Required probability = P(no defective) + P(1 defective)
                                equals space straight C presuperscript 10 subscript 0 space open parentheses 19 over 20 close parentheses to the power of 10 space plus space straight C presuperscript 10 subscript 1 space open parentheses 19 over 20 close parentheses to the power of 9 space open parentheses 1 over 20 close parentheses to the power of 1
equals space 1 space cross times space open parentheses 19 over 20 close parentheses to the power of 10 plus space 10 over 1 cross times open parentheses 19 over 20 close parentheses to the power of 9 cross times 1 over 20
space equals open parentheses 19 over 20 close parentheses to the power of 19 space open square brackets 19 over 20 plus 10 over 20 close square brackets space equals open parentheses 19 over 20 close parentheses to the power of 9 space cross times 29 over 20

    Question 277
    CBSEENMA12033851

    The items produced by a firm are supposed to contain 5% defective items. What is the probability that a sample of 8 items will contain less than 2 defective items?

    Solution

    Here n = 8
            straight p space equals space 5 over 100 space equals 1 over 20
straight q space equals space 1 minus space straight p space equals space 1 space minus space 1 over 20 space equals 19 over 20
    P(less than 2 defective )
                           = P(0) + P(1)
                            equals space straight C presuperscript 8 subscript 0 space open parentheses 19 over 20 close parentheses to the power of 8 minus 0 end exponent space open parentheses 1 over 20 close parentheses to the power of 0 space space plus straight C presuperscript 8 subscript 1 space open parentheses 19 over 20 close parentheses to the power of 8 minus 1 end exponent space open parentheses 1 over 20 close parentheses to the power of 1
equals space 1 space cross times space open parentheses 19 over 20 close parentheses to the power of 8 space cross times space 1 space plus space 8 over 1 cross times open parentheses 19 over 20 close parentheses to the power of 7 space cross times 1 over 20
equals space open parentheses 19 over 20 close parentheses to the power of 7 space open square brackets 19 over 20 plus 8 over 20 close square brackets space equals space open parentheses 19 over 20 close parentheses to the power of 9 space cross times space 27 over 20

    Question 278
    CBSEENMA12033852

    There are 5% defective items in large bulk of items. Find the probability that a sample of 5 items will include not more than 2 defective items.

    Solution

    Here n = 5
                          straight p space equals space 5 over 100 space equals space 1 over 20 comma space space straight q space equals space 1 space minus space straight p space equals space 1 space minus space 1 over 20 space equals space 19 over 20
    P(not more than  2 defective items) = P(0) + P(1) + P(2)
                                          equals space straight C presuperscript 5 subscript 0 space open parentheses 19 over 20 close parentheses to the power of 5 space plus space straight C presuperscript 5 subscript 1 space open parentheses 19 over 20 close parentheses to the power of 4 space open parentheses 1 over 20 close parentheses space plus space straight C presuperscript 5 subscript 2 space open parentheses 19 over 20 close parentheses cubed space open parentheses 1 over 20 close parentheses squared
equals space open parentheses 19 over 20 close parentheses cubed space open square brackets straight C presuperscript 5 subscript 0 cross times open parentheses 19 over 20 close parentheses squared space plus space straight C presuperscript 5 subscript 1 space cross times space open parentheses 19 over 20 close parentheses space cross times space open parentheses 1 over 20 close parentheses space plus space straight C presuperscript 5 subscript 2 cross times open parentheses 1 over 20 close parentheses squared close square brackets
equals space open parentheses 19 over 20 close parentheses cubed space open square brackets 1 space cross times space 361 over 400 plus space 5 over 1 cross times 19 over 400 plus fraction numerator 5 space cross times space 4 over denominator 1 space cross times 2 end fraction cross times 1 over 400 close square brackets
space equals open parentheses 19 over 20 close parentheses cubed space open parentheses fraction numerator 361 plus 45 plus 10 over denominator 400 end fraction close parentheses space equals open parentheses 19 over 20 close parentheses cubed space cross times space 466 over 400 space equals open parentheses 19 over 20 close parentheses cubed space cross times 233 over 200

    Question 279
    CBSEENMA12033853

    There are 6% defective items in a large bulk of items. Find the probability that a sample of 8 items will include not more than one defective item?

    Solution

    Here n = 8
                straight p space equals space 6 over 100 space equals space 3 over 50 comma space space space straight q space equals space 1 space minus space straight p space equals space 1 minus 3 over 50 space equals space 47 over 50
    P(not more than one defective item) =  P(0) + P(1)
                                 equals space straight C presuperscript 8 subscript 0 space open parentheses 47 over 50 close parentheses to the power of 8 plus space straight C presuperscript 8 subscript 1 space open parentheses 47 over 50 close parentheses to the power of 7 space open parentheses 3 over 50 close parentheses
space equals open parentheses 47 over 50 close parentheses to the power of 7 space open square brackets 1 space cross times space 47 over 50 plus 24 over 50 close square brackets space equals space open parentheses 47 over 50 close parentheses to the power of 7 space cross times 71 over 50

    Question 280
    CBSEENMA12033854

    The items produced by a firm are supposed to contain 5% defective items. What is the probability that a sample of 8 items will contain less than 2 defective items?

    Solution

    Here n = 8
                      straight p space equals space 5 over 100 space equals 1 over 20 comma space space space straight q space equals space 1 space minus space straight p space equals space 1 minus 1 over 20 space equals space 19 over 20
    P(less than 2 defective item) = P(0) + P(1)
                                 equals space straight C presuperscript 8 subscript 0 space open parentheses 19 over 20 close parentheses to the power of 8 space plus space space straight C presuperscript 8 subscript 1 space open parentheses 19 over 20 close parentheses to the power of 7 space open parentheses 1 over 20 close parentheses
space equals space open parentheses 19 over 20 close parentheses to the power of 7 space space open square brackets 1 cross times 19 over 20 plus 8 over 20 close square brackets space equals space open parentheses 19 over 20 close parentheses to the power of 7 space cross times 27 over 20

    Question 281
    CBSEENMA12033855

    There are 8 % defective items in a large bulk of items. Find the probability that a sample of 10 items will include not more than 3 defective items.

    Solution

    Here n = 10
                     straight p space equals 8 over 100 space equals 2 over 25 comma space space space straight q space equals space 1 space minus space straight p space equals space 1 minus 2 over 25 space equals space 23 over 25
    P(not more than 3 defective items) = P(0) + P(1) + P(2) + P(3)
                            equals space straight C presuperscript 10 subscript 0 open parentheses 23 over 25 close parentheses to the power of 10 space plus space straight C presuperscript 10 subscript 1 space open parentheses 2 over 25 close parentheses space open parentheses 23 over 25 close parentheses to the power of 9 space plus space straight C presuperscript 10 subscript 2 space open parentheses 2 over 25 close parentheses squared space open parentheses 23 over 25 close parentheses to the power of 8 space plus space straight C presuperscript 10 subscript 3 space open parentheses 2 over 25 close parentheses cubed space open parentheses 23 over 25 close parentheses to the power of 7
equals space 1 space cross times space open parentheses 23 over 25 close parentheses to the power of 10 space plus space 10 over 1 cross times 2 over 25 cross times space open parentheses 23 over 25 close parentheses to the power of 9 space plus space fraction numerator 10 space cross times 9 over denominator 1 cross times 2 end fraction cross times space open parentheses 2 over 25 close parentheses squared space cross times open parentheses 23 over 25 close parentheses to the power of 8
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space plus space fraction numerator 10 cross times 9 cross times 8 over denominator 1 cross times 2 cross times 3 end fraction open parentheses 2 over 25 close parentheses cubed space space open parentheses 23 over 25 close parentheses to the power of 7
equals space open parentheses 23 over 25 close parentheses to the power of 7 space open square brackets open parentheses 23 over 25 close parentheses cubed plus 4 over 5 cross times open parentheses 23 over 25 close parentheses squared space plus space 45 space cross times space open parentheses 2 over 25 close parentheses squared space cross times 23 over 25 plus 120 space cross times space open parentheses 2 over 25 close parentheses cubed close square brackets
equals space fraction numerator left parenthesis 23 right parenthesis to the power of 7 over denominator left parenthesis 25 right parenthesis to the power of 10 end fraction space open square brackets left parenthesis 23 right parenthesis squared plus space 20 space cross times space left parenthesis 23 right parenthesis squared space plus space 45 space cross times space 4 space cross times 23 space plus 120 space cross times 8 close square brackets
equals space fraction numerator left parenthesis 23 right parenthesis to the power of 7 over denominator left parenthesis 25 right parenthesis to the power of 10 end fraction left square bracket 12167 space plus space 10580 space plus space 4140 space plus space 960 right square bracket space equals space 27847 space open square brackets fraction numerator left parenthesis 23 right parenthesis to the power of 7 over denominator left parenthesis 25 right parenthesis to the power of 10 end fraction close square brackets

    Question 283
    CBSEENMA12033857

    Find the probability of throwing at most 2 sixes in 6 throws of a single die.

    Solution

    Here n = 6
      p = P(6) = 1 over 6 comma      straight q space equals space 1 minus straight p space equals space 1 space minus space 1 over 6 space equals 5 over 6
    P(at most 2  sixes) = P(0) + P(1) + P(2)
                                   equals space straight C presuperscript 6 subscript 0 open parentheses 5 over 6 close parentheses to the power of 6 space plus space straight C presuperscript 6 subscript 1 open parentheses 5 over 6 close parentheses to the power of 5 space open parentheses 1 over 6 close parentheses plus straight C presuperscript 6 subscript 2 space open parentheses 5 over 6 close parentheses to the power of 4 space open parentheses 1 over 6 close parentheses squared
equals space 1 space cross times space open parentheses 5 over 6 close parentheses to the power of 6 space plus space 6 over 1 cross times open parentheses 5 over 6 close parentheses to the power of 5 space cross times space 1 over 6 plus fraction numerator 6 cross times 5 over denominator 1 cross times 2 end fraction cross times open parentheses 5 over 6 close parentheses to the power of 4 cross times 1 over 6 squared
equals space open parentheses 5 over 6 close parentheses to the power of 4 space open square brackets open parentheses 5 over 6 close parentheses squared plus 6 space cross times 5 over 6 plus 1 over 6 plus 15 cross times 1 over 36 close square brackets space space equals open parentheses 5 over 6 close parentheses to the power of 4 space open square brackets 25 over 36 plus 5 over 6 plus 15 over 36 close square brackets
equals space open parentheses 5 over 6 close parentheses to the power of 4 space open square brackets fraction numerator 25 plus 30 plus 15 over denominator 36 end fraction close square brackets space equals space open parentheses 5 over 6 close parentheses to the power of 4 space cross times space 70 over 36 space equals space 35 over 18 open parentheses 5 over 6 close parentheses to the power of 4

    Question 284
    CBSEENMA12033858

    The probability of a man hitting a target is 1 fourth. He fires 7 times. What is the probability of his hitting at least twice the target?

    Solution

    Here n = 7
        straight p space equals 1 fourth comma space space straight q space equals space 1 minus straight p space equals space 1 minus 1 fourth space equals space 3 over 4
    P(hitting at least twice) = 1 - [P(0) + P(1)]
                          equals space 1 minus open square brackets straight C presuperscript 7 subscript 0 space open parentheses 3 over 4 close parentheses to the power of 7 space plus space straight C presuperscript 7 subscript 1 open parentheses 1 fourth close parentheses to the power of 1 space open parentheses 3 over 4 close parentheses to the power of 6 close square brackets space equals space 1 minus open square brackets 1 space cross times space open parentheses 3 over 4 close parentheses to the power of 7 plus space 7 over 1 cross times 1 fourth cross times open parentheses 3 over 4 close parentheses to the power of 6 close square brackets
space equals space 1 minus open parentheses 3 over 4 close parentheses to the power of 6 space open square brackets 3 over 4 plus 7 over 4 close square brackets space equals space 1 minus 729 over 4096 cross times 5 over 2 space equals space 1 minus 3645 over 4096
space equals space 1 minus 3645 over 8192 space equals space fraction numerator 8192 minus 3645 over denominator 8192 end fraction space equals 4547 over 8192

    Question 285
    CBSEENMA12033859

    The probability that a man hits a target when he fires is 1 fifth. If he fires 10 rounds, what is the probability of his hitting the target at least twice?

    Solution

    Here n = 10,       straight p space equals space 1 fifth comma space space space space space space straight q space equals space 1 minus 1 fifth space equals space 4 over 5
    P(hitting at least twice) = 1 - [P(0) + P(1)]
                       equals space 1 minus space open square brackets straight C presuperscript 10 subscript 0 space open parentheses 4 over 5 close parentheses to the power of 10 space plus space straight C presuperscript 10 subscript 1 space open parentheses 4 over 5 close parentheses to the power of 9 space open parentheses 1 fifth close parentheses close square brackets space equals space 1 minus space open parentheses 4 over 5 close parentheses to the power of 9 space open square brackets 1 space cross times space 4 over 5 plus 10 over 5 close square brackets
space equals space 1 minus open parentheses 4 over 5 close parentheses to the power of 9 space open parentheses 14 over 5 close parentheses space equals space 1 minus 0.3758 space equals space 0.6242

    Question 286
    CBSEENMA12033860

    In a hurdle race, a player has to cross 10 hurdles. The probability that he will clear each hurdle is 5 over 6. What is the probability that the will knock down fewer than 2 hurdles?

    Solution

    Here n = 10
    Probability of clearing each hurdle  = 5 over 6
    Let p be the probability of knocking each hurdle
    therefore space space space straight p space equals space 1 minus 5 over 6 space equals space 1 over 6
therefore space space space straight q space equals space 1 minus straight p space equals space 1 minus 1 over 6 space equals space 5 over 6
    P(fewer than 2 hurdles) = P(0) + P(1)
                      equals space straight C presuperscript 10 subscript 0 space open parentheses 5 over 6 close parentheses to the power of 10 plus straight C presuperscript 10 subscript 1 open parentheses 5 over 6 close parentheses to the power of 9 space open parentheses 1 over 6 close parentheses space equals space open parentheses 5 over 6 close parentheses to the power of 10 space plus space 10 space cross times open parentheses 5 over 6 close parentheses to the power of 9 space cross times 1 over 6
equals space open parentheses 5 over 6 close parentheses to the power of 10 space left square bracket 1 plus 2 right square bracket space equals space 3 space open parentheses 5 over 6 close parentheses to the power of 10

    Question 289
    CBSEENMA12033863

    An experiment succeeds twice as often as it fails. Find the probability that in the next six trials, there will be at least 4 successes.

    Solution

    Here n = 6
    Now,             p + q = 1     and p =  2q
    therefore space space space 2 space straight q plus straight q space equals space 1 space space space rightwards double arrow space space space space straight q space equals space 1 third comma space space space therefore space space space space straight p space equals space 2 over 3.
    therefore     P(at least 4 successes in 6 trials) = straight P left parenthesis straight X greater or equal than 4 right parenthesis space equals space straight P left parenthesis 4 right parenthesis space plus space straight P left parenthesis 5 right parenthesis space plus space straight P left parenthesis 6 right parenthesis
                                      equals space straight C presuperscript 6 subscript 4 space straight q squared space straight p to the power of 4 plus space straight C presuperscript 6 subscript 5 space straight q space straight p to the power of 5 space plus space straight C presuperscript 6 subscript 6 space straight p to the power of 6
equals space straight p to the power of 4 space open square brackets straight C presuperscript 6 subscript 2 space end subscript straight q squared space plus space straight C presuperscript 6 subscript 1 space straight p space straight q space plus space straight C presuperscript 6 subscript 0 space straight p squared close square brackets
equals space open parentheses 2 over 3 close parentheses to the power of 4 space open curly brackets fraction numerator 6 cross times 5 over denominator 1 cross times 2 end fraction open parentheses 1 third close parentheses squared space plus space 6 over 1.2 over 3.1 third plus 1 space cross times space open parentheses 2 over 3 close parentheses squared close curly brackets
equals space 16 over 81 open curly brackets 15 over 9 plus 12 over 9 plus 4 over 9 close curly brackets space equals space 16 over 81 cross times 31 over 9 space equals 496 over 729.

    Question 291
    CBSEENMA12033865

    A die is thrown 6 times. If ‘getting an odd number” is a success, what is the probability of
    (i) 5 successes?    (ii) at least 5 successes?           (iii) at most 5 successes?

    Solution

    Here n = 6
    p = P(getting an odd number) = P(1, 3, 5) = 3 over 6 space equals space 1 half comma space space space straight q space equals space 1 space minus space straight p space equals space 1 minus 1 half space equals space 1 half
    (i) P(five successes) = P(5) = straight C presuperscript 6 subscript 5 space open parentheses 1 half close parentheses space open parentheses 1 half close parentheses to the power of 5 space equals space 6 over 1 cross times open parentheses 1 half close parentheses to the power of 6 space equals space 6 space cross times 1 over 64 space equals space 3 over 32
    (ii) P(at least 5 successes) = P(5) + P(6)
          equals straight C presuperscript 6 subscript 5 space open parentheses 1 half close parentheses space open parentheses 1 half close parentheses to the power of 5 space plus space straight C presuperscript 6 subscript 6 space open parentheses 1 half close parentheses to the power of 6 space equals space open parentheses 1 half close parentheses to the power of 6 space open square brackets straight C presuperscript 6 subscript 5 space plus straight C presuperscript 6 subscript 6 space close square brackets space equals space 1 over 64 left parenthesis 6 plus 1 right parenthesis space equals space 7 over 64
    (iii) P(atmost 5 successes) = 

    Question 292
    CBSEENMA12033866

    The probability that a bulb produced by a factory will fuse after 150 days of use is 0·05. Find the probability that out of 5 such bulbs more than one will fuse after 150 days of use.

    Solution

    Here n = 5
                   straight p space equals 0.05 space equals space 5 over 100 space equals 1 over 20 comma space space straight q space equals space 1 space minus space straight p space equals space 1 minus 1 over 20 space equals space 19 over 20
    P(not more than one bulb will fuse after 150 days)
                                equals space straight P left parenthesis 0 right parenthesis space plus space straight P left parenthesis 1 right parenthesis equals space straight C presuperscript 5 subscript 0 open parentheses 19 over 20 close parentheses to the power of 5 minus 0 end exponent space open parentheses 1 over 20 close parentheses to the power of 0 space plus space straight C presuperscript 5 subscript 1 space open parentheses 19 over 20 close parentheses to the power of 5 minus 1 end exponent space open parentheses 1 over 20 close parentheses to the power of 1
space equals space 1 space cross times space open parentheses 19 over 20 close parentheses to the power of 15 space cross times space 1 space plus space 5 over 1 space cross times space open parentheses 19 over 20 close parentheses to the power of 4 space cross times space 1 over 20
space equals open parentheses 19 over 20 close parentheses to the power of 4 space open square brackets 19 over 20 plus 5 over 20 close square brackets space equals space open parentheses 19 over 20 close parentheses to the power of 4 space cross times space 24 over 20 space equals space 6 over 5 open parentheses 19 over 20 close parentheses to the power of 4

    Question 293
    CBSEENMA12033867

    The probability that a bulb produced by a factory will fuse after 150 days of use is 0·05. Find the probability that out of 5 such bulbs at least one will fuse after 150 days of use.

    Solution

    Here n = 5
                   straight p space equals 0.05 space equals space 5 over 100 space equals 1 over 20 comma space space straight q space equals space 1 space minus space straight p space equals space 1 minus 1 over 20 space equals space 19 over 20
    P(at least one bulb wil fuse after 150 days)
                           equals space 1 minus straight P left parenthesis 0 right parenthesis space equals space 1 minus space open parentheses 19 over 20 close parentheses to the power of 5                           open square brackets because space of space left parenthesis straight i right parenthesis close square brackets

    Question 295
    CBSEENMA12033869

    The probabilities that a bulb produced by a factory will fuse after 160 days is 0·06. Find the probability that out of 5 such bulbs, at the most one bulb will fuse after 160 days of use.

    Solution

    Here n = 5,  p = 0.06 = 6 over 100 space equals space 3 over 50 comma space space space straight q space equals space 1 space minus space straight p space equals space 1 minus 3 over 50 space equals space 47 over 50
    P(at most one bulb will fuse) = P(0) + P(1)
                                  equals space straight C presuperscript 5 subscript 0 open parentheses 47 over 50 close parentheses to the power of 5 space plus space straight C presuperscript 5 subscript 1 open parentheses 47 over 50 close parentheses to the power of 4 space open parentheses 3 over 50 close parentheses
space equals space open parentheses 47 over 50 close parentheses to the power of 4 space open square brackets 1 space cross times space 47 over 50 plus 15 over 50 close square brackets space equals space open parentheses 47 over 50 close parentheses to the power of 4 space cross times 62 over 50 space equals space 0.9681

    Question 296
    CBSEENMA12033870

    In four throws with a pair of dice, what is the probability of throwing doublets at least twice?

    Solution

    We get a doublet when we get
    (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)
    Let p be probability of getting a doublet
    therefore space straight p space equals space 6 over 36 space equals space 1 over 6 space space space space space space straight q space equals space 1 minus straight p space equals space 1 space minus 1 over 6 space equals space 5 over 6
    P(at least two doublets) = 1 - [P(0) + P(1)]     
                      equals space 1 minus open square brackets straight C presuperscript 4 subscript 0 open parentheses 1 over 6 close parentheses to the power of 0 space open parentheses 5 over 6 close parentheses to the power of 4 space plus space straight C presuperscript 4 subscript 1 space open parentheses 1 over 6 close parentheses to the power of 1 space open parentheses 5 over 6 close parentheses cubed close square brackets space space space space space space space space open square brackets because space space straight P left parenthesis straight r right parenthesis space equals space straight C presuperscript straight n subscript straight r space straight p to the power of straight r space straight q to the power of straight n minus straight r end exponent comma space straight n space equals space 4 close square brackets
equals space 1 minus open square brackets 1 cross times 1 cross times 625 over 1296 plus 4 over 1 cross times 1 over 6 cross times 125 over 216 close square brackets space equals space 1 minus open square brackets 625 over 1296 plus 500 over 1296 close square brackets space equals space 1125 over 1296
equals space space fraction numerator 1296 minus 1125 over denominator 1296 end fraction space equals space 171 over 1296

    Question 297
    CBSEENMA12033871

    A pair of dice is thrown 6 times. If getting a total of 9 is considered a success, what is the probability of at least 5 successes?

    Solution

    A pair of dice is thrown. Therefore various outcomes are

    11

    12

    13

    14

    15

    16

    21

    22

    23

    24

    25

    26

    31

    32

    33

    34

    35

    36

    41

    42

    43

    44

    45

    46

    51

    52

    53

    54

    55

    56

    61

    62

    63

    64

    65

    66

     ∴ total number of outcomes = 36
    Favorable outcomes are 36, 45, 54 and 63.
    ∴ number of favorable outcomes = 4
    therefore space space space space straight p space equals space 4 over 36 minus 1 over 9 comma space space space straight q space equals space 1 space minus space straight q space equals space 1 space minus space 1 over 9 space equals space 8 over 9
Also space straight n space equals space 6
straight P left parenthesis at space least space 5 space successes right parenthesis space equals space straight P left parenthesis 5 right parenthesis space plus space straight P left parenthesis 6 right parenthesis
space space space space space space space space space space space space space space space space equals space straight C presuperscript 6 subscript 5 open parentheses 8 over 9 close parentheses to the power of 6 minus 5 end exponent space open parentheses 1 over 9 close parentheses to the power of 5 plus straight C presuperscript 6 subscript 6 space open parentheses 8 over 9 close parentheses to the power of 6 minus 6 end exponent space open parentheses 1 over 9 close parentheses to the power of 6
space space space space space space space space space space space space space space space space equals space straight C presuperscript 6 subscript 1 space open parentheses 8 over 9 close parentheses to the power of 1 space open parentheses 1 over 9 close parentheses to the power of 5 space plus space straight C presuperscript 6 subscript 0 space open parentheses 8 over 9 close parentheses to the power of 0 space open parentheses 1 over 9 close parentheses to the power of 6
space space space space space space space space space equals space 6 over 1 cross times 8 over 9 cross times 1 over 9 to the power of 5 plus 1 space cross times space 1 space cross times space 1 over 9 to the power of 6 space equals 1 over 9 to the power of 6 left parenthesis 48 plus 1 right parenthesis space equals space 49 over 531441
              

     
    Question 298
    CBSEENMA12033872

    Find the probability of getting a sum of 9 at least twice in 10 throws with two dice.

    Solution

    Here   n = 10
    We get total of 9 when we get, (3, 6), (4, 5), (5, 4), (6, 3)
    therefore space space space space straight p space equals space 4 over 36 space equals space 1 over 9 comma space space straight q space equals space 1 minus space straight p space equals space 1 space minus space 1 over 9 space equals space 8 over 9
    P(getting sum 9 at least twice)  = 1 - [P(0) + P(1)]
                                  equals space 1 minus space open square brackets straight C presuperscript 10 subscript 0 space open parentheses 1 over 9 close parentheses to the power of 0 space open parentheses 8 over 9 close parentheses to the power of 10 space plus space straight C presuperscript 10 subscript 1 space open parentheses 1 over 9 close parentheses to the power of 1 space open parentheses 8 over 9 close parentheses to the power of 9 close square brackets
space equals space 1 minus open square brackets 1 space cross times space 1 space cross times space open parentheses 8 over 9 close parentheses to the power of 10 plus space 10 over 1 cross times 1 over 9 cross times open parentheses 8 over 9 close parentheses to the power of 9 close square brackets space equals 1 minus open parentheses 8 over 9 close parentheses to the power of 9 space open square brackets 8 over 9 plus 10 over 9 close square brackets space equals space 1 minus open parentheses 8 over 9 close parentheses squared space left parenthesis 2 right parenthesis
space equals space 1 minus space 2 space open parentheses 8 over 9 close parentheses to the power of 9

    Question 299
    CBSEENMA12033873

    A pair of dice is thrown 6 times. If getting a total of 7 is considered a success, what is the probability of at least 4 successes?

    Solution

    Here n = 6
    In a throw of pair of dice, we get total of 7 when we get
    (1, 6) (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)
    therefore space space space straight p space equals space 6 over 36 space equals space 1 over 6 comma

    Question 300
    CBSEENMA12033874

    A pair of dice is thrown 6 times. If getting a total of 7 is considered a success, find the probability of at least five successes.

    Solution

    Here n  = 6
    In a throw of pair dice, we get total of 7 when get 
                    (1, 6),  (2, 5), (3, 4),  (4, 3), (5, 2), (6, 1)
    therefore space space space straight p space equals space 6 over 36 space equals space 1 over 6 comma space space straight q space equals space 1 space minus space straight p space equals space 1 space minus space 1 over 6 space equals space 5 over 6
    P(at least 5 successes) = P(5) + P(6)
                       equals space straight C presuperscript 6 subscript 5 space open parentheses 5 over 6 close parentheses space open parentheses 1 over 6 close parentheses to the power of 5 space plus space straight C presuperscript 6 subscript 6 space open parentheses 1 over 6 close parentheses to the power of 6 space equals space 6 over 1 cross times 5 over 6 cross times 1 over 6 to the power of 5 plus 1 space cross times 1 over 6 to the power of 6 space equals 1 over 6 to the power of 6 left parenthesis 30 plus 1 right parenthesis
equals space fraction numerator 31 over denominator 6 to the power of 6 space end fraction space equals 31 over 130896

    Question 301
    CBSEENMA12033875

    In a throw of 4 dice, find the probability that at least one die shows up 4.

    Solution

    Let p be the probability of throwing 4
    therefore space space space space straight p space equals space 1 over 6 comma space space space straight q space equals space 1 minus straight p space equals space 1 minus 1 over 6 space equals space 5 over 6
    P(at least one die shows up) = 1 - P(0)
    equals space 1 minus straight C presuperscript 4 subscript 0 space open parentheses 1 over 6 close parentheses to the power of 0 space open parentheses 5 over 6 close parentheses to the power of 4 space equals space 1 minus space 1 space cross times space 1 space cross times space 625 over 1296 space equals space 1 minus 625 over 1296 space equals space fraction numerator 1296 minus 625 over denominator 1296 end fraction space equals 671 over 1296.

    Question 302
    CBSEENMA12033876

    A coin is tossed 6 times. What is the probability of getting at least two heads?

    Solution

    Here n = 6
    Let p be the probability of getting a head
    therefore space space space straight p space equals space 1 half comma space space space straight q space equals space 1 minus straight p space equals space 1 minus 1 half space equals space 1 half
    P(at least 2 heads) = 1 - left square bracket straight P left parenthesis 0 right parenthesis space plus space straight P left parenthesis 1 right parenthesis right square bracket
                            equals space open square brackets 1 minus straight C presuperscript 6 subscript 0 open parentheses 1 half close parentheses to the power of 6 plus space straight C presuperscript 6 subscript 1 space open parentheses 1 half close parentheses to the power of 1 space open parentheses 1 half close parentheses to the power of 5 close square brackets
equals space open square brackets 1 minus space cross times open parentheses 1 half close parentheses to the power of 6 space plus space 6 space cross times space open parentheses 1 half close parentheses to the power of 6 close square brackets space equals space 1 minus 1 over 64 left square bracket 1 plus 6 right square bracket space equals 1 minus 7 over 64 space equals space 57 over 64
                 

    Question 303
    CBSEENMA12033877

    A coin is tossed 6 times. What is the probability of getting at least four heads?

    Solution

    Here n = 6
    Let p be the probabilities of getting a head
    therefore space space straight p space equals space 1 half comma space space straight q space equals space 1 minus 1 half space equals space 1 half
    P(at least four heads) =P(4) + +P(5) + P(6)
                                      equals space straight C presuperscript 6 subscript 4 space open parentheses 1 half close parentheses to the power of 4 space space open parentheses 1 half close parentheses to the power of 4 space plus space straight C presuperscript 6 subscript 5 space open parentheses 1 half close parentheses space open parentheses 1 half close parentheses to the power of 5 plus space straight C presuperscript 6 subscript 6 space open parentheses 1 half close parentheses to the power of 6
space equals space open parentheses 1 half close parentheses to the power of 6 space left square bracket straight C presuperscript 6 subscript 4 space plus space straight C presuperscript 6 subscript 5 space plus space straight C presuperscript 6 subscript 6 right square bracket space equals space 1 over 64 open square brackets fraction numerator 6 cross times 5 over denominator 1 cross times 2 end fraction plus 6 over 1 plus 1 close square brackets
space equals space 1 over 64 left parenthesis 15 plus 6 plus 1 right parenthesis space equals space 22 over 34 space equals space 11 over 32

    Question 304
    CBSEENMA12033878

    A coin is tossed 5 times. What is the probabilities of obtaining at least 2 tails?

    Solution

    Here n = 5
    Let p be the proability of getting a tail
    therefore space space space straight p space equals space 1 half comma space space straight q space equals space 1 minus straight p space equals 1 minus 1 half space equals 1 half
    P(at least 2 tails) = 1 - open square brackets straight P left parenthesis 0 right parenthesis space plus space straight P left parenthesis 1 right parenthesis close square brackets
                           equals space 1 minus open square brackets straight C presuperscript 5 subscript 0 space open parentheses 1 half close parentheses to the power of 5 plus space straight C presuperscript 5 subscript 1 open parentheses 1 half close parentheses to the power of 4 space open parentheses 1 half close parentheses space close square brackets space equals space 1 minus space open parentheses 1 half close parentheses to the power of 5 space left square bracket space 1 plus 5 right square bracket
space equals space 1 minus 6 over 32 space equals 1 minus 3 over 16 space equals 13 over 16

    Question 305
    CBSEENMA12033879

    A fair coin is tossed 7 times. Find the probability of obtaining at least 5 tails.

    Solution

    Here n = 7
    Let p be the probability of getting a tail
    therefore space space space space space straight p space equals space 1 half comma space space space straight q space equals space 1 minus 1 half space equals space 1 half
    P(at least 5 tails) = P(5) + P(6) + P(7)
                                equals space straight C presuperscript 7 subscript 5 space open parentheses 1 half close parentheses squared space open parentheses 1 half close parentheses to the power of 5 plus space space straight C presuperscript 7 subscript 6 space open parentheses 1 half close parentheses space open parentheses 1 half close parentheses to the power of 6 space plus space straight C presuperscript 7 subscript 7 space open parentheses 1 half close parentheses to the power of 7
space equals space open parentheses 1 half close parentheses to the power of 7 space open square brackets straight C presuperscript 7 subscript 5 space plus space straight C presuperscript 7 subscript 6 space plus space straight C presuperscript 7 subscript 7 close square brackets space equals space 1 over 128 open square brackets fraction numerator 7 space cross times 6 over denominator 1 cross times 2 end fraction plus 7 over 1 plus 1 close square brackets
space equals space 1 over 128 left parenthesis 21 plus 7 plus 1 right parenthesis space equals space 29 over 128

    Question 306
    CBSEENMA12033880

    A coin is tossed 3 times. Find the probability of at least two heads.

    Solution

    Here n = 3
    Let p be the probability of getting a head.
    therefore space space space space space straight p space equals space 1 half comma space space straight q space equals space 1 minus straight p space equals space 1 minus 1 half space equals space 1 half
    P(at least 2 heads) = P(2) + P(3)
                               equals space straight C presuperscript 3 subscript 2 space open parentheses 1 half close parentheses space open parentheses 1 half close parentheses squared plus space straight C presuperscript 3 subscript 3 space open parentheses 1 half close parentheses cubed space equals space 3 over 1 cross times 1 over 8 plus 1 space cross times 1 over 8 space equals fraction numerator 3 plus 1 over denominator 8 end fraction space equals 4 over 8 equals space 1 half

    Question 307
    CBSEENMA12033881

    A die is thrown 5 times. If getting an odd number is success, find the probability of getting at least 4 successes.

    Solution
    Here n = 5
    Let p be the probability of getting an odd number
    therefore space space space straight p space equals space straight p space left parenthesis 1 comma space 3 comma space 5 right parenthesis space equals space 3 over 6 space equals 1 half comma space space space straight q space equals space 1 minus 1 half space equals 1 half
    P(at least 4 successes) = P(4) + P(5)
                                    equals space straight C presuperscript 5 subscript 4 space open parentheses 1 half close parentheses space open parentheses 1 half close parentheses to the power of 4 space plus space straight C presuperscript 5 subscript 5 space open parentheses 1 half close parentheses to the power of 5 space equals space open parentheses 1 half close parentheses to the power of 5 space space open square brackets straight C presuperscript 4 subscript 4 space plus space straight C presuperscript 5 subscript 5 close square brackets
space equals 1 over 32 open parentheses 5 over 1 plus 1 close parentheses space equals 6 over 32 space equals 3 over 16
    Question 308
    CBSEENMA12033882

    A die is thrown 6 times. If getting an odd number is a success, what is the probability of at least 5 successes?

    Solution
    Here n = 6
    Let p be the probability of getting an odd number
     space space therefore space space space straight p space equals space straight p left parenthesis 1 comma space 3 comma space 5 right parenthesis space equals space 3 over 6 equals space 1 half comma space space straight q space equals space 1 minus straight p space equals space 1 minus 1 half space equals 1 half
    P(at least 5 successes) = P(5) + P(6)
                                  equals space straight C presuperscript 6 subscript 5 space open parentheses 1 half close parentheses to the power of 1 space open parentheses 1 half close parentheses to the power of 5 plus space straight C presuperscript 6 subscript 6 space open parentheses 1 half close parentheses to the power of 6 space equals space open parentheses 1 half close parentheses to the power of 6 space open square brackets straight C presuperscript 6 subscript 5 plus straight C presuperscript 6 subscript 6 close square brackets
equals space 1 over 64 left parenthesis 6 plus 1 right parenthesis space equals space 7 over 64
    Question 309
    CBSEENMA12033883

    A die is thrown 6 times. Getting a number greater than 4 is considered a success. Find the probability of at least two successes.

    Solution

    Here n = 6
    Let p be the probability of getting 5 or 6
    therefore space space space straight p space equals space straight P left parenthesis 5 space or space 6 right parenthesis space equals space 1 over 6 plus 1 over 6 space equals 2 over 6 space equals 1 third comma space space straight q space equals space 1 minus straight p space equals space 1 minus 1 third equals space 2 over 3
    P(at least two successes) = 1 - P(0) + P(1)
    equals space 1 minus open square brackets straight C presuperscript 6 subscript 0 open parentheses 2 over 3 close parentheses to the power of 6 space plus space straight C presuperscript 6 subscript 1 space open parentheses 2 over 3 close parentheses to the power of 5 space open parentheses 1 third close parentheses close square brackets space equals space 1 minus space open square brackets 1 space cross times 64 over 729 plus 192 over 729 close square brackets space equals 1 minus fraction numerator 64 plus 192 over denominator 729 end fraction
equals space 1 minus 256 over 729 space equals 473 over 729 space

    Question 310
    CBSEENMA12033884

    An unbiased die is thrown 3 times. If getting a 2 or 5 is considered a success, find the probability of at least 2 successes.

    Solution

    Here n = 3
    p = P(2 or 5) = 1 over 6 plus 1 over 6 space equals space 2 over 6 equals space space 1 third
    q  = 1 - p =  1  - 1 third space equals 2 over 3
    P(at least two successes) = P(2) + P(3)
                        equals space straight C presuperscript 3 subscript 2 space open parentheses 2 over 3 close parentheses space open parentheses 1 half close parentheses squared plus space straight C presuperscript 3 subscript 3 space open parentheses 1 half close parentheses cubed space equals 3 over 1 cross times 1 over 6 plus 1 cross times 1 over 8 space equals 1 half plus 1 over 8 space equals fraction numerator 4 plus 1 over denominator 8 end fraction space equals 5 over 8

          

    Question 311
    CBSEENMA12033885

    Five dice are thrown simultaneously. If the occurrence of 3, 4 or 5 in a single die is considered a success, find the probability of at least three successes.

    Solution

    n = 5
    p = P(3 or 4 or 5) = 3 over 6 space equals 1 half comma space space straight q space equals space 1 minus straight p space equals space 1 minus 1 half space equals space 1 half
    P(at least three successes) = P(3) + P(4) + P(5)
                                 equals space straight C presuperscript 5 subscript 3 space open parentheses 1 half close parentheses squared space open parentheses 1 half close parentheses cubed space plus space straight C presuperscript 5 subscript 4 space open parentheses 1 half close parentheses space open parentheses 1 half close parentheses to the power of 4 plus space straight C presuperscript 5 subscript 5 space open parentheses 1 half close parentheses to the power of 5
equals space open parentheses 1 half close parentheses to the power of 5 space open square brackets straight C presuperscript 5 subscript 3 space plus space straight C presuperscript 5 subscript 4 space plus space straight C presuperscript 5 subscript 5 close square brackets space equals space 1 over 32 open square brackets fraction numerator 5 space cross times 4 over denominator 1 cross times 2 end fraction plus 5 over 1 plus 1 close square brackets
equals space 1 over 32 left parenthesis 10 plus 5 plus 1 right parenthesis space equals space 16 over 32 equals space 1 half

    Question 312
    CBSEENMA12033886

    A coin is tossed 5 times. What is the probability that head appears an even number of times?

    Solution

    Here n = 5
    therefore space space space straight p space equals space straight P left parenthesis head space in space one space toss right parenthesis space equals space 1 half
therefore space space space space straight q space equals space 1 minus straight p space equals space 1 minus 1 half space equals space 1 half
                     P(head appearing an even number of times)
                     equals space straight P left parenthesis straight r space equals space 0 comma space space space 2 space or space 4 right parenthesis space equals space straight P left parenthesis 0 right parenthesis space plus space straight P left parenthesis 2 right parenthesis space plus space straight P left parenthesis 4 right parenthesis
space equals space straight C presuperscript 5 subscript 0 space open parentheses 1 half close parentheses to the power of 5 minus 0 end exponent space plus space straight C presuperscript 5 subscript 2 space open parentheses 1 half close parentheses to the power of 5 minus 2 end exponent space open parentheses 1 half close parentheses squared space plus space straight C presuperscript 5 subscript 4 space open parentheses 1 half close parentheses to the power of 5 minus 4 end exponent space open parentheses 1 half close parentheses to the power of 4
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets because space straight P left parenthesis straight r right parenthesis space equals space straight C presuperscript straight n subscript straight r space straight q to the power of straight n minus straight r end exponent space straight p to the power of straight r close square brackets
space equals space 1 space cross times space 1 over 32 cross times 1 plus fraction numerator 5 cross times 4 over denominator 1 cross times 2 end fraction cross times 1 over 8 cross times 1 fourth plus fraction numerator 5 cross times 4 cross times 3 cross times 2 over denominator 1 cross times 2 cross times 3 cross times 4 end fraction cross times 1 half cross times 1 over 16
equals space 1 over 32 left parenthesis 1 plus 10 plus 5 right parenthesis space equals space 16 over 32 equals space 1 half

    Question 313
    CBSEENMA12033887

    A coin is tossed 7 times. What is the probability that head appears an odd number of times?

    Solution

    Here n = 5
    therefore space space straight p space equals space straight P left parenthesis head space in space one space toss right parenthesis space equals space 1 half
therefore space space straight q space equals space 1 space minus space straight p space equals space 1 minus 1 half space equals space 1 half
                        straight P left parenthesis head space appearing space odd space number space of space times right parenthesis
              equals space straight P left parenthesis straight r space equals space 1 comma space space 3 space space or space space 5 right parenthesis space equals space straight P left parenthesis 1 right parenthesis space plus space straight P left parenthesis 3 right parenthesis space space plus straight P left parenthesis 5 right parenthesis
space equals space straight C presuperscript 5 subscript 1 space open parentheses 1 half close parentheses to the power of 5 minus 1 end exponent space open parentheses 1 half close parentheses to the power of 1 space plus space straight C presuperscript 5 subscript 3 space open parentheses 1 half close parentheses to the power of 5 minus 3 end exponent space open parentheses 1 half close parentheses cubed space plus space straight C presuperscript 5 subscript 5 space open parentheses 1 half close parentheses to the power of 0 space open parentheses 1 half close parentheses to the power of 5
space equals 5 over 1 cross times 1 over 16 cross times 1 half plus fraction numerator 5 cross times 4 cross times 3 over denominator 1 cross times 2 cross times 3 end fraction cross times 1 fourth cross times 1 over 8 plus 1 cross times 1 cross times 1 over 32 equals space 1 over 32 left parenthesis 5 plus 10 plus 1 right parenthesis space equals 16 over 32 space equals 1 half

    Question 314
    CBSEENMA12033888

    A coin is tossed 7 times. What is the probability that tail appears an odd number of times?

    Solution

    Here n = 7
    p = P(tail in one toss) = 1 half comma                therefore space space space straight q space equals space 1 minus straight p space equals space 1 minus 1 half space equals space 1 half
    P(tails appears on odd number of times) = P(1) + P(3) + P(5) + P(7)
                          equals space straight C presuperscript 7 subscript 1 space open parentheses 1 half close parentheses to the power of 6 space open parentheses 1 half close parentheses space plus space straight C presuperscript 7 subscript 3 space open parentheses 1 half close parentheses to the power of 4 space open parentheses 1 half close parentheses cubed space plus space straight C presuperscript 7 subscript 5 space open parentheses 1 half close parentheses squared space open parentheses 1 half close parentheses to the power of 5 space plus space straight C presuperscript 7 subscript 7 space open parentheses 1 half close parentheses to the power of 7
space equals space open parentheses 1 half close parentheses to the power of 7 space open square brackets straight C presuperscript 7 subscript 1 space plus space straight C presuperscript 7 subscript 3 space plus space straight C presuperscript 7 subscript 5 space plus space straight C presuperscript 7 subscript 7 close square brackets space equals space 1 over 128 space open square brackets 7 over 1 cross times fraction numerator 7 cross times 6 cross times 5 over denominator 1 cross times 2 cross times 3 end fraction plus fraction numerator 7 cross times 6 over denominator 1 cross times 2 end fraction plus 1 close square brackets
equals space 1 over 128 left square bracket 7 plus 35 plus 21 plus 1 right square bracket space equals 64 over 128 equals 1 half

    Question 315
    CBSEENMA12033889

    A coin is tossed 5 times. What is the probability that head appears an odd number of times?

    Solution

    Here n = 5
    p  = P(head) = 1 half comma space space space straight q space equals space 1 minus 1 half space equals space 1 half
    P(head appears an odd number of times) = P(1) + P(3) + P(5)
                          equals space straight C presuperscript 5 subscript 1 space open parentheses 1 half close parentheses to the power of 4 space open parentheses 1 half close parentheses space plus space straight C presuperscript 5 subscript 3 space open parentheses 1 half close parentheses squared space open parentheses 1 half close parentheses cubed space plus space straight C presuperscript 5 subscript 5 space open parentheses 1 half close parentheses to the power of 5
space equals space open parentheses 1 half close parentheses to the power of 5 space open square brackets straight C presuperscript 5 subscript 1 space plus space straight C presuperscript 5 subscript 3 space plus space straight C presuperscript 5 subscript 3 close square brackets space equals space 1 over 32 open square brackets 5 over 1 cross times fraction numerator 5 cross times 4 over denominator 1 cross times 2 end fraction plus 1 close square brackets space equals 1 over 32 left square bracket 5 plus 10 plus 1 right square bracket space equals space 16 over 32 equals space 1 half

    Question 316
    CBSEENMA12033890

    Past experience shows that 80 % of the operations performed by a doctor arc successful. If he performs 4 operations in a day, what is the probability that at least three operations will be successful?

    Solution

    Here n = 4
    straight p space equals space 80 over 100 space equals space 4 over 5 comma space space space space straight q space space equals 1 space minus space straight p space equals space 1 minus 4 over 5 space equals space 1 fifth
    P(at least three successful operations) = P(3) + P(4)
                           equals space straight C presuperscript 4 subscript 3 space open parentheses 1 fifth close parentheses space open parentheses 4 over 3 close parentheses cubed space plus space straight C presuperscript 4 subscript 4 space open parentheses 4 over 5 close parentheses to the power of 4 space equals 4 over 1 cross times 1 fifth cross times 64 over 125 plus 1 cross times 256 over 625
equals space 256 over 625 plus 256 over 625 plus 512 over 625 equals space 0.8192.
                           

    Question 318
    CBSEENMA12033892

    A bag contains 5 white, 7 red and 18 black balls. If four balls are drawn one by one with replacement, what is the probability that at least one is white?

    Solution

    Here n = 4
    Let p be the probability of drawing a white ball
            therefore space space straight p space equals space 5 over 20 space equals space 1 fourth comma space space space space straight q space equals space 1 minus straight p space equals space 1 minus 1 fourth space equals 3 over 4
    P(at least one ball is white) = 1 - P(0)
                       equals space 1 minus straight C presuperscript 4 subscript 0 space open parentheses 3 over 4 close parentheses to the power of 4 space equals space 1 minus 1 space cross times space 81 over 256 space equals fraction numerator 256 minus 81 over denominator 256 end fraction space equals space 175 over 256.

    Question 319
    CBSEENMA12033893

    A pair of dice is thrown 7 times. If getting a total of 9 is considered a success, what is the probability of at most 6 successes?

    Solution

    Here n = 7
    In a throw of pair of dice, we get total of 9 when we get (3, 6), (4, 5), (5, 4), (6, 3)
    therefore space space space straight p space equals space 4 over 36 space equals 1 over 9 comma space space space straight q space space equals space 1 space minus space straight p space equals space 1 minus 1 over 9 space equals 8 over 9
    P(atmost 6 successes) = 1 - P(7) = 1 - straight C presuperscript 7 subscript 7 space open parentheses 1 over 9 close parentheses to the power of 7 space equals space 1 space minus space open parentheses 1 over 9 close parentheses to the power of 7 space equals space 1 minus open parentheses 1 over 9 close parentheses to the power of 7.

    Question 320
    CBSEENMA12033894

    Five dice are thrown simultaneously. If the occurrence of an even number is considered as a success, find the probability of at the most 3 successes.

    Solution

    Here n = 5,   p = P(1, 3, 5) = 1 half comma space  q = 1 - p = 1 - 1 half equals space 1 half
    P(atmost three successes) = 1 - [P(4) + P(5)]
    equals space 1 minus space open square brackets straight C presuperscript 5 subscript 4 space open parentheses 1 half close parentheses to the power of 4 space open parentheses 1 half close parentheses plus space space straight C presuperscript 5 subscript 5 space open parentheses 1 half close parentheses to the power of 5 close square brackets space equals space 1 minus 1 over 32 space open square brackets straight C presuperscript 5 subscript 4 space space plus space straight C presuperscript 5 subscript 5 close square brackets
equals space 1 minus 1 over 32 left parenthesis 5 plus 1 right parenthesis space equals space 1 minus 3 over 16 space equals space 13 over 16

    Question 321
    CBSEENMA12033895

    A die is thrown 6 times and getting a multiple of 3 is a success. Find the probability of getting at most 5 successes.

    Solution

    Here n = 6,   p = P(3,  6)  = 2 over 6 space equals 1 third comma space space straight q space equals space 1 minus 1 third space equals 2 over 3
    P(atmost 5 successes) = 1 - P(6) =  1 minus straight C presuperscript 6 subscript 6 space open parentheses 1 third close parentheses to the power of 6 space equals space 1 minus 1 over 729 space equals 728 over 729 

    Question 322
    CBSEENMA12033896

    A coin is tossed 5 times. What is the probability of getting
    (i) at least 3 heads (ii) at most 2 heads

    Solution

    Here n = 5,   p = P(getting head) = 1 half,     q = 1 - p = 1 - 1 half space equals space 1 half
    (i) P(at least 3 heads) = P(3) + P(4) + P(5)
            equals space straight C presuperscript 5 subscript 3 space open parentheses 1 half close parentheses squared space open parentheses 1 half close parentheses cubed space plus space straight C presuperscript 5 subscript 4 space open parentheses 1 half close parentheses space open parentheses 1 half close parentheses to the power of 4 plus space straight C presuperscript 5 subscript 5 space open parentheses 1 half close parentheses to the power of 5
equals space open parentheses 1 half close parentheses to the power of 5 space open square brackets straight C presuperscript 5 subscript 3 space plus space straight C presuperscript 5 subscript 4 space plus space straight C presuperscript 5 subscript 5 close square brackets space equals space 1 over 32 space open square brackets fraction numerator 5 space cross times space 4 over denominator 1 space cross times 2 end fraction plus 5 over 1 plus 1 close square brackets
equals space 1 over 32 left parenthesis 10 plus 5 plus 1 right parenthesis space equals space 16 over 32 space equals space 1 half
    (ii) P(at most 2 heads) = 1 minus open square brackets straight P left parenthesis 3 right parenthesis space plus space straight P left parenthesis 4 right parenthesis space plus space straight P left parenthesis 5 right parenthesis close square brackets space equals space 1 minus 1 half

    Question 323
    CBSEENMA12033897

    A pair of dice is thrown 6 times. If getting a total of 8 is considered a success, what is the probability of 
    (i) at least 4 successes?
    (ii) at most 5 succcesses?

    Solution

    Here n = 6
     p = P{(2, 6), (3, 5), (4, 4), (5, 3), (6, 2) = 5 over 36
    q = 1 - p = 1 - 5 over 36 equals space 31 over 36
    (i) P(at least 4 successes) = P(4) + P(5)  + P(6)
                        equals space straight C presuperscript 6 subscript 4 space open parentheses 31 over 36 close parentheses squared space open parentheses 5 over 36 close parentheses to the power of 4 space plus space straight C presuperscript 6 subscript 5 space open parentheses 31 over 36 close parentheses space open parentheses 5 over 36 close parentheses to the power of 5 space plus space straight C presuperscript 6 subscript 6 space open parentheses 5 over 36 close parentheses to the power of 6
equals space open parentheses 5 over 36 close parentheses to the power of 4 space open square brackets fraction numerator 6 space cross times space 5 over denominator 1 space cross times 2 end fraction space cross times space fraction numerator 31 space cross times space 31 over denominator 36 space cross times space 36 end fraction plus space 6 over 1 cross times space 31 over 36 cross times space 5 over 36 plus 1 space cross times space 5 over 36 space cross times space 5 over 36 close square brackets
equals space open parentheses 5 over 36 close parentheses to the power of 4 space open square brackets fraction numerator 15 space cross times space 31 space cross times space 31 over denominator 36 space cross times space 36 end fraction plus space fraction numerator 6 space cross times space 31 space cross times space 5 over denominator 36 space cross times space 36 end fraction space plus space fraction numerator 25 over denominator 36 space cross times space 36 end fraction close square brackets
equals space fraction numerator left parenthesis 5 right parenthesis to the power of 4 over denominator left parenthesis 36 right parenthesis to the power of 4 end fraction left square bracket 15 space cross times space 31 space cross times space 31 space plus space 6 space cross times space 31 space cross times space 5 space plus space 25 right square bracket
space equals space fraction numerator left parenthesis 5 right parenthesis to the power of 4 over denominator left parenthesis 36 right parenthesis to the power of 6 end fraction left square bracket 14415 plus 930 plus 25 right square bracket space equals fraction numerator left parenthesis 15370 right parenthesis thin space left parenthesis 5 right parenthesis to the power of 4 over denominator left parenthesis 36 right parenthesis to the power of 6 end fraction
    (ii) P(at atmost 5 successess) = 1 - P(6) = 1 - straight C presuperscript 6 subscript 6open parentheses 5 over 36 close parentheses to the power of 6 = space 1 minus open parentheses 5 over 36 close parentheses to the power of 6

    Question 324
    CBSEENMA12033898

    An unbiased coin is tossed six times. Find the probability of obtaining exactly 4 heads. 

    Solution

    Here n = 6
    p = Probability of head = 1 half comma space space straight q space equals space 1 space minus space straight p space equals space 1 minus 1 half space equals 1 half
    P (exactly 4 heads) = P (4)
                    equals space straight C presuperscript 6 subscript 4 space open parentheses 1 half close parentheses squared space open parentheses 1 half close parentheses to the power of 4 space equals space straight C presuperscript 6 subscript 2 space cross times space open parentheses 1 half close parentheses to the power of 6 space equals space fraction numerator 6 space cross times space 5 over denominator 1 space cross times 2 end fraction cross times 1 over 64 space equals 15 over 64
equals space 0.2344

    Question 325
    CBSEENMA12033899

    An unbiased coin is tossed six times. Find the probability of obtaining less than 3 heads .

    Solution

    Here n = 6
    p = Probability of head = 1 half comma space space straight q space equals space 1 space minus space straight p space equals space 1 minus 1 half space equals 1 half
    P (less than 3 heads) = P (0) + P (1) + P (2)
    equals space straight C presuperscript 6 subscript 0 space open parentheses 1 half close parentheses to the power of 6 space plus space straight C presuperscript 6 subscript 1 space open parentheses 1 half close parentheses to the power of 5 space open parentheses 1 half close parentheses space plus space straight C presuperscript 6 subscript 2 space open parentheses 1 half close parentheses to the power of 4 space open parentheses 1 half close parentheses squared
space equals open parentheses 1 half close parentheses to the power of 6 space open square brackets straight C presuperscript 6 subscript 0 space plus space straight C presuperscript 6 subscript 1 space plus space straight C presuperscript 6 subscript 2 close square brackets space equals space 1 over 64 left parenthesis 1 plus 6 plus 15 right parenthesis space equals space 22 over 64 equals space 11 over 32 space equals 0.3438

    Question 326
    CBSEENMA12033900

    An unbiased coin is tossed six times. Find the probability of obtaining more than 4 heads.

    Solution

    Here n = 6
    p = Probability of head = 1 half comma space space straight q space equals space 1 space minus space straight p space equals space 1 minus 1 half space equals 1 half
    P (more than 4 heads) = P (5) + P (6)
    equals space straight C presuperscript 6 subscript 5 space open parentheses 1 half close parentheses space open parentheses 1 half close parentheses to the power of 5 space plus space straight C presuperscript 6 subscript 6 space open parentheses 1 half close parentheses to the power of 6 space equals space open parentheses 1 half close parentheses to the power of 6 space open square brackets straight C presuperscript 6 subscript 5 space plus space straight C presuperscript 6 subscript 6 close square brackets
space equals 1 over 64 left parenthesis 6 plus 1 right parenthesis space equals space 7 over 64 space equals space 0.1094

    Question 327
    CBSEENMA12033901

    An unbiased coin is tossed six times. Find the probability of obtaining more than 4 heads and less than 6 heads.

    Solution

    Here n = 6
    p = Probability of head = 1 half comma space space straight q space equals space 1 space minus space straight p space equals space 1 minus 1 half space equals 1 half
    P(more than 4 heads and less than 6 heads) = P(5)
    equals space straight C presuperscript 6 subscript 5 space open parentheses 1 half close parentheses space open parentheses 1 half close parentheses to the power of 5 space equals space 6 space cross times space 1 half space cross times space 1 over 32 space equals 3 over 32 space equals space 0.0938

    Question 328
    CBSEENMA12033902

    An unbiased coin is tossed six times. Find the probability of obtaining more than 6 heads.

    Solution

    P(more than 6 heads) = P (impossible event) = 0

    Question 329
    CBSEENMA12033903

    An unbiased coin is tossed six times. Find the probability of obtaining at least 4 heads

    Solution

    Here n = 6
    p = Probability of head = 1 half comma space space straight q space equals space 1 space minus space straight p space equals space 1 minus 1 half space equals 1 half
    P (at least 4 heads) = P (4) + P (5) + P (6)
     equals space straight C presuperscript 6 subscript 4 space open parentheses 1 half close parentheses squared space open parentheses 1 half close parentheses to the power of 4 space plus space straight C presuperscript 6 subscript 5 space open parentheses 1 half close parentheses space open parentheses 1 half close parentheses to the power of 5 space plus space straight C presuperscript 6 subscript 6 space open parentheses 1 half close parentheses to the power of 6
equals space open parentheses 1 half close parentheses to the power of 6 space open square brackets straight C presuperscript 6 subscript 4 space plus straight C presuperscript 6 subscript 5 space plus space straight C presuperscript 6 subscript 6 space close square brackets space equals space 1 over 64 space open square brackets fraction numerator 6 space cross times 5 space over denominator 1 space cross times 2 end fraction space plus 6 over 1 plus 1 close square brackets
space equals 1 over 64 open square brackets 15 plus 6 plus 1 close square brackets space equals 22 over 64 equals space 11 over 32

    Question 330
    CBSEENMA12033904

    An unbiased coin is tossed six times. Find the probability of obtaining at most 4 heads.

    Solution

    Here n = 6
    p = Probability of head = 1 half comma space space straight q space equals space 1 space minus space straight p space equals space 1 minus 1 half space equals 1 half
    P (at most 4 heads) = 1 - [P (5) + P (6)]
    equals space 1 minus space open square brackets straight C presuperscript 6 subscript 5 space open parentheses 1 half close parentheses space open parentheses 1 half close parentheses to the power of 5 space plus space straight C presuperscript 6 subscript 6 space open parentheses 1 half close parentheses to the power of 6 close square brackets space equals space 1 minus 1 over 64 space open square brackets 6 over 1 plus 1 over 1 close square brackets space equals space 1 minus 7 over 64 space equals 57 over 64

    Question 331
    CBSEENMA12033905

    An unbiased coin is tossed six times. Find the probability of obtaining 2 heads.

    Solution

    Here n = 6
    p = Probability of head = 1 half comma space space straight q space equals space 1 space minus space straight p space equals space 1 minus 1 half space equals 1 half
    P(2 heads) = P(2) = straight C presuperscript 6 subscript 2 space open parentheses 1 half close parentheses to the power of 4 space open parentheses 1 half close parentheses to the power of 4 space equals space fraction numerator 6 space cross times space 5 over denominator 1 space cross times space 2 end fraction cross times space 1 over 64 space equals space 15 over 64

    Question 332
    CBSEENMA12033906
    Question 333
    CBSEENMA12033907

    In a box containing 100 bulbs, 10 are defective. What is the probabilities that out of a sample of 5 bulbs
    (i) none is defective    (ii) exactly two are defective.

    Solution

    Here n = 5
    Let p be the probability of getting defective bulbs
    therefore space space space straight p space equals space 10 over 100 space equals space 1 over 10 comma space space space straight q space equals space 1 minus space straight p space equals space 1 minus 1 over 10 space equals space 9 over 10
    (i) Required probability  = P(0)
    equals space straight C presuperscript 5 subscript 0 space open parentheses 9 over 10 close parentheses to the power of 5 minus 0 end exponent space open parentheses 1 over 10 close parentheses to the power of 0 space equals space 1 space cross times space open parentheses 9 over 10 close parentheses to the power of 5 space equals space open parentheses 9 over 10 close parentheses to the power of 5
    (ii) Required probability = P (2)
    equals space straight C presuperscript 5 subscript 2 space open parentheses 9 over 10 close parentheses to the power of 5 minus 2 end exponent space open parentheses 1 over 10 close parentheses squared space equals fraction numerator 5 space cross times space 4 over denominator 1 space cross times 2 end fraction cross times 9 over 10 cross times 9 over 10 cross times 9 over 10 cross times 1 over 100 space equals 729 over 10000 space equals.0729

    Question 336
    CBSEENMA12033910

    A die is thrown again and again until three sixes are obtained. Find the probability of obtaining the third six in the sixth throw of the dice.

    Solution
    A die is thrown again and again.
    Probability of getting a six in a throw  = 1 over 6
    Probability of not getting a six in a throw  = 1 minus 1 over 6 space equals 5 over 6
    Since third six is in sixth throw
       ∴        there are two sixes in first five throws and one six in the sixth throw.
    Probability of getting two sixes in 5 throws = straight C presuperscript 5 subscript 2 space open parentheses 5 over 6 close parentheses cubed space open parentheses 1 over 6 close parentheses squared
                                                               open square brackets because space space space straight n space equals space 5 comma space space space straight p space equals space 1 over 6 comma space space straight q space equals space 5 over 6 close square brackets
    Probability of getting a six in sixth throw  = 1 over 6
    ∴     probability of getting a third six in the sixth throw
                 equals space straight C presuperscript 5 subscript 2 space open parentheses 5 over 6 close parentheses cubed space open parentheses 1 over 6 close parentheses squared space cross times space 1 over 6 space equals space fraction numerator 5 space cross times space 4 over denominator 1 space cross times 2 end fraction cross times 125 over 6 to the power of 6 space equals 1250 over 46656 space equals 625 over 23328.
    Question 337
    CBSEENMA12033911

    Eight coins are thrown simultaneously. Find the probability of getting at least six heads.

    Solution
    Let p denote the probability of getting a head and q the probability of not getting a head, then
           straight p space equals 1 half comma space space space straight q space equals space 1 half
    ∴    probability of getting at least six heads when 8 coins are thrown simultaneously
             = P(6) + P(7) + P(8)
             equals space straight C presuperscript 8 subscript 6 space open parentheses 1 half close parentheses to the power of 6 space open parentheses 1 half close parentheses squared space plus space straight C presuperscript 8 subscript 7 space open parentheses 1 half close parentheses to the power of 7 space open parentheses 1 half close parentheses space plus space straight C presuperscript 8 subscript 8 space open parentheses 1 half close parentheses to the power of 8
equals space open parentheses 1 half close parentheses to the power of 8 space open square brackets straight C presuperscript 8 subscript 6 space plus space straight C presuperscript 8 subscript 7 space plus space straight C presuperscript 8 subscript 8 close square brackets
equals space 1 over 256 open square brackets fraction numerator 8 space cross times space 7 over denominator 1 space cross times 2 end fraction plus space 8 over 1 plus 1 close square brackets space equals 1 over 256 left square bracket 28 plus 8 plus 1 right square bracket space equals 37 over 256.
    Question 338
    CBSEENMA12033912

    A pair of dice is thrown 7 times. If getting a total of 7 is considered a success, what is the probability of
    (i) no success?    (ii) 6 successes?   (iii) at least 6 successes?    (iv) at most 6 successes?

    Solution

    Here n = 7
    Let p be the probability of getting a total of 7.
    therefore space space space space straight p space equals space 6 over 36 space equals 1 over 6 comma space space space straight q space equals space 1 minus 1 over 6 space equals 5 over 6
    (i) P(no success) = P(0) = straight C presuperscript 7 subscript 0 space open parentheses 5 over 6 close parentheses to the power of 7 minus 0 end exponent space open parentheses 1 over 6 close parentheses to the power of 0 space equals space open parentheses 5 over 6 close parentheses to the power of 7
    (ii) P(6 successes) = P(6) = straight C presuperscript 7 subscript 6 space open parentheses 5 over 6 close parentheses to the power of 7 minus 6 end exponent space open parentheses 1 over 6 close parentheses to the power of 6 space equals space 7 over 1 cross times 5 over 6 cross times open parentheses 1 over 6 close parentheses to the power of 6 space equals space 35 space open parentheses 1 over 6 close parentheses to the power of 7
    (iii) P(at least 6 (successes) = P(6) + P(7)
                                                equals space straight C presuperscript 7 subscript 6 space open parentheses 5 over 6 close parentheses to the power of 7 minus 6 end exponent space open parentheses 1 over 6 close parentheses to the power of 6 space plus space straight C presuperscript 7 subscript 7 space open parentheses 5 over 6 close parentheses to the power of 7 minus 7 end exponent space open parentheses 1 over 6 close parentheses to the power of 7
equals space 7 space cross times space 5 over 6 space cross times space open parentheses 1 over 6 close parentheses to the power of 6 space plus space 1 space cross times space 1 space cross times space open parentheses 1 over 6 close parentheses to the power of 7 space equals space left parenthesis 35 plus 1 right parenthesis space open parentheses 1 over 6 close parentheses to the power of 7
equals space 36 space cross times space open parentheses 1 over 6 close parentheses to the power of 7 space equals space open parentheses 1 over 6 close parentheses to the power of 5
    (iv) P(at most 6 successes) = P(not 7 success)
                                                equals space 1 minus straight P left parenthesis 7 right parenthesis space equals space 1 minus straight C presuperscript 7 subscript 7 space open parentheses 5 over 6 close parentheses to the power of 7 minus 7 end exponent space open parentheses 1 over 6 close parentheses to the power of 7 space equals space 1 minus open parentheses 1 over 6 close parentheses to the power of 7

    Question 339
    CBSEENMA12033913

    Suppose X has a binomial distribution Bopen parentheses 6 comma space 1 half close parentheses. Show that X = 3 is the most likely outcome. 

    Solution

    Since straight B space open parentheses 6 comma space 1 half close parentheses is binomial distribution
            therefore space space space space space straight n space equals space 6 comma space space space straight p space equals space 1 half comma space space straight q space equals space 1 space minus space straight p space equals space 1 minus space 1 half space equals space 1 half
                           straight P left parenthesis straight X space equals space 0 right parenthesis space equals space straight C presuperscript 6 subscript 0 space open parentheses 1 half close parentheses to the power of 6 space equals space 1 space cross times space 1 over 64 space equals 1 over 64
straight P left parenthesis straight X space equals space 1 right parenthesis space equals space straight C presuperscript 6 subscript 1 space open parentheses 1 half close parentheses to the power of 5 space open parentheses 1 half close parentheses space equals space 6 space cross times space 1 over 32 cross times space 1 half space equals space 6 over 64
straight P left parenthesis straight X space equals space 2 right parenthesis space equals space straight C presuperscript 6 subscript 2 space open parentheses 1 half close parentheses to the power of 4 space open parentheses 1 half close parentheses squared space equals fraction numerator 6 space cross times space 5 over denominator 1 space cross times 2 end fraction cross times 1 over 16 cross times 1 fourth space equals 15 over 64
straight P left parenthesis straight X space equals 3 right parenthesis space equals space straight C presuperscript 6 subscript 3 space open parentheses 1 half close parentheses cubed space open parentheses 1 half close parentheses cubed space equals space fraction numerator 6 space cross times space 5 space cross times space 4 over denominator 1 space cross times space 2 space cross times 3 end fraction cross times space 1 over 8 cross times 1 over 8 space equals space 20 over 64
straight P left parenthesis straight X space equals space 4 right parenthesis space equals space straight C presuperscript 6 subscript 4 space open parentheses 1 half close parentheses squared space open parentheses 1 half close parentheses to the power of 4 space equals fraction numerator 6 space cross times 5 over denominator 1 cross times 2 end fraction cross times 1 fourth cross times 1 over 16 equals 15 over 64
straight P left parenthesis straight X space equals 5 right parenthesis space equals space straight C presuperscript 6 subscript 5 space open parentheses 1 half close parentheses space open parentheses 1 half close parentheses to the power of 5 space equals space 6 over 1 cross times 1 half cross times 1 over 32 equals space 6 over 64
straight P left parenthesis straight X space equals 6 right parenthesis space equals space straight C presuperscript 6 subscript 6 space open parentheses 1 half close parentheses to the power of 6 space equals space 1 space cross times space 1 over 64 space equals 1 over 64.
    Since 20 over 64 is maximum of all the above values
    therefore space space space straight X space equals space 3 space is space the space most space likely space out space come. space

    Question 340
    CBSEENMA12033914

    Find the mean of the Binomial distribution straight B space open parentheses 4 comma space 1 third close parentheses.

    Solution

    Let X be the random variable whose probability distribution is straight B open parentheses 4 comma space 1 third close parentheses.
                    therefore space space straight n space equals space 4 comma space space space straight p space equals space 1 third space space and space straight q space equals space 1 minus 1 third space equals 2 over 3.
    Now   straight P left parenthesis straight X space equals straight x right parenthesis space equals space straight C presuperscript 4 subscript straight x space open parentheses 2 over 3 close parentheses to the power of 4 minus straight x end exponent space open parentheses 1 third close parentheses to the power of straight x comma space space space straight x space equals space 0 comma space 1 comma space 2 comma space 3 comma space 4.
    ∴   the distribution of X is

    therefore                     mean = sum from straight i space equals space 1 to 4 of straight x subscript straight i space straight p left parenthesis straight x subscript straight i right parenthesis space
                     equals space 0 space plus space straight C presuperscript 4 subscript 1 space open parentheses 2 over 3 close parentheses cubed space open parentheses 1 third close parentheses plus 2. space straight C presuperscript 4 subscript 2 space open parentheses 2 over 3 close parentheses squared space open parentheses 1 third close parentheses squared
                                                             plus 3. space space straight C presuperscript 4 subscript 3 space open parentheses 2 over 3 close parentheses space open parentheses 1 third close parentheses cubed plus 4 space straight C presuperscript 4 subscript 4 space open parentheses 1 third close parentheses to the power of 4
    equals space 4 cross times space 2 cubed over 3 to the power of 4 plus 2 space cross times space fraction numerator 4 space cross times space 3 over denominator 1 space cross times 2 end fraction cross times space 2 squared over 3 to the power of 4 plus 3 space cross times space 4 over 1 space cross times space 2 over 3 to the power of 4 plus 4 space cross times space 1 space cross times space 1 over 3 to the power of 4
equals space fraction numerator 32 plus 48 plus 24 plus 4 over denominator 3 to the power of 4 end fraction equals space 108 over 81 equals space 4 over 3.

    Question 341
    CBSEENMA12033915

    The probability of shooter hitting a target is 3 over 4. How many minmum number of times must he/she fire so that the probability of hitting the target at least once is more than 0.99?

    Solution

    Let the shooter fire n times. 
            Now,    straight p space equals space 1 fourth comma space space straight q space equals space 1 space minus space straight p space space equals space 1 minus 1 fourth space equals space 3 over 4
                    straight P left parenthesis straight X space equals space straight x right parenthesis space equals space straight C presuperscript straight n subscript straight x space straight q to the power of straight n minus straight x end exponent space straight p to the power of straight x space equals space straight C presuperscript straight n subscript straight x space open parentheses 1 fourth close parentheses to the power of straight n minus straight x end exponent space open parentheses 3 over 4 close parentheses to the power of straight x space equals space straight C presuperscript straight n subscript straight x space 3 to the power of straight x over 4 to the power of straight n.
    Now, P(hitting the target at least once) > 0.99                     (given)
    therefore space space space space space space straight P left parenthesis straight x space greater or equal than space 1 right parenthesis space greater or equal than space 0.99
rightwards double arrow space space space space space 1 space minus space straight P left parenthesis straight x space equals space 0 right parenthesis space greater than space 0.99
therefore space space space space space 1 space minus space straight C presuperscript straight n subscript 0 space 1 over 4 to the power of straight n greater than space 0.99
therefore space space space space space space space space space space space space space space space space space 1 over 4 to the power of straight n space less than space 0.001 space space space space space space space space space space space space space space space space space space space space space space space space space left square bracket because space space space straight C presuperscript straight n subscript 0 space equals space 1 right square bracket
    or         4 to the power of straight n space greater than space fraction numerator 1 over denominator 0.01 end fraction space equals space 100                                  ...(1)
    The minimum value of n to satisfy the inequality (1) is 4. 
    ∴   the shooter must fire 4 times.

    Question 342
    CBSEENMA12033916

    If a fair coin is tossed 10 times, find the probability of
    (i) exactly six heads
    (ii) at least six heads
    (iii) at most six heads

    Solution

    Here n = 10
    P = Probability of head = 1 half comma space space straight q space equals space 1 space minus space straight p space equals space 1 minus 1 half space equals space 1 half
    (i) P(exactly six heads) = P(6)
                     equals space straight C presuperscript 10 subscript 6 space open parentheses 1 half close parentheses to the power of 4 space open parentheses 1 half close parentheses to the power of 6 space equals space straight C presuperscript 10 subscript 4 space cross times space open parentheses 1 half close parentheses to the power of 10
equals space fraction numerator 10 space cross times space 9 space cross times space 8 space cross times space 7 over denominator 1 space cross times space 2 space cross times 3 space cross times 4 end fraction cross times 1 over 1024 space equals 105 over 512
    (ii) P(at least six heads) = P(6) + P(7) + P(8) + P(9) + P(10)
                 equals space straight C presuperscript 10 subscript 6 space open parentheses 1 half close parentheses to the power of 4 space open parentheses 1 half close parentheses to the power of 6 space plus space straight C presuperscript 10 subscript 7 space space open parentheses 1 half close parentheses cubed space open parentheses 1 half close parentheses to the power of 7 space plus space straight C presuperscript 10 subscript 8 space open parentheses 1 half close parentheses squared space open parentheses 1 half close parentheses to the power of 8 space space space space space space space space space space space space space space space space space space
                 equals space open parentheses 1 half close parentheses to the power of 10 space open square brackets straight C presuperscript 10 subscript 6 space plus space straight C presuperscript 10 subscript 7 space plus space straight C presuperscript 10 subscript 8 space plus space straight C presuperscript 10 subscript 9 space plus space straight C presuperscript 10 subscript 10 close square brackets
equals space open parentheses 1 half close parentheses to the power of 10 space open square brackets straight C presuperscript 10 subscript 4 space plus space straight C presuperscript 10 subscript 3 space plus space straight C presuperscript 10 subscript 2 space plus space straight C presuperscript 10 subscript 1 space plus space straight C presuperscript 10 subscript 0 space close square brackets
space equals space open parentheses 1 half close parentheses to the power of 10 space open square brackets fraction numerator 10 space cross times space 9 space cross times space 8 space cross times 7 over denominator 1 space cross times 2 space cross times 3 space cross times 4 end fraction plus fraction numerator 10 space cross times space 9 space cross times 8 over denominator 1 space cross times 2 space cross times 3 end fraction plus fraction numerator 10 space cross times space 9 over denominator 1 space cross times 2 end fraction plus 10 over 1 plus 1 close square brackets
equals space 1 over 1024 left square bracket 210 plus 120 plus 45 plus 10 plus 1 right square bracket space equals space 1 over 1024 space cross times space 386 space equals space 193 over 512.  
                                                           plus space straight C presuperscript 10 subscript 9 space open parentheses 1 half close parentheses space open parentheses 1 half close parentheses to the power of 9 space plus space straight C presuperscript 10 subscript 10 space open parentheses 1 half close parentheses to the power of 10
    (iii) P(at most sixes) = P(0) + P(1) + P(2) + P(3) + P(4) + P(5) + P(6)
              equals space straight C presuperscript 10 subscript 0 space open parentheses 1 half close parentheses to the power of 10 space plus space straight C presuperscript 10 subscript 1 space open parentheses 1 half close parentheses to the power of 9 space open parentheses 1 half close parentheses space plus straight C presuperscript 10 subscript 2 space open parentheses 1 half close parentheses to the power of 8 space open parentheses 1 half close parentheses squared plus straight C presuperscript 10 subscript 3 space open parentheses 1 half close parentheses to the power of 7 space open parentheses 1 half close parentheses cubed
                                           plus space straight C presuperscript 10 subscript 4 space open parentheses 1 half close parentheses to the power of 6 space open parentheses 1 half close parentheses to the power of 4 space plus space straight C presuperscript 10 subscript 5 space open parentheses 1 half close parentheses to the power of 5 space open parentheses 1 half close parentheses to the power of 5 space plus space straight C presuperscript 10 subscript 4 space open parentheses 1 half close parentheses to the power of 6 space open parentheses 1 half close parentheses to the power of 4
    equals space open parentheses 1 half close parentheses to the power of 10 space open square brackets straight C presuperscript 10 subscript 0 space plus space straight C presuperscript 10 subscript 1 space plus space straight C presuperscript 10 subscript 2 space plus space straight C presuperscript 10 subscript 3 space plus space straight C presuperscript 10 subscript 4 space plus space straight C presuperscript 10 subscript 5 space plus space straight C presuperscript 10 subscript 4 close square brackets
equals space open parentheses 1 half close parentheses to the power of 10 space open square brackets 1 plus 10 over 1 plus fraction numerator 10 space cross times space 9 over denominator 1 space cross times 2 end fraction plus space fraction numerator 10 cross times 9 cross times space 8 over denominator 1 space cross times 2 space cross times 3 end fraction space plus fraction numerator 10 space cross times 9 cross times 8 cross times 7 over denominator 1 space cross times space 2 space cross times 3 space cross times 4 end fraction plus fraction numerator 10 space cross times space 9 space cross times 8 space cross times space 7 space cross times 6 over denominator 1 space cross times space 2 space cross times space 3 space cross times 4 cross times 5 end fraction plus fraction numerator 10 space cross times 9 cross times 8 cross times 7 over denominator 1 cross times 2 cross times 3 cross times 4 end fraction close square brackets
equals space 1 over 1024 left square bracket 1 plus 10 plus 45 plus 120 plus 210 plus 252 plus 120 right square bracket space equals 848 over 1024 space equals 53 over 64.

    Question 343
    CBSEENMA12033917

    A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is 1 over 100. What is the probaility that he will win a prize exactly once (a) at least once (b) exactly once (c) at least twice?

    Solution

    Here n = 50
         straight p space equals 1 over 100 comma space space space straight q space equals space 1 minus space straight p space equals space 1 minus 1 over 100 space equals space 99 over 100
    (a) P(at least once) = 1 - P(0) = 1 minus space straight C presuperscript 50 subscript 0 space open parentheses 99 over 100 close parentheses to the power of 50 space equals space 1 minus space open parentheses 99 over 100 close parentheses to the power of 50
    (b) P(exactly once) = P(1) = straight C presuperscript 50 subscript 1 space open parentheses 99 over 100 close parentheses to the power of 49 space open parentheses 1 over 100 close parentheses
                                 equals space 50 over 1 cross times open parentheses 99 over 100 close parentheses to the power of 49 space cross times space 1 over 100 space equals space 1 half open parentheses 99 over 100 close parentheses to the power of 49.
    (c) P(at least twice) = 1 - [P(0) + P(1)]
                             equals space 1 minus space open square brackets straight C presuperscript 50 subscript 0 space open parentheses 99 over 100 close parentheses to the power of 50 space plus space straight C presuperscript 50 subscript 1 space open parentheses 99 over 100 close parentheses to the power of 49 space open parentheses 1 over 100 close parentheses close square brackets
space equals space 1 minus space open square brackets open parentheses 99 over 100 close parentheses to the power of 50 space plus space 1 half open parentheses 99 over 100 close parentheses to the power of 49 close square brackets space equals space 1 minus space open parentheses 99 over 100 close parentheses to the power of 50 space minus space 1 half open parentheses 99 over 100 close parentheses to the power of 49
space equals space 1 minus space open parentheses 99 over 100 close parentheses to the power of 49 space open square brackets 99 over 100 plus 1 half close square brackets space equals space 1 minus space open parentheses 99 over 100 close parentheses to the power of 49 space open parentheses fraction numerator 99 plus 50 over denominator 100 end fraction close parentheses space equals space 1 minus 49 over 100 open parentheses 99 over 100 close parentheses to the power of 49.

    Question 344
    CBSEENMA12033918

    An urn contains 25 balls of which 10 balls bear a mark ‘X’ and the remaining 15 bear a mark ‘Y’ . A ball is drawn at random and it is replaced. If 6 balls are drawn in this way, find the probability that
    (i)    all will bear mark X
    (ii)   not more than 2 balls will bear 'Y' mark.
    (iii)  at least one ball will bear 'Y' mark.
    (iv)  the number of balls with 'X' mark and 'Y' mark will be equal.

    Solution

    Here n = 6
                p = (Probability that a ball marked 'X' is drawn) = 10 over 25 space equals space 2 over 5
    therefore space space space straight q space equals space straight P left parenthesis straight a space ball space marked space straight Y space is space drawn right parenthesis space equals space 1 space minus space straight p space equals space 1 minus 2 over 5 space equals space 3 over 5
    (i) P(all balls bear X mark) = P(6) = straight C presuperscript 6 subscript 6 space open parentheses 3 over 5 close parentheses to the power of 6 minus 6 end exponent space open parentheses 2 over 5 close parentheses to the power of 6 space equals space open parentheses 2 over 5 close parentheses to the power of 6
    (ii) P(not more than 2 will bear Y mark)
          = P(not less than 4 will bear X mark) = P(4) + P(5) + P(6)
           equals space straight C presuperscript 6 subscript 4 space open parentheses 3 over 5 close parentheses to the power of 6 minus 4 end exponent space open parentheses 2 over 5 close parentheses to the power of 4 space plus space straight C presuperscript 6 subscript 5 space open parentheses 2 over 5 close parentheses to the power of 6 minus 5 end exponent space plus space straight C presuperscript 6 subscript 6 space open parentheses 3 over 5 close parentheses to the power of 6 minus 6 end exponent space open parentheses 2 over 5 close parentheses to the power of 6
equals space straight C presuperscript 6 subscript 2 space open parentheses 3 over 5 close parentheses squared space open parentheses 2 over 5 close parentheses to the power of 4 space plus space straight C presuperscript 6 subscript 1 space open parentheses 3 over 5 close parentheses to the power of 1 space open parentheses 2 over 5 close parentheses to the power of 5 space plus space straight C presuperscript 6 subscript 0 space cross times space 1 space cross times space open parentheses 2 over 5 close parentheses to the power of 6
equals space fraction numerator 6 space cross times space 5 over denominator 1 space cross times 2 end fraction cross times space open parentheses 3 over 5 close parentheses squared space cross times space open parentheses 2 over 5 close parentheses to the power of 4 space plus space 6 over 1 cross times 3 over 5 cross times space open parentheses 2 over 5 close parentheses to the power of 5 space plus space 1 space cross times 1 space cross times space open parentheses 2 over 5 close parentheses to the power of 6
equals space open parentheses 2 over 5 close parentheses to the power of 4 space open square brackets fraction numerator 6 space cross times space 5 over denominator 1 space cross times 2 end fraction space cross times space 9 over 25 plus 6 over 1 cross times 3 over 5 cross times 2 over 5 plus 1 space cross times space 1 space cross times space 4 over 25 close square brackets space equals open parentheses 2 over 5 close parentheses to the power of 4 space open square brackets 27 over 5 plus 36 over 25 plus 4 over 25 close square brackets
equals space open parentheses 2 over 5 close parentheses to the power of 4 space open square brackets fraction numerator 135 plus 36 plus 4 over denominator 25 end fraction close square brackets space equals space open parentheses 2 over 5 close parentheses to the power of 4 space cross times space 175 over 125 space equals space 7 open parentheses 2 over 5 close parentheses to the power of 4 space equals space 112 over 625
    (iii) P(number of balls with X mark and Y mark equal)
                              equals space straight P left parenthesis 3 right parenthesis space equals space straight C presuperscript 6 subscript 3 space open parentheses 3 over 5 close parentheses to the power of 6 minus 3 end exponent space open parentheses 2 over 5 close parentheses cubed space equals space fraction numerator 6 space cross times space 5 space cross times space 4 over denominator 1 space cross times space 2 space cross times space 3 end fraction cross times space open parentheses 3 over 5 close parentheses cubed space open parentheses 2 over 5 close parentheses cubed space equals space 20 space cross times space open parentheses 3 over 5 close parentheses cubed space cross times space open parentheses 2 over 5 close parentheses cubed
    (iv) P(at least one ball bear Y mark)
                 = P(not more than 5 balls bear mark X)
                  equals space 1 minus straight P left parenthesis 6 right parenthesis space equals space 1 space minus space open parentheses 2 over 5 close parentheses to the power of 6.               open square brackets because of space left parenthesis straight i right parenthesis close square brackets
              
             
             
        

    Question 345
    CBSEENMA12033919

    In an examination, 20 questions of true-false type are asked. Suppose a student tosses a fair coin to determine his answer to each question. If the coin falls heads, he answers ‘true’ ; if it falls tails, he answers ‘false’. Find the probability that he answers at least 12 questions correctly.

    Solution

    Here n = 20
         p = P(answers true) = P(head) = 1 half
    therefore space space space space straight q space equals space 1 minus straight p space equals space 1 minus 1 half space equals space 1 half
               P(answers at least 12 questions correctly)
           = P(12) + P(13) + P(14) + P(15) + P (16) +  P(17) + P(18) + P(19) + P(20)
           equals space straight C presuperscript 20 subscript 12 space open parentheses 1 half close parentheses to the power of 8 space open parentheses 1 half close parentheses to the power of 12 space plus space straight C presuperscript 20 subscript 13 space open parentheses 1 half close parentheses to the power of 7 space open parentheses 1 over 12 close parentheses to the power of 13 space plus space straight C presuperscript 20 subscript 14 space open parentheses 1 half close parentheses to the power of 6 space open parentheses 1 half close parentheses to the power of 14
                                                                plus space straight C presuperscript 20 subscript 15 space open parentheses 1 half close parentheses to the power of 5 space open parentheses 1 half close parentheses to the power of 15 space plus space straight C presuperscript 20 subscript 16 space open parentheses 1 half close parentheses to the power of 4 space open parentheses 1 half close parentheses to the power of 16 space plus space straight C presuperscript 20 subscript 17 space open parentheses 1 half close parentheses cubed space open parentheses 1 half close parentheses to the power of 17
                                     plus space straight C presuperscript 20 subscript 18 space open parentheses 1 half close parentheses squared space open parentheses 1 half close parentheses to the power of 18 space plus space straight C presuperscript 20 subscript 19 space open parentheses 1 half close parentheses space open parentheses 1 half close parentheses to the power of 19 space plus space straight C presuperscript 20 subscript 20 space open parentheses 1 half close parentheses to the power of 20
    equals space 1 over 2 to the power of 20 space open parentheses straight C presuperscript 20 subscript 12 plus straight C presuperscript 20 subscript 13 plus straight C presuperscript 20 subscript 14 plus straight C presuperscript 20 subscript 15 plus straight C presuperscript 20 subscript 16 plus straight C presuperscript 20 subscript 17 plus straight C presuperscript 20 subscript 18 space plus space straight C presuperscript 20 subscript 19 plus space straight C presuperscript 20 subscript 20 space close parentheses

    Question 346
    CBSEENMA12033920

    Suppose that 90% of people are right-handed. What is the probability that at most 6 of a random sample of 10 people are right-handed?

    Solution

    Here n = 10
                          straight p space equals 90 over 100 space equals 9 over 10 comma space space space straight q space equals space 1 space minus space straight p space equals space 1 minus space 9 over 10 space equals space 1 over 10
    Required probability  equals space space straight P left parenthesis straight X space less or equal than space 6 right parenthesis
                             equals space 1 minus straight P left parenthesis 7 space less or equal than straight X less or equal than 10 right parenthesis space equals space 1 minus space sum from straight r space equals space 7 to 10 of space space straight C presuperscript 10 subscript straight r space open parentheses 1 over 10 close parentheses to the power of 10 minus straight r end exponent space open parentheses 9 over 10 close parentheses to the power of straight r

    Question 347
    CBSEENMA12033921

    How many times must a man toss a fair coin so that the probability of having at least one head is more than 90%?

    Solution
    Let n be the number of times a fair coin is tossed.
             Now            straight p space space equals space 1 half comma space space straight q space equals space 1 minus straight p space equals space 1 minus 1 half space equals space 1 half
                  P(at least one head) > 90%                         (given)
    rightwards double arrow space space space 1 minus space straight P left parenthesis 0 right parenthesis thin space greater than space 90 over 100 space space space space space space rightwards double arrow space space space space space 1 space minus space straight C presuperscript straight n subscript 0 space straight q to the power of straight n space equals space 9 over 10
rightwards double arrow space space 1 minus space space 1 space cross times space open parentheses 1 half close parentheses to the power of straight n space greater than space 9 over 10 space space space space space space space rightwards double arrow space space space space 1 minus space 9 over 10 greater than 1 over 2 to the power of straight n
rightwards double arrow space space space space space space space space 1 over 10 greater than 1 over 2 to the power of straight n space space space space space space space space space space space space space rightwards double arrow space space space space 2 to the power of straight n space greater than space 10
    
    ∴ least value of n is 4
    ∴  minimum number of tosses is 4.
    Question 348
    CBSEENMA12033922

    In a box containing 100 bulbs, 10 are defective. The probability that out of a sample of 5 bulbs, none is defective is
    • 10 to the power of negative 1 end exponent
    • open parentheses 1 half close parentheses to the power of 5
    • open parentheses 9 over 10 close parentheses to the power of 5
    • 9 over 10

    Solution

    C.

    open parentheses 9 over 10 close parentheses to the power of 5

    Here n = 5
                      straight p space equals space 10 over 100 space equals space 1 over 10 comma space space space straight q space equals space 1 minus straight p space equals space 1 minus 1 over 10 space equals space 9 over 10
    P(none is defective) = P(0) = straight C presuperscript 5 subscript 0 space open parentheses 9 over 10 close parentheses to the power of 5 space equals space 1 space cross times space open parentheses 9 over 10 close parentheses to the power of 5 space equals space open parentheses 9 over 10 close parentheses to the power of 5
    ∴ (C) is correct answer.

    Question 349
    CBSEENMA12033923
    Question 350
    CBSEENMA12033924

    A and B throw two dice simultaneously turn by turn. A will win if he throws a total of 5, B will win if he throws a doublet. Find the probability that B will win the game, though A started the game. 

    Solution

    ∴    total number of possible outcomes = 36
    Let E be the event of getting "a total of 5" in a throw of two dice.
    therefore space space space space straight E space equals space left curly bracket left parenthesis 1 comma space 4 right parenthesis comma space left parenthesis 2 comma space 3 right parenthesis comma space left parenthesis 3 comma space 2 right parenthesis comma space left parenthesis 4 comma space 1 right parenthesis right curly bracket
therefore space space space space straight P left parenthesis straight E right parenthesis space equals space 4 over 36 space equals space 1 over 9 comma space space space straight P left parenthesis straight E with bar on top right parenthesis space equals space 1 minus 1 over 9 space equals space 8 over 9
    Let F be the event of getting a doublet in throw of two dice.
    therefore    F = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)}
    therefore space space space straight P left parenthesis straight F right parenthesis space equals space 6 over 36 space equals space 1 over 6 comma space space straight P left parenthesis straight F with bar on top right parenthesis space equals space 1 minus 1 over 6 space equals 5 over 6
    Now A starts the game.
          therefore  B wins in second throw or fourth throw or 6th throw or ..........
         therefore  probability of winning of B = straight P left parenthesis straight E with bar on top right parenthesis space space straight P left parenthesis straight F right parenthesis space plus space straight P left parenthesis straight E with bar on top right parenthesis thin space straight P left parenthesis straight F with bar on top right parenthesis thin space straight P left parenthesis straight E with bar on top right parenthesis space straight P left parenthesis straight F right parenthesis
                                                                  plus space straight P left parenthesis straight E with bar on top right parenthesis thin space straight P left parenthesis straight F with bar on top right parenthesis thin space straight P left parenthesis straight E with bar on top right parenthesis space straight P left parenthesis straight F with bar on top right parenthesis thin space straight P left parenthesis straight E with bar on top right parenthesis thin space straight P left parenthesis straight F right parenthesis space plus.......
                            equals space 8 over 9 cross times 1 over 6 plus 8 over 9 cross times 5 over 6 cross times 8 over 9 cross times 1 over 6 plus 8 over 9 cross times 5 over 6 cross times 8 over 9 cross times 5 over 6 cross times 8 over 9 cross times 1 over 6 plus.....
equals space 8 over 9 cross times 1 over 6 open square brackets 1 plus space open parentheses 5 over 6 cross times 8 over 9 close parentheses space plus space open parentheses 5 over 6 cross times 8 over 9 close parentheses squared plus..... close square brackets
equals space 8 over 9 cross times space 1 over 6 open square brackets fraction numerator 1 over denominator 1 minus begin display style 5 over 6 end style cross times begin display style 8 over 9 end style end fraction close square brackets space space space space space space space space space space space space space space space space space space space space space space space open square brackets because space space straight S space equals space fraction numerator straight a over denominator 1 minus straight r end fraction close square brackets
equals space 8 over 9 cross times 1 over 6 open square brackets fraction numerator 6 space cross times space 9 over denominator 6 space cross times 9 space minus space 5 cross times 8 end fraction close square brackets space equals space 8 over 9 cross times 1 over 6 open square brackets fraction numerator 6 space cross times space 9 over denominator 14 end fraction close square brackets space equals space 8 over 9 cross times space 1 over 6 cross times fraction numerator 6 space cross times space 9 over denominator 14 end fraction equals space 4 over 7
    Question 351
    CBSEENMA12035709

    An experiment succeeds thrice as often as it fails. Find the probability that in the next five trials, there will be at least 3 successes.

    Solution

    An experiment succeeds as often as it fails.
    Therefore, there are 3 successes and 1 failures.
    Thus the probability of success equals 3 over 4
    And the probability of failure = 1 fourth
    We need to find the probability of atleast 3 successes in the next five trials.
    Required Probability  = P(X= 3) + P(X = 4) + P(X = 5)
    equals straight C presuperscript 5 subscript 3 straight p cubed straight q squared space plus space straight C presuperscript 5 subscript 4 straight p to the power of 4 straight q to the power of 1 space plus space straight C presuperscript 5 subscript 5 straight p to the power of 5 straight q to the power of 0
equals straight C presuperscript 5 subscript 3 open parentheses 3 over 4 close parentheses cubed open parentheses 1 fourth close parentheses squared space plus space straight C presuperscript 5 subscript 4 open parentheses 3 over 4 close parentheses to the power of 4 open parentheses 1 fourth close parentheses to the power of 1 space plus straight C presuperscript 5 subscript 5 open parentheses 3 over 4 close parentheses to the power of 5 open parentheses 1 fourth close parentheses to the power of 0
equals 10 open parentheses 3 over 4 close parentheses cubed open parentheses 1 fourth close parentheses squared plus 5 open parentheses 3 over 4 close parentheses to the power of 4 open parentheses 1 fourth close parentheses to the power of 1 plus open parentheses 3 over 4 close parentheses to the power of 5 open parentheses 1 fourth close parentheses to the power of 0
equals 918 over 1024
equals 459 over 512

    Question 353
    CBSEENMA12035720

    Two numbers are selected at random (without replacement) from the first six positive integers. Let X denote the larger of the two numbers obtained. Find the probability distribution of the random variable X, and hence find the mean of the distribution.

    Solution

    If 1 is the smallest number,
    the other numbers are:2,3,4,5,6
    If 2 is the smallest number, the other numbers are:3,4,5,6
    If 3 is the smallest number, the other numbers are:4,5,6
    If 4 is the smallest number, the other numbers are: 5, 6
    If 5 is the smallest number, the other number is:6
    Thus comma space the space sample space space space is space straight S space equals space open curly brackets table row cell 12 comma space 13 comma space 14 comma space 15 comma space 16 end cell row cell 23 comma space 24 comma space 25 comma space 26 end cell row cell 34 comma space 35 comma space 36 end cell row cell 45 comma space 46 end cell row 56 end table close curly brackets
    Thus, there are 15 set of numbers in the sample space. 
    Let X be
    X:           2             3                  4                 5                   6
    straight P left parenthesis straight X right parenthesis colon      1/15        2/15             3/15            4/15               5/15
    We know that,
    straight E left parenthesis straight X right parenthesis space equals space straight X subscript straight i straight P left parenthesis straight X subscript straight i right parenthesis
equals space 2 cross times 1 over 15 plus 3 cross times 2 over 15 plus 4 cross times 3 over 15 plus 5 cross times 4 over 15 plus 6 cross times 5 over 15
equals fraction numerator 2 plus 6 plus 12 plus 20 plus 30 over denominator 15 end fraction
equals 70 over 15
almost equal to space 4.66

    Question 354
    CBSEENMA12035749

    A speaks truth in 60% of the cases, while B in 90% of the cases. In what percent of cases are they likely to contradict each other in stating the same fact? In the cases of contradiction do you think, the statement of B will carry more weight as he speaks truth in more number of cases than A?

    Solution

    Let the probability that A and B speak truth be P(A) and P(B) respectively.
    Therefore,  straight P left parenthesis straight A right parenthesis space equals space 60 over 100 space equals 3 over 5 space space and space straight P left parenthesis straight B right parenthesis space equals space 90 over 100 space equals space 9 over 10
    A and B can contradict in stating a fact when one is speaking the truth and other is not speaking the truth.
    Case 1:  A is speaking the truth and B is not speaking the truth.
    Required space Probability space equals space straight P left parenthesis straight A right parenthesis space cross times space open parentheses 1 minus straight P left parenthesis straight B right parenthesis close parentheses space equals 3 over 5 cross times open parentheses 1 minus 9 over 10 close parentheses space equals 3 over 50.
    Case 2: A is not speaking the truth and B is speaking the truth. 
    Required Probability  = open parentheses 1 minus straight P left parenthesis straight A right parenthesis close parentheses space cross times space straight P left parenthesis straight B right parenthesis space equals space open parentheses 1 minus 3 over 5 close parentheses cross times 9 over 10 equals 9 over 25.
    therefore space Percentage of cases in which they are likely to contradict in stating the same fact =
    open parentheses 3 over 50 plus 9 over 25 close parentheses cross times 100 percent sign space space equals space open parentheses fraction numerator 3 plus 18 over denominator 50 end fraction close parentheses cross times 100 percent sign space equals 42 percent sign
    From case 1, it is clear that is not necessary that the statement of B will carry more weight as he speaks truth in more number of cases than A.

    Question 355
    CBSEENMA12035758

    Assume that the chances of a patient having a heart attack is 40%. Assuming that a meditation and yoga course reduces the risk of heart attack by 30% and prescription of certain drug reduces its chance by 25%. At a time a patient can choose any one of the two options with equal probabilities. It is given that after going through one of the two options, the patient selected at random suffers a heart attack. Find the probability that the patient followed a course of meditation

    Solution

    Let A, E1, and E2, respectively denote the events that a person has a heart attack, the selected person followed the course of yoga and meditation, and the person adopted the drug prescription.
    therefore space space straight P left parenthesis straight A right parenthesis space equals space 0.40
straight P left parenthesis straight E subscript 1 right parenthesis thin space equals space straight P left parenthesis straight E subscript 2 right parenthesis space equals space 1 half
straight P left parenthesis straight A vertical line straight E subscript 1 right parenthesis space equals space 0.40 space cross times space 0.70 space equals space 0.28
straight P left parenthesis straight A vertical line straight E subscript 2 right parenthesis space equals 0.40 space cross times space 0.75 space equals space 0.30
    Probability that the patient suffering a heart attack followed a course of meditation and yoga = straight P left parenthesis straight E subscript 1 vertical line straight A right parenthesis
    equals space fraction numerator straight P left parenthesis straight E subscript 1 right parenthesis thin space straight P left parenthesis straight A vertical line straight E subscript 1 right parenthesis over denominator straight P left parenthesis straight E subscript 1 right parenthesis thin space straight P left parenthesis straight A vertical line straight E subscript 1 right parenthesis plus straight P left parenthesis straight E subscript 2 right parenthesis thin space straight P left parenthesis straight A vertical line straight E subscript 2 right parenthesis end fraction
equals fraction numerator begin display style 1 half end style cross times 0.28 over denominator begin display style 1 half end style cross times 0.28 plus begin display style 1 half end style cross times 0.30 end fraction
equals fraction numerator 28 over denominator 28 plus 30 end fraction
equals 28 over 58
equals 14 over 29
    Now, calculate straight P left parenthesis straight E subscript 2 vertical line straight A right parenthesis.
    straight P left parenthesis straight E subscript 2 vertical line straight A right parenthesis space equals space fraction numerator straight P left parenthesis straight E subscript 2 right parenthesis thin space straight P left parenthesis straight A vertical line straight E subscript 2 right parenthesis over denominator straight P left parenthesis straight E subscript 1 right parenthesis thin space straight P left parenthesis straight A vertical line straight E subscript 1 right parenthesis plus straight P left parenthesis straight E subscript 2 right parenthesis space straight P left parenthesis straight A vertical line straight E subscript 2 right parenthesis end fraction
space space space space space space space space equals fraction numerator begin display style 1 half end style cross times 0.30 over denominator begin display style 1 half end style cross times 0.28 plus begin display style 1 half end style cross times 0.30 end fraction
space space space space space space space space space space space equals fraction numerator 30 over denominator 28 plus 30 end fraction
space space space space space space space space space space space space equals 30 over 58
space space space space space space space space space space space space equals 15 over 29
    Since straight P left parenthesis straight E subscript 1 vertical line straight A right parenthesis space less than thin space straight P left parenthesis straight E subscript 2 vertical line straight A right parenthesis , the course of yoga and meditation is more beneficial for a patient. 

    Question 356
    CBSEENMA12035800

    A black and a red die are rolled together. Find the conditional probability of obtaining the sum 8, given that the red die resulted in a number less than 4.

    Solution

    Here S = (1, 1)(1, 2)(1, 3)(1, 4)(1, 5)(1, 6)(2, 1)(2, 2)(2, 3)(2, 4)(2, 5)(2, 6)(3, 1)(3, 2)(3, 3)(3, 4)(3, 5)(3, 6)(4, 1)(4, 2)(4, 3)(4, 4)(4, 5)(4, 6)(5, 1)(5, 2)(5, 3)(5, 4)(5, 5)(5, 6)(6, 1)(6, 2)(6, 3)(6, 4)(6, 5)(6, 6)


    A number of elements (outcomes) of the above sample space is 6 × 6 = 36.
        Let E: a total of 8

      E:  (2, 6), (3, 5), (4, 4), (5, 3), (6, 2)      F: red die resulted in a number less than 4  F = (1, 1), (1, 2),...., (1, 6), (2, 1), (2, 2), ...., (2, 6), (3, 1), (3, 2),....(3, 6)   EF = (2, 6), (3, 5)   P(F) = 1836,   P(EF) = 236  required probability = P(EF) = P(EF)P(F)= 2361836= 218 =19

    Question 357
    CBSEENMA12035808

    Two numbers are selected at random (without replacement) from the first five positive integers. Let X denote the larger of the two numbers obtained. Find the mean and variance of X.

    Solution

    X can take values as 2, 3, 4,5 such that,

    P (X =2) = probability that the larger of two number 2.
    = prob. of getting 1 in first selection and 2 in second selection getting 2 in first selection and 1 in second selection.

     P (X = 2) = 15 x 14 + 15 x 14 = 220similarly, P (X = 3) = 25 x 14 + 15 x24 = 420 P (X = 4) = 35 x14 + 15 x 34 = 620 P (X =5) = 45 x 14 + 15 x 44 = 820

    x 2 3 4 5
    P(X) 220 420 620 820

    E(X) = 2 x 220 + 3 x 440 + 4 x 620 +5 x 820 = 8020 = 4E(X2) = 4 x 220 + 9 x 420 + 16 x620 + 25 x820 = 34020 = 17V(X) =E(X2) - (E(X))2 = 17-16 = 1

    Question 358
    CBSEENMA12035813

    Suppose a girl throws a die. If she gets 1 or 2 she tosses a coin three times and notes the number of tails. If she gets 3,4,5 or 6, she tosses a coin once and notes whether a ‘head’ or ‘tail’ is obtained. If she obtained exactly one ‘tail’, what is the probability that she threw 3,4,5 or 6 with the ride ?

    Solution

    Let A be the event that girl will get 1 or 2

    P (A) = 26 = 13

    Let B be the event that girl will get 3,4, or 6

    P(B) = 46 = 23PTA = Probability of exactly one till given she get 1 or 2 = 38PTB =Probability of exactly one till given she get  3, 4, 5 or 6 = 12PBT = P(B) x P TBP(A) x P(TA) + P(B) x P(TB) = 23 x1213 x 38 + 23 x 12 = 1318 + 13 = 13118 x 3 = 811

    Question 359
    CBSEENMA12035852

    A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability distribution of the number of successes.

    Solution

    Total number of outcomes = 36

    The possible doublets are ( 1, 1 ), ( 2, 2 ), ( 3, 3 ), ( 4, 4 ), ( 5, 5 ), and         ( 6, 6).

    Let p be the probability of success, therefore,

    p = 636 = 16So,  q = 1 - p = 1 - 16 = 56

    Since the dice is thrown 4 times,  n = 4

     

    Let X denote the number of times of getting doublets in the experiment of throwing two dice simultaneously four times.

     

    Therefore  X can be take the values 0, 1, 2, 3, or 4.

     

    PX = 0 = 4C0 p0 q4 = 564 = 6251296PX = 1 = 4C1 p1 q3 =4 16 563 = 5001296PX = 2 = 4C2 p2 q2 =6 162 562 = 1501296PX = 3 = 4C3 p3 q =4 163 56 = 201296PX = 4 = 4C4 p4 q0 = 164 = 11296

    Thus the probability distribution is:  

     X 0 1 2 3 4
    P(X) 6251296 5001296 1501296 201296 11296

     

     

    Question 360
    CBSEENMA12035861

    An insurance company insured 2000 scooter drivers, 4000 car drivers and 6000 truck drivers. The probability of an accident involving a scooter, a car and a truck are 0.01, 0.03 and 0.15 respectively. One of the insured persons meets with an accident. What is the probability that he is a scooter driver?

    Solution

    Let E1, E2 and E3 be the events of a driver being a scooter driver, car driver and truck driver respectively. Let A be the event that the person meets with an accident.

    There are 2000 insured scooter drivers, 4000 insured car drivers and 6000 insured truck drivers.

    Total number of insured scooter drivers vehicle drivers = 2000 + 4000 + 6000 = 12000

     P (E1) = 200012000 = 16,  P (E2) = 400012000 = 13,  P (E3) = 600012000 = 12, 

    Also, we have:

    P A Ι E1 = 0.01 =1100 P A Ι E2 = 0.03 =3100P A Ι E3 = 0.15 =15100

    Now, the probability that the insured person who meets with an accident is a scooter driver is  PE1 Ι A.

    Using Baye's theorem, we obtain:

    PE1 Ι A = PE1 x PA Ι E1PE1 x PA Ι E1 + PE2 x PA Ι E2 + PE3 x PA Ι E3 = 16 x 110016 x 1100 + 13 x 3100 + 12 x 15100= 16 x 110016 +1+152 = 16 x 652= 152

    Question 361
    CBSEENMA12035887

    A die is thrown again and again until three sixes are obtained. Find the probability of obtaining the third six in the sixth throw of the die.

    Solution

    p = probability of success = 16,  q = probability of failure = 56

    Third six comes at the 6 th throw so the remaining two sixes can appear in any of the previous 5 throws.

    Probability of obtaining 2 sixes in 5 throws

    = 5C2  x  16  x 16  x  125216

    6 th throw definitely gives six with probability = 16

    Required probability

    = 125216 x 36  x  10  x  16= 62523328

    Question 362
    CBSEENMA12035888

    Two groups are competing for the position on the Board of Directors of a corporation. The probabilities that the first and the second groups will win are 0.6 and 0.4 respectively. Further, if the first group wins, the probability of introducing a new product is 0.7 and the corresponding probability is 0.3 if the second group wins. Find the probability that the new product was introduced by the second group.

    Solution

    Let E1 be the event of the first group winning and E2 be the event of the second group winning and S be the event of introducing a new product.

    P ( E1 ) = probability that the first group wins the competition = 0.6

    P ( E2 ) = probability that the second group wins the competition = 0.4

    p ( SΙE1 ) = Probability of introducing a new product if the first group wins = 0.7

    p ( SΙE2 ) = Probability of introducing a new product if the second group wins = 0.3

    The probability taht the new product is introduced by the second group is given by P ( E2ΙS ).

    By using Bayes' theorem, we obtain

     

    P ( E2ΙS =P ( E2 ). P ( S Ι E2 )P ( E1 ). P ( S Ι E1 ) + P ( E2 ). P ( S Ι E2 )

     

                = 0 . 4 x 0 . 30 . 4 x 0 . 3 + 0 . 7 x 0 . 6

     

               = 0 . 12 0 . 12 + 0 . 42= 0 . 120 . 54= 1254 = 29  

    P ( E2ΙS ) = 29.

    Question 363
    CBSEENMA12035911

    On a multiple choice examination with three possible answers (out of which only one is correct) for each of the five questions, what is the probability that a candidate would get four or more correct answers just by guessing?

    Solution

    Let X denote the number of questions answered correctly by guessing in multiple choice examinations.

    Probability of getting a correct answer by guessing, p= 13

    Therefore,  q, the probability of an incorrect answer by guessing = 1 - 13 = 23

    There are in 5 questions in all.

    So X follows binomial distribution with n = 5,  p = 13  and  q = 23

    p  X = x  = nCx . qn - x. px = 5Cx . 235 - x. 13xp ( guessing more than 4 correct answers ) = p ( X  4 )       = p ( X = 4 ) + p ( X = 5 )         =  5C4 . 235 - 4. 134 +  5C5 . 235 - 5. 135       = 5 x 23 . 181 + 1 x 1 1243       Using nCr = n! n - 1 ! r!       = 11243

    Question 364
    CBSEENMA12035926

    A card form a pack of 52 cards is lost. From the remaining cards of the pack, two cards are drawn at random and are found to be both clubs. Find  the probability of the lost card being of clubs.

    Solution

    Let the events E1,  E2,  E3,  E4  and  A be defined as follows:

    E1: Missing card is a diamond

    E2: Missing card is a spade

    E3: Missing card is a ciub

    E4: Missing card is a heart

    A: Drawing two club cards 

    P ( E1 ) = P ( E2 ) = P ( E3 ) = P ( E4 ) = 14

    p ( A | E1 ) = p ( A | E2 ) = p ( A | E4 ) = 1351 × 1250p ( A | E3 ) = 1251 × 1150p (  E3 | A ) = i = 14 p  E3   p ( A | E3 )P ( Ei ) p ( A | Ei )                    = 14 × 1251 × 1150=14  13 x 12 + 13 x 12 + 13 x 12 + 11 x 1251 x 50= 12 x 113 x 13 x 12 + 12 x 11= 1150

    Question 365
    CBSEENMA12035927

    From a lot of 10 bulbs, which includes 3 defectives, a sample of 2 bulbs is drawn at random. Find the probability distribution of the number of defective bulbs.

    Solution

    Total number of bulbs = 10

    Number of defective bulbs = 3

    Number of non-defective bulbs = 7

    P ( drawing a defective bulb ),  P = 310

    P ( drawing a non-defective bulb ),  q = 710

    Two bulbs are drawn.

    Let X denote the number of defective bulbs,  then X can take values

    0,  1,  and  2.

    P ( X = 0 ) = P ( drawing both non-defective bulb ) = 7102

    P ( x = 1 ) = P ( drawing one defective bulb and one non-defective bulbs ) 

    =  P ( drawing a non-defective bulb  and a defective bulb ) + P ( drawing a defective bulb and a non-defective bulb )

     

     = 710 310 + 310 710 = 2150P ( X = 2 ) = P ( drawing both defective bulbs ) = 3102

    Required probability distribution is 

    X 0 1 2
    P ( x ) 49100 2150 9100

    Question 366
    CBSEENMA12035957

    Probabilities of solving problem independently by A and B are 12 and 13respectively. If both try to solve the problem independently, find the probability that

    (i) the problem is solved

    (ii) exactly one of them solves the problem.

    Solution

    The probability of solving the problem independently by  A  and  B  are given as  12  and   13  respectively.

    i.e.  P ( A ) = 12,  P ( B ) = 13. P  A  B  = P  A  . P  B 

    [ Since the events corresponding to  A  and  B  are independent ]

    = 12 x 13 = 16

    ( i ) Probability that the problem is solved 

    = P  A  B  = P  A  + P  B  - P  A  B = 12 + 13 - 16= 3 + 2 - 16= 46= 23Thus, the probability that hte problem is solved is  23.

    ( ii ) Probability that exactly one of them solves the problem

    = P  A - B  + P  B - A =  P ( A ) - P ( A  B ) +  P ( B ) - P ( A  B )  =  12 - 16  +  13 - 16 = 3 - 1 + 2 - 16= 36= 12Thus, the probability that exactly one of them solves the problem is 12.

    Question 367
    CBSEENMA12035966

    Suppose 5% of men and 0.25% of women have grey hair. A grey haired person is selected at random. What is the probability of this person being male? Assume that there are equal number of males and females.

    Solution

    Let the events  M,  F  and  G  be defined as follows:

    M: A male is selected 

    F:  A female is selected 

    G: A person has grey hair

    It is given that the number of males = the number of females

     P ( M ) = P ( F ) = 12''Now, P ( G / M ) = Probability of selecting a grey haired person  given that the person is  a:Male = 5  = 5100Similarly, P ( G / F ) = 0.25  = 0.25100

    A grey haired person is selected at random, the probability that this person is a male 

    = P ( M | G )= P ( M ) × P ( G | M )P ( M ) × P ( G | M ) + P ( F ) × P ( G | F )      ......[ Using Baye's Theorem ]= 12 × 510012 × 5100 + 12 × 0.25100= 51005100 + 0.25100= 55.25= 2011

    Question 372
    CBSEENMA12036173

    A pair of fair dice is thrown independently three times. The probability of getting a score of exactly 9 twice is

    • 1/729

    • 8/9

    • 8/729

    • 8/243

    Solution

    D.

    8/243

    Probability of getting score 9 in a single throw = 4/36 = 1/9
    Probability of getting score 9 exactly twice = straight C presuperscript 3 subscript 2 space straight x space open parentheses 1 over 9 close parentheses squared space straight x 8 over 9 space equals space 8 over 243

    Question 373
    CBSEENMA12036176
    Question 375
    CBSEENMA12036242
    Question 378
    CBSEENMA12036281

    A random variable X has the probability distribution:

    X: 1 2 3 4 5 6 7 8
    P(X): 0.15 0.23 0.12 0.10 0.20 0.08 0.07 0.05

    For the events E = {X is a prime number} and F = {X < 4}, the probability P (E ∪ F) is
    • 0.87

    • 0.77

    • 0.35

    • 0.50

    Solution

    B.

    0.77

    E = {x is a prime number} = {2, 3, 5, 7}
    P(E) = P(X = 2) + P(X = 3) + P(X = 5) + P(X = 7)
    P(E) = 0.23 + 0.12 + 0.20 + 0.07 = 0.62
    F = {X < 4}= {1, 2, 3}
    P(F) = P(X = 1) + P(X = 2) + P(X = 3)
    P(F) = 0.15 + 0.23 + 0.12 = 0.5
    E ∩ F = {X is prime number as well as < 4 }
    = {2, 3}
    P (E ∩ F) = P(X = 2) + P(X = 3)
    = 0.23 + 0.12 = 0.35
    ∴ Required probability
    P (E∪ F) = P(E) + P(F) - P(E ∩ F)
    P (E∪ F) = 0.62 + 0.5 - 0.35
    P (E ∪ F) = 0.77

    Question 379
    CBSEENMA12036282

    The mean and the variance of a binomial distribution are 4 and 2 respectively. Then the probability of 2 successes is

    • 37/256

    • 219/ 256

    • 128/256

    • 28/256

    Solution

    D.

    28/256

    Given that mean = 4
    np = 4 and variance = 2
    npq = 2 ⇒ 4q = 2
    ⇒ q = 1/2
    ∴ p = 1 - q = 1 - 1/2 = 1/2
    also n = 8 Probability of 2 successes
    straight P left parenthesis straight X space equals 2 right parenthesis space equals space straight C presuperscript 8 subscript 2 straight p squared straight q to the power of 6
space equals space fraction numerator 8 factorial over denominator 2 factorial space straight x space 6 factorial end fraction space straight x space left parenthesis 1 divided by 2 right parenthesis squared space straight x space left parenthesis 1 divided by 2 right parenthesis to the power of 6
space equals space 28 space straight x 1 over 2 to the power of 8 space equals space 28 over 256

    Question 380
    CBSEENMA12036295

    A bag contains 4 red and 6 black balls. A ball is drawn at random from the bag, its colour is observed and this ball along with two additional balls of the same colour are returned to the bag. If now a ball is drawn at random from the bag, then the probability that this drawn ball is red, is:

    • 3/4

    • 3/10

    • 2/5

    • 1/5

    Solution

    C.

    2/5

    E1: Event that first ball drawn is red.
    E2: Event that first ball drawn is black.
    E: Event that second ball drawn is red.

    P(E) = P(E1). PEE1 + P (E2). PEE2 = 410 x 612 +610 x 412 = 25

    Mock Test Series

    Sponsor Area

    Sponsor Area

    NCERT Book Store

    NCERT Sample Papers

    Entrance Exams Preparation