Mathematics Part I Chapter 4 Determinants
  • Sponsor Area

    NCERT Solution For Class 12 Mathematics Mathematics Part I

    Determinants Here is the CBSE Mathematics Chapter 4 for Class 12 students. Summary and detailed explanation of the lesson, including the definitions of difficult words. All of the exercises and questions and answers from the lesson's back end have been completed. NCERT Solutions for Class 12 Mathematics Determinants Chapter 4 NCERT Solutions for Class 12 Mathematics Determinants Chapter 4 The following is a summary in Hindi and English for the academic year 2021-2022. You can save these solutions to your computer or use the Class 12 Mathematics.

    Question 1
    CBSEENMA12034314

     Evaluates :
     open vertical bar table row cell straight a plus ib end cell cell straight c plus id end cell row cell negative straight c plus ic end cell cell straight a minus ib end cell end table close vertical bar

    Solution
    open vertical bar table row cell straight a plus ib end cell cell straight c plus id end cell row cell negative straight c plus ic end cell cell straight a minus ib end cell end table close vertical bar space equals space left parenthesis straight a plus ib right parenthesis left parenthesis straight a minus ib right parenthesis minus left parenthesis straight c plus id right parenthesis left parenthesis straight c minus id right parenthesis
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space left parenthesis straight a squared minus straight i squared straight b squared right parenthesis minus left parenthesis straight i squared space straight d to the power of 2 space space end exponent minus straight c squared right parenthesis space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets table row because cell straight i squared space equals space minus 1 end cell end table close square brackets
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space left parenthesis straight a squared plus straight b squared right parenthesis space minus left parenthesis negative straight d squared minus straight c squared right parenthesis
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals straight a squared plus straight b squared space plus straight c to the power of 2 space end exponent plus straight d squared space space space space space space space space space space space space
    Question 2
    CBSEENMA12034315

    Evaluate

    open vertical bar table row 2 cell space 4 end cell row cell negative 1 end cell cell space 2 end cell end table close vertical bar

    Solution
    Let space space space space space space increment equals space open vertical bar table row 2 cell space 4 end cell row cell negative 1 end cell cell space 2 end cell end table close vertical bar
space space space space space space space space space space space space space space space space equals space space left parenthesis 2 right parenthesis space left parenthesis 2 right parenthesis minus left parenthesis 4 right parenthesis left parenthesis negative 1 right parenthesis equals 4 plus 4 equals 8
    Question 3
    CBSEENMA12034316

    Evaluate
    open vertical bar table row 2 cell space space space space space space 4 end cell row cell negative 5 end cell cell space space space minus 1 end cell end table close vertical bar

    Solution
    Let space space space increment space equals space open vertical bar table row 2 cell space space space space space space 4 end cell row cell negative 5 end cell cell space space space minus 1 end cell end table close vertical bar
space space space space space space space space space space space space space space equals space left parenthesis 2 right parenthesis space left parenthesis negative 1 right parenthesis minus left parenthesis negative 4 right parenthesis left parenthesis negative 5 right parenthesis
space space space space space space space space space space space space space space equals space minus 2 plus 20 equals 18 space space space space space space
    Question 4
    CBSEENMA12034317

     Evaluate

    open vertical bar table row straight x cell straight x plus 1 end cell row cell straight x minus 1 end cell straight x end table close vertical bar

    Solution
    Let space space space increment space equals space open vertical bar table row straight x cell straight x plus 1 end cell row cell straight x minus 1 end cell straight x end table close vertical bar
space space space space space space space space space space space space space space equals space left parenthesis straight x right parenthesis space left parenthesis straight x right parenthesis minus left parenthesis straight x plus 1 right parenthesis left parenthesis straight x minus 1 right parenthesis space equals space straight x squared space minus left parenthesis straight x to the power of 2 space end exponent minus 1 right parenthesis equals straight x squared space minus straight x squared plus 1 equals 1 space
    Question 5
    CBSEENMA12034318

    Evaluates  :
    open vertical bar table row cell 2 space cos space straight theta space space end cell cell negative 2 space sin space straight theta end cell row cell sin space straight theta end cell cell cos space straight theta end cell end table close vertical bar

    Solution
    Let space space space increment space space equals space open vertical bar table row cell 2 cos space straight theta space space end cell cell negative 2 sin space straight theta end cell row cell sin space straight theta end cell cell cos space straight theta end cell end table close vertical bar
space space space space space space space space space space space space space space space equals space left parenthesis 2 cos space straight theta right parenthesis left parenthesis cos space straight theta right parenthesis minus left parenthesis negative 2 sin space straight theta right parenthesis left parenthesis sin space straight theta right parenthesis equals 2 cos squared straight theta space plus 2 space 2 sin squared space straight theta space space space space
space space space space space space space space space space space space space space space equals space 2 space left parenthesis cos squared space straight theta space plus space sin squared space straight theta right parenthesis equals 2 left parenthesis 1 right parenthesis equals 2
    Question 6
    CBSEENMA12034319

    Evaluate
    left parenthesis straight i right parenthesis open square brackets table row cell cos space straight theta end cell cell negative sin space straight theta space end cell row cell sin space straight theta end cell cell cos space straight theta end cell end table close square brackets space left parenthesis ii right parenthesis space open square brackets table row cell straight x squared minus straight x plus 1 end cell cell straight x minus 1 end cell row cell straight x plus 1 end cell cell straight x plus 1 end cell end table close square brackets

    Solution
    left parenthesis straight i right parenthesis space Let space space increment space equals space open square brackets table row cell cos space straight theta end cell cell negative sin space straight theta space end cell row cell sin space straight theta end cell cell cos space straight theta end cell end table close square brackets space space equals space cos squared space straight theta space plus sin space squared space straight theta space equals 1
left parenthesis i i right parenthesis space Let space increment equals space space open square brackets table row cell straight x squared minus straight x plus 1 end cell cell straight x minus 1 end cell row cell straight x plus 1 end cell cell straight x plus 1 end cell end table close square brackets space equals space left parenthesis straight x squared space minus straight x plus 1 right parenthesis space left parenthesis straight x plus 1 right parenthesis minus left parenthesis straight x plus 1 right parenthesis
space space space space space space space space space space space space space space space space space equals space space straight x to the power of 3 space end exponent minus straight x squared space plus straight x plus straight x squared space minus straight x plus 1 equals straight x to the power of 3 space space end exponent minus straight x squared space plus 2
    Question 7
    CBSEENMA12034320

    If A= open square brackets table row 1 cell space space 2 end cell row 4 cell space space 2 end cell end table close square brackets comma space then space show space that space left enclose 2 space straight A space open vertical bar space equals 4 space close vertical bar space right enclose straight A space end enclose end enclose

    Solution
    straight A space equals space open square brackets table row 1 cell space space 2 end cell row 4 cell space space 2 end cell end table close square brackets
therefore space space open vertical bar space straight A space close vertical bar space equals space space space open square brackets table row 1 cell space space 2 end cell row 4 cell space space 2 end cell end table close square brackets space equals space left parenthesis 1 right parenthesis left parenthesis 2 right parenthesis minus left parenthesis 2 right parenthesis left parenthesis 4 right parenthesis equals 2 minus 8 equals negative 6
space space space space space space 2 space straight A space space equals space space open square brackets table row 2 cell space space 4 end cell row 8 cell space space 4 end cell end table close square brackets
therefore space space open vertical bar space 2 space straight A space close vertical bar space equals space space open square brackets table row 2 cell space space 4 end cell row 8 cell space space 4 end cell end table close square brackets space equals 8 minus 32 equals space minus 24 equals 4 left parenthesis negative 6 right parenthesis equals space 4 space open vertical bar space straight A space close vertical bar
therefore space space open vertical bar space 2 space straight A space close vertical bar space equals space 4 space open vertical bar space straight A space close vertical bar
    Question 8
    CBSEENMA12034321

    Evaluates :

    open vertical bar table row cell sin space 30 degree end cell cell space space cos space 30 degree end cell row cell negative sin space 60 degree end cell cell space cos space 60 degree end cell end table close vertical bar

    Solution
    Let space space increment space equals space open vertical bar table row cell sin space 30 degree end cell cell space space cos space 30 degree end cell row cell negative sin space 60 degree end cell cell space cos space 60 degree end cell end table close vertical bar
space space space space space space space space space space space space equals space sin space 30 degree space cos space 60 degree space space plus space cos space 30 degree space space sin space 60 degree space equals space sin space left parenthesis 30 degree space plus 60 degree right parenthesis
space space space space space space space space space space space space equals space sin space 90 degree space equals 1
    Question 9
    CBSEENMA12034322

    IF open vertical bar table row straight x cell space space straight x end cell row 1 cell space space straight x end cell end table close vertical bar space equals space open vertical bar table row 3 cell space space space 4 end cell row 1 cell space space space 2 end cell end table close vertical bar , find the values of x.

    Solution
    The space given space equation space is
space space space space space space space open vertical bar table row straight x cell space space straight x end cell row 1 cell space space straight x end cell end table close vertical bar space equals space open vertical bar table row 3 cell space space 4 end cell row 1 cell space space 2 end cell end table close vertical bar
or space space space space space space space space space space space space straight x squared space minus straight x equals 6 minus 4 space or space straight x squared space minus straight x space equals 2
therefore space space space space space straight x squared space minus straight x space minus 2 equals 0
therefore space space space space space space space space straight x squared space minus 2 straight x space plus straight x minus 2 equals 0 space space space space space space space space space space space space space space space or space space straight x left parenthesis straight x minus 2 right parenthesis plus 1 left parenthesis straight x minus 2 right parenthesis equals 0
therefore space space space space space space space space space left parenthesis straight x minus 2 right parenthesis space space left parenthesis straight x plus 1 right parenthesis space equals 0
therefore space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space straight x equals 2 comma negative 1

space space space space space space space space space space
    Question 10
    CBSEENMA12034323

    Find values of x for which  open vertical bar table row 3 cell space space space straight x end cell row straight x cell space space 1 end cell end table close vertical bar space equals space open vertical bar table row 3 cell space space 2 end cell row 4 cell space space 1 end cell end table close vertical bar

    Solution

    The given equation is 
    open vertical bar table row cell 3 space end cell cell space space straight x end cell row straight x cell space 1 end cell end table close vertical bar space equals space open vertical bar table row 3 cell space space space 2 end cell row 4 cell space space space 1 end cell end table close vertical bar
therefore space space space 3 minus x squared space equals space 3 minus 8 space space rightwards double arrow space 3 minus x squared space equals space minus 5 space space space rightwards double arrow space x squared space equals 8
therefore space space space space space space space space space space space x space equals space plus-or-minus space 2 space square root of 2

    Question 11
    CBSEENMA12034324

    Find values of x, if

    open vertical bar table row 2 cell space space space 4 end cell row 5 cell space space 1 end cell end table close vertical bar space equals space open vertical bar table row cell 2 x end cell cell space space 4 end cell row 6 cell space space x end cell end table close vertical bar space space

    Solution

     The given equation is
    space open vertical bar table row 2 cell space space space 4 end cell row 5 cell space space 1 end cell end table close vertical bar space equals space open vertical bar table row cell 2 straight x end cell cell space space 4 end cell row 6 cell space space straight x end cell end table close vertical bar space space
    or    2 - 20 = 2 straight x squared - 24
    therefore space 2 straight x squared space equals 6 space space space space space space rightwards double arrow space space straight x squared space equals 3 space space space space space space space space space rightwards double arrow space straight x equals space plus-or-minus space square root of 3

    Question 12
    CBSEENMA12034325

    Find space values space of space straight x space if
open vertical bar table row 2 cell space space space 3 end cell row 4 cell space space space 5 end cell end table close vertical bar space equals space open vertical bar table row straight x cell space 3 end cell row cell 2 straight x end cell cell space 5 end cell end table close vertical bar

    Solution
    The space given space equation space is space
Find space values space of space straight x space if
open vertical bar table row 2 cell space space space 3 end cell row 4 cell space space space 5 end cell end table close vertical bar space equals space open vertical bar table row straight x cell space 3 end cell row cell 2 straight x end cell cell space 5 end cell end table close vertical bar
or space space 10 minus 12 equals 5 space straight x minus 6 straight x
therefore space space space space minus 2 equals negative straight x space space space space space space space rightwards double arrow space space straight x equals 2
    Question 13
    CBSEENMA12034326

    Find the value of ∆, where

    increment space space equals space open vertical bar table row 6 cell space minus 3 end cell cell space space space space 2 end cell row 2 cell space minus 1 end cell cell space space space space 2 end cell row cell negative 10 end cell cell space space space space space 5 end cell cell space space space space 2 end cell end table close vertical bar

    Solution
    Here space increment space space equals space open vertical bar table row 6 cell space minus 3 end cell cell space space space space 2 end cell row 2 cell space minus 1 end cell cell space space space space 2 end cell row cell negative 10 end cell cell space space space space space 5 end cell cell space space space space 2 end cell end table close vertical bar
space space space space space space space space space space space space space space space space equals space space 6 space space open vertical bar table row cell negative 1 end cell cell space space space 2 end cell row 5 cell space space space 2 end cell end table close vertical bar space minus left parenthesis negative 3 right parenthesis space open vertical bar table row 2 cell space space space 2 end cell row cell negative 10 end cell cell space space space 2 end cell end table close vertical bar space plus 2 space open vertical bar table row 2 cell space minus 1 end cell row cell negative 10 end cell cell space space space space 5 end cell end table close vertical bar
space space space space space space space space space space space space space space space space equals space space 6 space space left parenthesis negative 2 minus 10 right parenthesis plus 3 left parenthesis 4 plus 20 right parenthesis plus 2 plus left parenthesis 10 minus 10 right parenthesis equals negative 72 space plus 72 equals 0
space space space space space
    Question 14
    CBSEENMA12034327

    Evaluate the determinant

    increment space space equals space space open vertical bar table row 1 cell space space 2 end cell cell space space space 4 end cell row cell negative 1 end cell cell space space 3 end cell cell space space 0 end cell row 4 cell space 1 end cell cell space space 0 end cell end table close vertical bar

    Solution
    increment space space equals space space open vertical bar table row 1 cell space space 2 end cell cell space space space 4 end cell row cell negative 1 end cell cell space space 3 end cell cell space space 0 end cell row 4 cell space 1 end cell cell space space 0 end cell end table close vertical bar space equals 4 space space open square brackets table row cell negative 1 end cell cell space space space 3 end cell row 4 cell space space 1 end cell end table close square brackets space minus 0 space open vertical bar table row 1 cell space space space 2 end cell row 4 cell space space space 1 end cell end table close vertical bar space plus 0 space open vertical bar table row 1 cell space space 2 end cell row cell negative 1 end cell cell space space 3 end cell end table close vertical bar
space space space space space space equals space 4 left parenthesis negative 1 minus 12 right parenthesis minus 0 plus 0 equals 4 left parenthesis negative 13 right parenthesis equals negative 52
    Question 15
    CBSEENMA12034328

    Find the value of ∆, where
    increment space space equals space open vertical bar table row 6 cell space minus 3 end cell cell space space space space 2 end cell row 2 cell space minus 1 end cell cell space space space space 2 end cell row cell negative 10 end cell cell space space space space 5 end cell cell space space space space 2 end cell end table close vertical bar

    Solution
    Here space increment space space equals space open vertical bar table row 6 cell space minus 3 end cell cell space space space space 2 end cell row 2 cell space minus 1 end cell cell space space space space 2 end cell row cell negative 10 end cell cell space space space space 5 end cell cell space space space space 2 end cell end table close vertical bar
space space space space space space space space space space space space space space space space equals space space 6 space open vertical bar table row cell negative 1 end cell cell space space 2 end cell row 5 cell space space 2 end cell end table close vertical bar space minus left parenthesis negative 3 right parenthesis space open vertical bar table row 2 cell space space 2 end cell row cell negative 10 end cell cell space space 2 end cell end table close vertical bar space plus 2 space open square brackets table row 2 cell space space minus 1 end cell row cell negative 10 end cell cell space space space space 5 end cell end table close square brackets
space space space space space space space space space space space space space space space space space equals space space 6 space left parenthesis negative 2 plus 10 right parenthesis plus 3 left parenthesis 4 plus 20 right parenthesis plus 2 left parenthesis 10 minus 10 right parenthesis equals space minus 72 plus 72 equals 0
    Question 16
    CBSEENMA12034329

    Evaluate the determinants

    open vertical bar table row 3 cell negative 1 end cell 2 row 0 cell space space 0 end cell cell negative 1 end cell row 3 cell space 5 end cell 0 end table close vertical bar

    Solution
    Let space space increment space equals space space open vertical bar table row 3 cell negative 1 end cell 2 row 0 cell space space 0 end cell cell negative 1 end cell row 3 cell space 5 end cell 0 end table close vertical bar
space space space space space space space space space space space space equals space space minus 0 space open vertical bar table row cell negative 1 end cell cell space space minus 2 end cell row cell negative 5 end cell cell space space space 0 end cell end table close vertical bar plus 0 space open vertical bar table row 3 cell space space minus 2 end cell row 3 cell space space space space space space 0 end cell end table close vertical bar space minus left parenthesis negative 1 right parenthesis space open vertical bar table row 3 cell space space minus 2 end cell row 3 cell space space space 0 end cell end table close vertical bar space minus left parenthesis negative 1 right parenthesis space open vertical bar table row 3 cell space space minus 1 end cell row 3 cell space space minus 5 end cell end table close vertical bar
space space space space space space space space space space space space equals space 0 plus 0 plus left parenthesis negative 15 plus 3 right parenthesis space equals negative 12 space space space
    Question 17
    CBSEENMA12034330

    Evaluate the determinants

    open vertical bar table row 3 cell space minus 4 end cell cell space space 5 end cell row 1 cell space space space 1 end cell cell space minus 2 end cell row 2 cell space space space 3 end cell cell space 1 end cell end table close vertical bar

    Solution
    Let space space space increment space equals space open square brackets table row 3 cell space space minus 4 end cell cell space space space space 5 end cell row 1 cell space space space space 1 end cell cell space minus 2 end cell row 2 cell space space space space 3 end cell cell space space space 1 end cell end table close square brackets space space equals 3 space open vertical bar table row 1 cell space space minus 2 end cell row 3 cell space space space space 1 end cell end table close vertical bar space minus left parenthesis negative 4 right parenthesis space space open vertical bar table row 1 cell space space minus 2 end cell row 3 cell space space space space 1 end cell end table close vertical bar space plus 5 space open vertical bar table row 1 cell space space space space space 0 end cell row 2 cell space space space space space 3 end cell end table close vertical bar
space space space space space space space space space space space space space equals space 3 left parenthesis 1 plus 6 right parenthesis plus 4 left parenthesis 1 plus 45 right parenthesis plus 5 left parenthesis 3 minus 2 right parenthesis
space space space space space space space space space space space space space equals space 3 space left parenthesis 7 right parenthesis plus 4 left parenthesis 5 right parenthesis plus 5 left parenthesis 1 right parenthesis equals 21 plus 20 plus 5 equals 46
space space space space space space space space

    Sponsor Area

    Question 18
    CBSEENMA12034331

    open vertical bar table row 0 cell space space space space 1 end cell cell space space space space space 2 end cell row cell negative 1 end cell cell space space space space 0 end cell cell space space minus 3 end cell row cell negative 2 end cell cell space space space space 3 end cell cell space space space 0 end cell end table close vertical bar

    Solution
    Let space space space increment space equals space open vertical bar table row 0 cell space space space space 1 end cell cell space space space space space 2 end cell row cell negative 1 end cell cell space space space space 0 end cell cell space space minus 3 end cell row cell negative 2 end cell cell space space space space 3 end cell cell space space space 0 end cell end table close vertical bar
space space space space space space space space space space space space equals space 0 space open vertical bar table row 0 cell space space space minus 3 end cell row 3 cell space space 0 end cell end table close vertical bar space minus 1 space open vertical bar table row cell negative 1 end cell cell space space minus 3 end cell row cell negative 2 end cell cell space space space space space 0 end cell end table close vertical bar space plus 2 space open square brackets table row cell negative 1 end cell cell space space 0 end cell row cell negative 2 end cell cell space space 3 end cell end table close square brackets
space space space space space space space space space space space space equals space 0 minus 1 left parenthesis 0 minus 6 right parenthesis plus 2 left parenthesis 3 minus 0 right parenthesis equals 0 plus 6 minus 6 equals 0
    Question 19
    CBSEENMA12034332

    Evaluate space the space determinants
open vertical bar table row 2 cell space space space minus 1 end cell cell space space minus 2 end cell row 0 cell space space space space space space 2 end cell cell space space space space 1 end cell row 3 cell space space minus 5 end cell cell space space space space 0 end cell end table close vertical bar

    Solution
    Let space increment space equals space open vertical bar table row 2 cell space space space minus 1 end cell cell space space minus 2 end cell row 0 cell space space space space space space space 2 end cell cell space space minus 1 end cell row 3 cell space space minus 5 end cell cell space space space space 0 end cell end table close vertical bar space equals 2 space open vertical bar table row 2 cell space minus 1 end cell row cell negative 5 end cell cell space space space space 0 end cell end table close vertical bar space minus left parenthesis negative 1 right parenthesis space open vertical bar table row 0 cell space space minus 1 end cell row 3 cell space space space space space space 0 end cell end table close vertical bar plus left parenthesis negative 2 right parenthesis space open vertical bar table row 0 cell space space space space 2 end cell row 3 cell space minus 5 end cell end table close vertical bar
space space space space space space space space space space space equals space space 2 left parenthesis 0 minus 5 right parenthesis plus 1 left parenthesis 0 plus 3 right parenthesis minus 2 left parenthesis 0 minus 6 right parenthesis
space space space space space space space space space space space equals space space 2 left parenthesis negative 5 right parenthesis plus 1 left parenthesis 3 right parenthesis minus 2 left parenthesis negative 6 right parenthesis equals negative 10 plus 3 plus 12 equals 5
    Question 20
    CBSEENMA12034333
    Question 21
    CBSEENMA12034334
    Question 22
    CBSEENMA12034335

    Find space the space value space of space the space determinant
open vertical bar table row 5 cell space space space space 1 end cell cell space space space space space space 0 end cell row 2 cell space space space space 3 end cell cell space space minus 1 end cell row cell negative 3 end cell cell space space space space 2 end cell cell space space space space 0 end cell end table close vertical bar space

    Solution
    Let space space space increment space space equals open vertical bar table row 5 cell space space space space 1 end cell cell space space space space space space 0 end cell row 2 cell space space space space 3 end cell cell space space minus 1 end cell row cell negative 3 end cell cell space space space space 2 end cell cell space space space space 0 end cell end table close vertical bar space
space space space space space space space space space space space space space space equals space space 5 space open vertical bar table row 3 cell space space minus 1 end cell row 2 cell space space space space space 0 end cell end table close vertical bar space minus 1 space open vertical bar table row 2 cell space space minus 1 end cell row cell negative 3 end cell cell space space space space space 0 end cell end table close vertical bar space plus 0 space open vertical bar table row 2 cell space space 3 end cell row cell negative 3 end cell cell space space space 2 end cell end table close vertical bar
space space space space space space space space space space space space space space equals space space 5 space left parenthesis 0 plus 2 right parenthesis minus 1 left parenthesis 0 minus 3 right parenthesis plus 0 left parenthesis 4 plus 9 right parenthesis
space space space space space space space space space space space space space space equals space space 10 plus 3 plus 0 space equals 13 space space
    Question 23
    CBSEENMA12034336

    Find space the space value space of space the space determinant
open vertical bar table row 212 cell space space space space 117 space space end cell cell space space 345 end cell row 19 cell space space 9 end cell cell space space 34 end cell row 7 cell space space 3 end cell cell space space 5 end cell end table close vertical bar

    Solution
    Let space space increment space equals space open vertical bar table row 212 cell space space space space 117 space space end cell cell space space 345 end cell row 19 cell space space 9 end cell cell space space 34 end cell row 7 cell space space 3 end cell cell space space 5 end cell end table close vertical bar
space space space space space space space space space space space equals 212 space space open vertical bar table row 9 cell space space space 34 end cell row 3 cell space space space 5 end cell end table close vertical bar space minus 117 space open vertical bar table row 19 cell space space 34 end cell row 7 cell space space space 5 end cell end table close vertical bar plus 345 space open vertical bar table row cell 19 space end cell cell space 9 end cell row 7 cell space space 3 end cell end table close vertical bar
space space space space space space space space space space space equals 212 space left parenthesis 45 minus 102 right parenthesis minus 117 left parenthesis 95 minus 238 right parenthesis plus 345 left parenthesis 57 minus 63 right parenthesis
space space space space space space space space space space space space equals negative 12084 plus 16731 minus 2070 equals 2577
    Question 24
    CBSEENMA12034337
    Question 25
    CBSEENMA12034338
    Question 27
    CBSEENMA12034340

    Evaluate space the space determinant
increment space space equals space space open vertical bar table row 1 cell space space space space sin space straight theta end cell 1 row cell negative sin end cell cell space 1 end cell cell space space sin space straight theta end cell row cell negative 1 end cell cell negative sin end cell 1 end table close vertical bar space comma space Also comma space prove space that space 2 space less than space straight A space less than space 4.

    Solution
    increment space space equals space space open vertical bar table row 1 cell space space space space sin space straight theta end cell 1 row cell negative sin end cell cell space 1 end cell cell space space sin space straight theta end cell row cell negative 1 end cell cell negative sin end cell 1 end table close vertical bar space
space space space space space space equals space 1 space cross times space open vertical bar table row 1 cell space sin end cell row cell negative sin space straight theta end cell 1 end table close vertical bar space minus sin space straight theta space space space open vertical bar table row cell negative sin space straight theta end cell cell space sin space straight theta end cell row cell negative 1 end cell 1 end table close vertical bar space plus 1 space cross times space open vertical bar table row cell negative sin space straight theta end cell cell space space 1 end cell row cell negative 1 end cell cell space space space minus sin space straight theta end cell end table close vertical bar
space space space space space space equals space 1 space cross times space left parenthesis 1 plus sin squared space straight theta right parenthesis minus sin space straight theta space left parenthesis negative sin space straight theta plus sin space straight theta vertical line right parenthesis plus 1 space left parenthesis sin squared space straight theta space plus 1 right parenthesis
space space space space space space equals space 2 plus 2 space sin squared space straight theta space equals 2 space left parenthesis 1 plus sin space squared space straight theta right parenthesis
we space know space chat
space space space space space space space space space minus 1 space less or equal than space sin space straight theta space less or equal than space 1 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space for space all space straight theta
therefore space space space space space space space space space 0 space less or equal than space sin squared space straight theta space less or equal than space 1 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space for space all space straight theta
rightwards double arrow space space space space space space space 1 plus 0 space less or equal than space 1 space plus sin space squared space straight theta space space space less or equal than 1 plus 1 space space space space space space space space space space space for space all space straight theta
rightwards double arrow space space space space space space space 1 space space less or equal than space 1 space space sin squared space straight theta space less or equal than space 2 space space space space space space space space space space space space space space space space space space space space space space space space space space space space for space all space straight theta
rightwards double arrow space space space space space space space 2 space space space less or equal than space 2 space left parenthesis 1 plus sin squared space straight theta right parenthesis space space less or equal than space 4 space space space space space space space space space space space space space space space space space space for space all space straight theta
rightwards double arrow space space space space space space space 2 space space space less or equal than space increment space less or equal than space space 4 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space for space all space straight theta
    Question 28
    CBSEENMA12034341


    space Evaluate
increment space space equals space open vertical bar table row 0 cell sin space straight alpha end cell cell negative cos space straight alpha end cell row cell negative sin space straight alpha end cell 0 cell sin space straight beta end cell row cell cos space straight alpha end cell cell negative sin space straight beta end cell 0 end table close vertical bar

    Solution
    increment space space equals space open vertical bar table row 0 cell sin space straight alpha end cell cell negative cos space straight alpha end cell row cell negative sin space straight alpha end cell 0 cell sin space straight beta end cell row cell cos space straight alpha end cell cell negative sin space straight beta end cell 0 end table close vertical bar
equals space 0 space open vertical bar table row 0 cell space space space space sin space straight beta end cell row cell negative sin space straight beta end cell cell space 0 end cell end table close vertical bar space minus sin space straight a space space open vertical bar table row 0 cell space space space space sin space straight beta end cell row cell negative sin space straight beta end cell cell space 0 end cell end table close vertical bar space plus space left parenthesis cos minus straight alpha right parenthesis space space open vertical bar table row cell negative sin space straight beta end cell cell space space 0 end cell row cell cos space straight alpha end cell cell negative sin space straight beta end cell end table close vertical bar
equals space 0 minus sin space straight alpha space left parenthesis 0 minus space cos space straight alpha space sin space straight beta right parenthesis minus space cos space alpha space left parenthesis sin space alpha space sin space beta minus 0 right parenthesis
equals space sin space alpha space cos space alpha space sin space beta space minus space sin space alpha space cos space alpha space sin space beta
equals 0
    Question 29
    CBSEENMA12034342

    space Prove space that space
open vertical bar table row cell straight b plus straight c end cell cell space space straight a end cell cell space space straight a end cell row straight b cell space space straight c plus straight a end cell cell space space straight b end cell row straight c cell space straight c end cell cell space space straight a plus straight b end cell end table close vertical bar space equals 4 abc

    Solution
    Let space increment space equals space space open vertical bar table row cell straight b plus straight c end cell cell space space straight a end cell cell space space straight a end cell row straight b cell space space straight c plus straight a end cell cell space space straight b end cell row straight c cell space straight c end cell cell space space straight a plus straight b end cell end table close vertical bar space
space space space space space space space space space space space equals space left parenthesis straight b plus straight c right parenthesis space open vertical bar table row cell straight c plus straight a end cell straight b row straight c cell straight a plus straight b end cell end table close vertical bar space minus straight a space open square brackets table row straight b cell space space straight b end cell row straight c cell space space space space straight a plus straight b end cell end table close square brackets space plus straight a space open square brackets table row straight b cell space space space space straight c plus straight a end cell row straight c cell space space straight c end cell end table close square brackets
space space space space space space space space space space space equals space space left parenthesis straight b plus straight c right parenthesis open square brackets table row cell left parenthesis straight c plus straight a right parenthesis end cell cell left parenthesis straight a plus straight b right parenthesis minus bc end cell end table close square brackets space minus straight a open square brackets table row straight b cell left parenthesis straight a plus straight b right parenthesis end cell cell negative bc end cell end table close square brackets space plus straight a space open square brackets table row cell bc minus straight c left parenthesis straight c plus straight a right parenthesis end cell end table close square brackets
space space space space space space space space space space space equals space space left parenthesis straight b plus straight c right parenthesis space left parenthesis ca plus straight a squared plus ab right parenthesis minus straight a left parenthesis ab plus straight b squared minus bc right parenthesis plus straight a left parenthesis bc minus straight c squared minus ca right parenthesis
space space space space space space space space space space space equals space space abc plus straight a squared straight b plus ab squared plus straight c squared space straight a plus ca squared plus abc minus straight a squared straight b minus ab squared space plus abc minus ac squared space minus ca squared
space space space space space space space space space space space equals space space 4 abc
    Question 30
    CBSEENMA12034343

    Prove space that
open vertical bar table row straight a straight b straight c row cell straight a minus straight b end cell cell space space space straight b minus straight c end cell cell space space space straight c minus straight a end cell row cell straight b plus straight c end cell cell space space straight c plus straight a end cell cell space space space straight a plus straight b end cell end table close vertical bar space equals straight a cubed plus straight b cubed plus straight c cubed space minus 3 abc

    Solution
    Let space space space increment space space equals space open vertical bar table row straight a straight b straight c row cell straight a minus straight b end cell cell space space space straight b minus straight c end cell cell space space space straight c minus straight a end cell row cell straight b plus straight c end cell cell space space straight c plus straight a end cell cell space space space straight a plus straight b end cell end table close vertical bar
space space space space space space space space space space space space space space equals space straight a space space open vertical bar table row straight a straight b straight c row cell straight a minus straight b end cell cell space space space straight b minus straight c end cell cell space space space straight c minus straight a end cell row cell straight b plus straight c end cell cell space space straight c plus straight a end cell cell space space space straight a plus straight b end cell end table close vertical bar space minus straight b space space open vertical bar table row straight a straight b straight c row cell straight a minus straight b end cell cell space space space straight b minus straight c end cell cell space space space straight c minus straight a end cell row cell straight b plus straight c end cell cell space space straight c plus straight a end cell cell space space space straight a plus straight b end cell end table close vertical bar space plus straight c space space open vertical bar table row straight a straight b straight c row cell straight a minus straight b end cell cell space space space straight b minus straight c end cell cell space space space straight c minus straight a end cell row cell straight b plus straight c end cell cell space space straight c plus straight a end cell cell space space space straight a plus straight b end cell end table close vertical bar
space space space space space space space space space space space space space space equals space straight a space open square brackets table row cell left parenthesis straight b minus straight c right parenthesis end cell cell left parenthesis straight a plus straight b right parenthesis minus end cell cell left parenthesis straight c plus straight a right parenthesis end cell cell left parenthesis straight c minus straight a right parenthesis end cell end table close square brackets space minus straight b space open square brackets table row cell left parenthesis straight a minus straight b right parenthesis end cell cell left parenthesis straight a plus straight b right parenthesis minus end cell cell left parenthesis straight b plus straight c right parenthesis end cell cell left parenthesis straight c minus straight a right parenthesis end cell end table close square brackets space plus straight c space space open square brackets table row cell left parenthesis straight a minus straight b right parenthesis end cell cell left parenthesis straight c plus straight a right parenthesis minus end cell cell left parenthesis straight b minus straight c right parenthesis end cell cell left parenthesis straight b plus straight c right parenthesis end cell end table close square brackets
space space space space space space space space space space space space space space equals space straight a space open square brackets straight a table row cell straight b plus straight b squared end cell cell negative ca minus bc end cell cell straight c squared plus ca minus ca plus end cell cell straight a squared end cell end table close square brackets space minus straight b space open square brackets straight a squared space minus straight b to the power of 2 space end exponent minus bc plus ab minus straight c squared plus ca close square brackets plus straight c open square brackets table row cell ac plus straight a squared end cell end table minus bc minus ab minus straight b squared space plus straight c squared close square brackets
space space space space space space space space space space space space space space equals space straight a space open square brackets straight a squared table row cell plus straight b squared end cell cell negative straight c squared minus ab minus bc minus ca end cell plus cell straight a squared end cell end table close square brackets space minus straight b space open square brackets straight a squared space minus straight b to the power of 2 space end exponent minus straight c squared plus ab minus bc plus ca close square brackets plus straight c open square brackets table row cell straight a squared minus end cell end table straight b squared plus straight c squared minus ab minus bc plus ca close square brackets
space space space space space space space space space space space space space space equals space space straight a cubed space plus ab squared space minus ac squared space plus straight a squared space straight b minus abc minus straight a squared space straight c minus straight a squared space straight b plus straight b cubed space plus straight b squared space straight c minus ab squared space plus bc squared space plus bc cubed space minus abc plus straight a squared space straight c space minus straight b squared straight c space plus straight c cubed space minus abc minus bc squared space plus straight c to the power of 2 space end exponent straight a
space space space space space space space space space space space space space space equals space space straight a cubed space plus straight b cubed space plus straight c cubed space minus 3 abc
    Question 31
    CBSEENMA12034344

    A matrix A, of order 3 × 3, has determinant 4. Find the value of | 3 A |

    Solution

    We are given that | A | = 4    ...(1)

    Since A is of order 3 × 3

    ∴ | 3 A | = 33 |A| = 27 |A|

    = 27 × 4    [∵ of (1)]

    = 108

    Question 32
    CBSEENMA12034345

    Which of the following is correct
    • (A)    Determinant is a square matrix.
    • (B)    Determinant is a number associated to a matrix.
    • (C)    Determinant is a number associated to a square matrix.
    • (D)    None of these.

       

    Solution

    C.

    (C)    Determinant is a number associated to a square matrix.

    We know that determinant is a number which is defined in the case of square matrix.

    ∴ (C) is the correct answer.

    Question 33
    CBSEENMA12034346

    Solve space for space straight x space colon
open square brackets table row cell 2 straight x end cell cell space 0 end cell cell space space 1 end cell row 0 cell space 1 end cell cell space space 2 end cell row cell negative 1 end cell cell space 2 end cell cell space space 0 end cell end table close square brackets space equals space open vertical bar table row 1 cell space space space space 0 end cell cell space space space 0 end cell row 2 cell space space space space 3 end cell cell space minus 4 end cell row 3 cell negative 3 end cell cell space space 5 end cell end table close vertical bar

    Solution
    open square brackets table row cell 2 straight x end cell cell space 0 end cell cell space space 1 end cell row 0 cell space 1 end cell cell space space 2 end cell row cell negative 1 end cell cell space 2 end cell cell space space 0 end cell end table close square brackets space equals space open vertical bar table row 1 cell space space space space 0 end cell cell space space space 0 end cell row 2 cell space space space space 3 end cell cell space minus 4 end cell row 3 cell negative 3 end cell cell space space 5 end cell end table close vertical bar
rightwards double arrow space 2 straight x space open vertical bar table row 1 cell space space 2 end cell row 2 cell space space 0 end cell end table close vertical bar plus space open square brackets table row 0 cell space space 1 end cell row cell negative 1 end cell cell space space 2 end cell end table close square brackets equals space open square brackets table row 3 cell space minus 4 end cell row cell negative 3 end cell cell space space space space 5 end cell end table close square brackets
rightwards double arrow space 2 straight x left parenthesis 0 minus 4 right parenthesis plus left parenthesis 0 plus 1 right parenthesis equals 15 minus 12
rightwards double arrow space space space minus 8 straight x plus 1 equals 3 space space space rightwards double arrow space 8 straight x equals negative 2
therefore space space space space straight x equals space begin inline style 1 fourth end style
    Question 34
    CBSEENMA12034347

    If space open square brackets table row 1 cell space space space 1 end cell cell space space minus 2 end cell row 2 cell space space 1 end cell cell space space minus 3 end cell row 5 cell space space 4 end cell cell space space minus 9 end cell end table close square brackets space space Find space open vertical bar space straight A space close vertical bar

    Solution
    space straight A equals open square brackets table row 1 cell space space space 1 end cell cell space space minus 2 end cell row 2 cell space space 1 end cell cell space space minus 3 end cell row 5 cell space space 4 end cell cell space space minus 9 end cell end table close square brackets space space
therefore space space open vertical bar space straight A space close vertical bar space space equals space space open square brackets table row 1 cell space space space 1 end cell cell space space minus 2 end cell row 2 cell space space 1 end cell cell space space minus 3 end cell row 5 cell space space 4 end cell cell space space minus 9 end cell end table close square brackets space space space equals 1 space open vertical bar table row 1 cell space space minus 3 end cell row 4 cell space space minus 9 end cell end table close vertical bar space minus 1 space open vertical bar table row 2 cell space minus 3 end cell row 5 cell space minus 9 end cell end table close vertical bar plus left parenthesis negative 2 right parenthesis space open vertical bar table row 2 cell space space 1 end cell row 5 cell space space 4 end cell end table close vertical bar
space space space space space space space space space space space space space space equals space 1 left parenthesis negative 9 plus 12 right parenthesis minus 1 left parenthesis negative 18 plus 15 right parenthesis minus 2 left parenthesis 8 minus 5 right parenthesis
space space space space space space space space space space space space space space equals space 1 left parenthesis 3 right parenthesis minus 1 left parenthesis negative 3 right parenthesis minus 2 left parenthesis 3 right parenthesis space equals 3 plus 3 minus 6 equals 0 space space space
    Question 35
    CBSEENMA12034348
    Question 36
    CBSEENMA12034349

    Syntax error from line 1 column 244 to line 1 column 251.

    Solution
    since space space minus 1 less or equal than straight x less than 0 comma space space 0 space less or equal than straight y space less than 1 comma 1 less or equal than straight z space less or equal than 2
therefore space space space open square brackets table row cell space space straight x space end cell end table close square brackets space equals negative 1 comma space open square brackets table row straight y end table close square brackets space equals 0 space and space open square brackets table row straight z end table close square brackets space equals 1
open vertical bar table row cell open square brackets table row straight x end table close square brackets plus 1 end cell cell open square brackets table row straight y end table close square brackets end cell cell open square brackets table row straight z end table close square brackets end cell row cell open square brackets table row straight x end table close square brackets end cell cell open square brackets table row straight y end table close square brackets plus 1 end cell cell open square brackets table row straight z end table close square brackets end cell row cell open square brackets table row straight x end table close square brackets end cell cell open square brackets table row straight y end table close square brackets end cell cell open square brackets table row straight z end table close square brackets plus 1 end cell end table close vertical bar space equals space open vertical bar table row 0 cell space space 0 end cell cell space space 1 end cell row cell negative 1 end cell cell space space 1 end cell cell space space 1 end cell row cell negative 1 end cell cell space space 0 end cell cell space space 2 end cell end table close vertical bar space equals 1 cross times space open vertical bar table row cell negative 1 end cell cell space space 1 end cell row cell negative 1 end cell cell space space 0 end cell end table close vertical bar
equals 1 space cross times space left parenthesis 0 plus 1 right parenthesis space equals 1
    Question 37
    CBSEENMA12034350

    Sponsor Area

    Question 40
    CBSEENMA12034353

    Without expanding, prove that

    open vertical bar table row 9 cell space space space space space space 9 end cell cell space space 12 end cell row 1 cell space space minus 3 end cell cell space space minus 4 end cell row 1 cell space space space space space space 9 end cell cell space 12 end cell end table close vertical bar space equals 0

    Solution
    Let space equals space open vertical bar table row 9 cell space space space space space space 9 end cell cell space space 12 end cell row 1 cell space space minus 3 end cell cell space space minus 4 end cell row 1 cell space space space space space space 9 end cell cell space 12 end cell end table close vertical bar space equals begin inline style 1 third end style space open vertical bar table row 9 cell space space space space space space 9 end cell cell space space 12 end cell row 1 cell space space minus 3 end cell cell space space minus 4 end cell row 1 cell space space space space space space 9 end cell cell space 12 end cell end table close vertical bar space comma space multiply space straight C subscript 3 space end subscript by space 3
space space space space space space space equals begin inline style 1 third end style space open vertical bar table row 9 cell space space space space space space 9 end cell cell space space 12 end cell row 1 cell space space minus 3 end cell cell space space minus 4 end cell row 1 cell space space space space space space 9 end cell cell space 12 end cell end table close vertical bar space comma space by space straight C subscript 3 space end subscript minus 4 space straight C subscript 2
space space space space space space space space equals 0 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets table row cell because space each space element space of space third space column space is space zero end cell end table close square brackets
    Question 41
    CBSEENMA12034354

    Without expanding, prove that

    open vertical bar table row 9 cell space space space space 9 end cell cell space space 12 end cell row 1 cell space space minus 3 end cell cell space space minus 4 end cell row 1 cell space space space space 9 end cell cell space space 12 end cell end table close vertical bar space equals 0 space

    Solution
    Syntax error from line 1 column 2953 to line 1 column 2958. Unexpected '<sub>'.
    Question 52
    CBSEENMA12034365

    Without space expanding comma space prove space that space the space following space determinants space vanish space
open vertical bar table row 1 cell space space space space space space bc end cell cell space space space space space straight a left parenthesis straight b plus straight c right parenthesis end cell row 1 cell space space space space space ca end cell cell space space space space space straight b left parenthesis straight c plus straight a right parenthesis end cell row 1 cell space space space space space space ab end cell cell space space space space space straight c left parenthesis straight a plus straight b right parenthesis end cell end table close vertical bar

    Solution
    Let space increment space equals open vertical bar table row 1 cell space space space space space space bc end cell cell space space space space space straight a left parenthesis straight b plus straight c right parenthesis end cell row 1 cell space space space space space ca end cell cell space space space space space straight b left parenthesis straight c plus straight a right parenthesis end cell row 1 cell space space space space space space ab end cell cell space space space space space straight c left parenthesis straight a plus straight b right parenthesis end cell end table close vertical bar
space space space space space space space space space space space equals space open vertical bar table row 1 cell space space space space space space bc end cell cell space space space space ab plus bc plus ca end cell row 1 cell space space space space space ca end cell cell space space space ab plus bc plus ca end cell row 1 cell space space space space space space ab end cell cell space space space ab plus bc plus ca end cell end table close vertical bar space comma space by space straight C subscript 3 space end subscript plus straight C subscript 2
space space space space space space space space space space space equals space left parenthesis straight a plus bc plus ca right parenthesis space space open vertical bar table row 1 cell space space space space space space bc end cell cell space space space space 1 end cell row 1 cell space space space space space ca end cell cell space space space space 1 end cell row 1 cell space space space space space space ab end cell cell space space space space 1 end cell end table close vertical bar
space space space space space space space space space space space space equals left parenthesis ab plus bc plus ca right parenthesis space cross times space 0
space space space space space space space space space space space space equals space 0 space space space space space space space space space space space space open square brackets table row cell because space two space columns space are space identical end cell end table close square brackets
    Question 56
    CBSEENMA12034369

    Without expansion, show that

    open vertical bar table row 0 cell space space space straight a end cell cell space space minus straight b end cell row cell negative straight a end cell cell space space 0 end cell cell space space straight c end cell row straight b cell space space straight c end cell cell space space 0 end cell end table close vertical bar space equals space 0

    Solution
    Let space space increment equals space open vertical bar table row 0 cell space space space straight a end cell cell space space minus straight b end cell row cell negative straight a end cell cell space space 0 end cell cell space space straight c end cell row straight b cell space space straight c end cell cell space space 0 end cell end table close vertical bar
space space space space space space space space space space space space equals space left parenthesis negative 1 space right parenthesis cubed space space space open vertical bar table row 0 cell space space space straight a end cell cell space space minus straight b end cell row cell negative straight a end cell cell space space 0 end cell cell space space straight c end cell row straight b cell space space straight c end cell cell space space 0 end cell end table close vertical bar space comma space by space taking minus 1 space common space from space each space of space three space rows
space space space space space space space space space space space space equals space space minus space space space space open vertical bar table row 0 cell space space space straight a end cell cell space space minus straight b end cell row cell negative straight a end cell cell space space 0 end cell cell space space straight c end cell row straight b cell space space straight c end cell cell space space 0 end cell end table close vertical bar space space comma space by space interchanging space rows space and space columns.
space space space space space space space space space space space space space equals space minus space increment
therefore space space space space increment space equals space minus space increment space space space space rightwards double arrow 2 increment space equals 0 space
rightwards double arrow space space space increment space space space space equals 0
rightwards double arrow space space space space space open vertical bar table row 0 cell space space space straight a end cell cell space space minus straight b end cell row cell negative straight a end cell cell space space 0 end cell cell space space straight c end cell row straight b cell space space straight c end cell cell space space 0 end cell end table close vertical bar space equals 0
    Question 57
    CBSEENMA12034370
    Question 58
    CBSEENMA12034371
    Question 60
    CBSEENMA12034373

    open vertical bar table row 1 cell space space space straight a space end cell cell space bc end cell row 1 cell space space straight b end cell cell space space ca end cell row 1 cell space space straight c end cell cell space space ab end cell end table close vertical bar space equals space open vertical bar table row 1 cell space space space straight a space end cell cell space space space straight a squared end cell row 1 cell space space straight b end cell cell space space straight b squared end cell row 1 cell space space straight c end cell cell space space straight c squared end cell end table close vertical bar spaceWithout expanding, prove that

    Solution
    Let space space increment space equals space space open vertical bar table row 1 cell space space space straight a space end cell cell space bc end cell row 1 cell space space straight b end cell cell space space ca end cell row 1 cell space space straight c end cell cell space space ab end cell end table close vertical bar space equals space begin inline style 1 over abc end style space space open vertical bar table row cell space space space straight a space end cell cell space space space straight a squared space end cell cell space space abc end cell row cell space space straight b end cell cell space space straight b squared end cell cell space space abc end cell row cell space space straight c end cell cell space space straight c squared end cell cell space space abc end cell end table close vertical bar space by space multiplying space straight R subscript 1 comma space end subscript straight R subscript 2 comma straight R subscript 3 space by space straight a comma space straight b comma straight c space respectively
space space space space space space space space space space space space space equals space begin inline style abc over abc end style space open vertical bar table row straight a cell space space space space space straight a squared end cell cell space space space bc end cell row straight b cell space space space space straight b squared end cell cell space space space ca end cell row straight c cell space space space straight c squared end cell cell space space space space ab end cell end table close vertical bar space equals space begin inline style 1 over abc end style space space open vertical bar table row 1 cell space space space straight a space end cell cell space space space straight a squared space end cell row 1 cell space space straight b end cell cell space space straight b squared end cell row 1 cell space space straight c end cell cell space space straight c squared end cell end table close vertical bar
    Question 61
    CBSEENMA12034374

    Without expanding, prove thatopen vertical bar table row cell straight x plus straight y end cell cell space space straight x end cell cell space space space straight x end cell row cell 5 straight x plus 4 straight y end cell cell space space 4 straight x end cell cell space space space space 2 straight x end cell row cell 10 straight x plus 8 straight y end cell cell space space 8 straight x end cell cell space space space space 3 straight x end cell end table close vertical bar space equals space x cubed

    Solution
    Let space space increment space equals space open vertical bar table row cell straight x plus straight y end cell cell space space straight x end cell cell space space space straight x end cell row cell 5 straight x plus 4 straight y end cell cell space space 4 straight x end cell cell space space space space 2 straight x end cell row cell 10 straight x plus 8 straight y end cell cell space space 8 straight x end cell cell space space space space 3 straight x end cell end table close vertical bar space
space space space space space space space space space space space space space equals space open vertical bar table row straight x straight x cell space straight x end cell row cell 5 straight x end cell cell 4 straight x end cell cell space space 2 straight x end cell row cell 10 straight x end cell cell 8 straight x end cell cell space 3 straight x end cell end table close vertical bar space plus space open vertical bar table row straight y straight x cell space straight x end cell row cell 5 straight y end cell cell 4 straight x end cell cell space space 2 straight x end cell row cell 10 straight y end cell cell 8 straight x end cell cell space 3 straight x end cell end table close vertical bar
space space space space space space space space space space space space space equals space straight x cubed space open vertical bar table row 1 cell space 1 end cell cell space space 1 end cell row 5 cell space 4 end cell cell space space 2 end cell row 10 cell space 8 end cell cell space 3 end cell end table close vertical bar space plus straight x squared space straight y space space open vertical bar table row 1 cell space space 1 end cell cell space 1 end cell row 4 cell space space 4 end cell cell space space 2 end cell row 8 cell space space 8 end cell cell space 3 end cell end table close vertical bar
space space space space space space space space space space space space space equals space space straight x cubed space open vertical bar table row 1 cell space space space space 0 end cell cell space space 0 end cell row 5 cell space minus 1 end cell cell space space 3 end cell row 10 cell space minus 2 end cell cell space space 7 end cell end table close vertical bar space plus straight x squared space straight y space left parenthesis 0 right parenthesis
space space space space space space space space space space space space space equals space space straight x cubed space open vertical bar table row 1 cell space space space space space space 0 end cell cell space space space space space 0 end cell row 5 cell space space minus 1 end cell cell space space minus 3 end cell row 0 cell space space space space space space 0 end cell cell space minus 1 end cell end table close vertical bar space plus space 0 equals straight x to the power of 3 space end exponent space space open vertical bar table row 1 cell space space space space space space 0 end cell cell space space space space space 0 end cell row 5 cell space space minus 1 end cell cell space space minus 3 end cell row 0 cell space space space space space space 0 end cell cell space minus 1 end cell end table close vertical bar
space space space space space space space space space space space space space equals space space straight x cubed space open vertical bar table row 1 cell space space space space space space 0 end cell cell space space space space space 0 end cell row 5 cell space space minus 1 end cell cell space space minus 3 end cell row 0 cell space space space space space space 0 end cell cell space minus 1 end cell end table close vertical bar space comma space by space straight R subscript 2 minus 5 space straight R subscript 1
space space space space space space space space space space space space space equals space space straight x cubed space open square brackets table row cell left parenthesis 1 right parenthesis left parenthesis negative 1 right parenthesis left parenthesis negative 1 right parenthesis end cell end table close square brackets space space space space open square brackets table row cell product space of space diagonal space element space end cell end table close square brackets
space space space space space space space space space space space space space equals space space straight x cubed space space space space space space space space space space space space space space space space space space
space space space space space space space
    Question 62
    CBSEENMA12034375

    Without expanding, prove that

    open vertical bar table row cell straight a plus straight l end cell straight m straight n row straight I cell straight a plus straight m end cell straight n row straight I straight m cell straight a plus straight n end cell end table close vertical bar space equals a squared space left parenthesis a plus l plus m plus n right parenthesis

    Solution
    Let space increment space equals space open vertical bar table row cell straight a plus straight l end cell straight m straight n row straight I cell straight a plus straight m end cell straight n row straight I straight m cell straight a plus straight n end cell end table close vertical bar space
space space space space space space space space space space space equals space space open vertical bar table row cell straight a plus straight l plus straight m plus straight n end cell straight m straight n row cell straight a plus straight l plus straight m plus straight n end cell cell space straight a plus straight m end cell straight n row cell straight a plus straight l plus straight m plus straight n end cell straight m cell space straight a plus straight n end cell end table close vertical bar space space comma space b y space C subscript 1 plus C subscript 2 space plus C subscript 3
space space space space space space space space space space space equals space left parenthesis straight a plus straight l plus straight m plus straight n right parenthesis space space open vertical bar table row 1 straight m cell space space space straight n end cell row 1 cell space space straight a plus straight m end cell cell space space straight n end cell row 1 straight m cell space straight a plus straight n end cell end table close vertical bar
space space space space space space space space space space space equals space space left parenthesis straight a plus straight l plus straight m plus straight n right parenthesis space space open vertical bar table row 1 cell space space space space straight m end cell cell space space space space space straight n end cell row 0 cell space space space space straight a end cell cell space space space space 0 end cell row 0 cell space space space 0 end cell cell space space space straight a end cell end table close vertical bar space comma space b y space straight R subscript 2 minus straight R subscript 1 comma space straight R subscript 3 minus straight R subscript 1
space space space space space space space space space space space equals space space left parenthesis straight a plus straight l plus straight m plus straight n right parenthesis space open square brackets table row cell left parenthesis 1 right parenthesis left parenthesis straight a right parenthesis left parenthesis straight a right parenthesis end cell end table close square brackets space space space space space space space space space space space space space space space space space space space space open square brackets table row cell product space of space diagonal space elements end cell end table close square brackets
space space space space space space space space space space space equals space straight a squared space space space left parenthesis straight a plus straight l plus straight m plus straight n right parenthesis space
    Question 63
    CBSEENMA12034376
    Question 64
    CBSEENMA12034377

    Prove that

    open square brackets table row cell straight x plus straight a end cell straight b straight c row straight a cell space space space straight x plus straight b end cell straight c row straight a straight b cell space space space straight x plus straight c end cell end table close square brackets space equals space x squared space left parenthesis x plus a plus b plus c right parenthesis

    Solution
    straight L. straight H. straight S equals open square brackets table row cell straight x plus straight a end cell straight b straight c row straight a cell space space space straight x plus straight b end cell straight c row straight a straight b cell space space space straight x plus straight c end cell end table close square brackets space equals space open vertical bar table row cell straight x plus straight a plus straight b plus straight c end cell straight b straight c row cell straight x plus straight a plus straight b plus straight c end cell cell space space straight x plus straight b end cell straight c row cell straight x plus straight a plus straight b plus straight c end cell straight b cell space space straight x plus straight c end cell end table close vertical bar space comma space by space straight C subscript 1 plus straight C subscript 2 plus straight C subscript 3
space space space space space space space space space space space equals left parenthesis straight x plus straight a plus straight b plus straight c right parenthesis space space open vertical bar table row 1 straight b straight c row 1 cell space space space space straight x plus straight b end cell straight c row 1 straight b cell space space space space straight x plus straight c end cell end table close vertical bar
space space space space space space space space space space space equals left parenthesis straight x plus straight a plus straight b plus straight c right parenthesis space space open vertical bar table row 1 cell space space space space space straight b end cell cell space space space space straight c end cell row 0 cell space space space space straight x end cell cell space space space space 0 end cell row 0 cell space space space space 0 end cell cell space space space space straight x end cell end table close vertical bar space comma space by space straight R subscript 2 minus straight R subscript 1 comma space straight R subscript 3 minus straight R subscript 1
space space space space space space space space space space space space equals left parenthesis straight x plus straight a plus straight b plus straight c right parenthesis space space open square brackets table row cell left parenthesis 1 right parenthesis left parenthesis straight x right parenthesis left parenthesis straight x right parenthesis end cell end table close square brackets space space space space space space space space space space space space open square brackets table row cell product space of space diagonal space elements end cell end table close square brackets space
space space space space space space space space space space space space equals space straight x squared space left parenthesis straight x plus straight a plus straight b plus straight c right parenthesis
space space space space space space space space space space space space equals space straight R. straight H. straight S
space space space space space space space space
space space space space space space space space space space
    Question 65
    CBSEENMA12034378

    Evaluate

    open vertical bar table row cell 1 space end cell cell space straight x end cell straight y row 1 cell space space straight x plus straight y end cell straight y row 1 straight x cell space straight x plus straight y end cell end table close vertical bar

    Solution
    Let space space space space increment space equals space open vertical bar table row cell 1 space end cell cell space straight x end cell straight y row 1 cell space space straight x plus straight y end cell straight y row 1 straight x cell space straight x plus straight y end cell end table close vertical bar space equals space open square brackets table row 1 straight x straight y row 0 cell space space straight y space space end cell 0 row 0 0 straight x end table close square brackets space comma space by space straight R subscript 2 minus straight R subscript 1 minus straight R subscript 3 minus straight R subscript 1
space space space space space space space space space space space space space space equals space space open vertical bar table row straight y cell space space 0 end cell row 0 cell space space 0 end cell end table close vertical bar space equals xy
    Question 66
    CBSEENMA12034379

    Evaluate
open vertical bar table row straight x straight y cell space space space straight x plus straight y end cell row straight y cell space space space straight x plus straight y end cell straight x row cell straight x plus straight y end cell straight x straight y end table close vertical bar

    Solution
    Let space space increment space equals open vertical bar table row straight x straight y cell space space space straight x plus straight y end cell row straight y cell space space space straight x plus straight y end cell straight x row cell straight x plus straight y end cell straight x straight y end table close vertical bar space equals space open vertical bar table row cell 2 straight x plus 2 straight y end cell cell space space space space space space 2 straight x plus 3 straight y end cell cell space space space space 2 straight x plus 2 straight y end cell row straight y cell straight x plus straight y end cell straight x row cell straight x plus straight y end cell straight x straight y end table close vertical bar space comma space by space straight R subscript 1 plus straight R subscript 2 plus straight R subscript 3
space space space space space space space space space space space space equals space 2 left parenthesis straight x plus straight y right parenthesis space space open vertical bar table row straight x straight y cell space space space straight x plus straight y end cell row straight y cell space space space straight x plus straight y end cell straight x row cell straight x plus straight y end cell straight x straight y end table close vertical bar
space space space space space space space space space space space space equals space 2 left parenthesis straight x plus straight y right parenthesis space space open vertical bar table row straight x straight y cell space space space straight x plus straight y end cell row straight y cell space space space straight x plus straight y end cell straight x row cell straight x plus straight y end cell straight x straight y end table close vertical bar space by comma space straight C subscript 2 minus straight C subscript 1 minus straight C subscript 3 minus straight C subscript 1
space space space space space space space space space space space space equals space 2 left parenthesis straight x plus straight y right parenthesis space open vertical bar table row straight x cell space space space straight x minus straight y end cell row cell negative straight y end cell cell negative straight x end cell end table close vertical bar
space space space space space space space space space space space space equals space 2 left parenthesis straight x plus straight y right parenthesis space open square brackets table row cell negative straight x squared end cell end table plus xy minus straight y squared close square brackets space space equals space 2 left parenthesis straight x plus straight y right parenthesis space left parenthesis straight x squared minus xy plus straight y squared right parenthesis space equals space 2 left parenthesis straight x cubed plus straight y cubed right parenthesis
    Question 67
    CBSEENMA12034380
    Question 68
    CBSEENMA12034381

    show space that space
open vertical bar table row straight a cell space space space space space space space space space space space space straight a plus straight b end cell cell space straight a plus straight b plus straight c end cell row cell 2 straight a end cell cell space space space space space space space space straight a end cell cell space space space space 4 straight a plus 3 straight b plus 2 straight c end cell row cell 3 straight a end cell cell space space space space space space space space 3 straight a end cell cell space space space space 10 straight a plus 6 straight b plus 3 straight c end cell end table close vertical bar space equals straight a cubed

    Solution
    Let space space increment space equals space open vertical bar table row straight a cell space space space space space space space space space space space space straight a plus straight b end cell cell space straight a plus straight b plus straight c end cell row cell 2 straight a end cell cell space space space space space space space space straight a end cell cell space space space space 4 straight a plus 3 straight b plus 2 straight c end cell row cell 3 straight a end cell cell space space space space space space space space 3 straight a end cell cell space space space space 10 straight a plus 6 straight b plus 3 straight c end cell end table close vertical bar space
space space space space space space space space space space space space equals space space open vertical bar table row straight a cell space space space space straight a plus straight b end cell cell space space space space space straight a plus straight b plus straight c end cell row 0 straight a cell 2 straight a plus straight b end cell row 0 cell 3 straight a end cell cell 7 straight a plus 3 straight b end cell end table close vertical bar space comma space by space straight R subscript 2 space minus 2 straight R subscript 1 space comma space straight R subscript 3 minus 3 space straight R subscript 1
space space space space space space space space space space space space equals space straight a space open vertical bar table row straight a cell 2 straight a plus straight b end cell row cell 3 straight a end cell cell 7 straight a plus straight b end cell end table close vertical bar space comma space by space expanding space with space first space column
space space space space space space space space space space space space equals space straight a space open square brackets table row cell 7 straight a squared plus 3 ab minus 6 straight a squared minus 3 ab space end cell end table close square brackets space equals straight a left parenthesis straight a squared space right parenthesis equals straight a cubed space
    Question 69
    CBSEENMA12034382

    Prove that 
     open vertical bar table row cell 3 straight a end cell cell space space minus straight a plus straight b end cell cell space space minus straight a plus straight c end cell row cell negative straight b plus straight a end cell cell 3 straight b end cell cell space minus straight b plus straight c end cell row cell negative straight c plus straight a end cell cell space minus straight c plus straight b end cell cell 3 straight c end cell end table close vertical bar space equals 3 left parenthesis straight a plus straight b plus straight c right parenthesis left parenthesis ab plus bc plus ca right parenthesis

    Solution
    Let space space increment space space equals space space open vertical bar table row cell 3 straight a end cell cell space space minus straight a plus straight b end cell cell space space minus straight a plus straight c end cell row cell negative straight b plus straight a end cell cell 3 straight b end cell cell space minus straight b plus straight c end cell row cell negative straight c plus straight a end cell cell space minus straight c plus straight b end cell cell 3 straight c end cell end table close vertical bar space
space space space space space space space space space space space space space space equals space open vertical bar table row cell straight a plus straight b plus straight c end cell cell space space minus straight a plus straight b end cell cell space space minus straight a plus straight c end cell row cell straight a plus straight b plus straight c end cell cell 3 straight b end cell cell space minus straight b plus straight c end cell row cell straight a plus straight b plus straight c end cell cell space minus straight c plus straight b end cell cell 3 straight c end cell end table close vertical bar space comma space by space straight C subscript 1 space plus straight C subscript 2 space plus straight C subscript 3
space space space space space space space space space space space space space space equals space space left parenthesis straight a plus straight b plus straight c right parenthesis space space space open vertical bar table row 1 cell space space minus straight a plus straight b end cell cell space space minus straight a plus straight c end cell row 1 cell space 3 straight b end cell cell space minus straight b plus straight c end cell row 1 cell space minus straight c plus straight b end cell cell 3 straight c end cell end table close vertical bar space space
space space space space space space space space space space space space space space equals space space left parenthesis straight a plus straight b plus straight c right parenthesis space space open vertical bar table row 1 cell space space minus straight a plus straight b end cell cell space space minus straight a plus straight c end cell row 0 cell space space space straight a plus 2 straight b end cell cell space space space space straight a minus straight b end cell row 0 cell space space straight a minus straight c end cell cell space space space space straight a plus 2 straight c end cell end table close vertical bar space comma space by space straight R subscript 2 minus straight R subscript 1 comma space straight R subscript 3 minus straight R subscript 1
space space space space space space space space space space space space space space equals space left parenthesis straight a plus straight b plus straight c right parenthesis space space space open vertical bar table row cell straight a plus 2 straight b end cell cell space space straight a minus straight b end cell row cell straight a minus straight c end cell cell space space space straight a plus 2 straight c end cell end table close vertical bar space
space space space space space space space space space space space space space space equals space space left parenthesis straight a plus straight b plus straight c right parenthesis space space open square brackets table row cell left parenthesis straight a plus 2 straight b right parenthesis left parenthesis straight a plus 2 straight c right parenthesis minus left parenthesis straight a minus straight c right parenthesis left parenthesis straight a minus straight b right parenthesis end cell end table close square brackets
space space space space space space space space space space space space space space equals space left parenthesis straight a plus straight b plus straight c right parenthesis space space open square brackets table row cell straight a squared end cell end table plus 2 ca plus 2 ab plus 4 bc minus straight a squared plus ab plus ca minus bc close square brackets space space
space space space space space space space space space space space space space space equals space left parenthesis straight a plus straight b plus straight c right parenthesis space space open square brackets 3 ca plus 3 ab plus 3 bc close square brackets space equals 3 left parenthesis straight a plus straight b plus straight c right parenthesis left parenthesis ab plus bc plus ca right parenthesis space space space space
space space space
space space space space space space space space space space space space
    Question 70
    CBSEENMA12034383

    Prove that 
     open vertical bar table row 1 cell space space space space straight a end cell cell space space space space space straight a squared minus bc end cell row 1 cell space space space space straight b end cell cell space space space space straight b squared minus ca end cell row 1 cell space space space straight c end cell cell space space space space straight c squared minus ab end cell end table close vertical bar space equals 0

    Solution
    Let space space increment space equals space open vertical bar table row 1 cell space space space space straight a end cell cell space space space space space straight a squared minus bc end cell row 1 cell space space space space straight b end cell cell space space space space straight b squared minus ca end cell row 1 cell space space space straight c end cell cell space space space space straight c squared minus ab end cell end table close vertical bar space equals space open vertical bar table row 1 cell space space space space straight a end cell cell space space space straight a squared end cell row 1 cell space space space space straight b end cell cell space space space space straight b squared end cell row 1 cell space space space space straight c end cell cell space space space space straight c squared end cell end table close vertical bar space plus space space open vertical bar table row 1 cell space space space space space space straight a end cell cell space space minus bc end cell row 1 cell space space space space space straight b end cell cell space space minus ca end cell row 1 cell space space space space space straight c end cell cell space space minus ab end cell end table close vertical bar
space space space space space space space space space space space space equals space space open vertical bar table row 1 cell space space space space straight a end cell cell space space space straight a squared end cell row 1 cell space space space space straight b end cell cell space space space space straight b squared end cell row 1 cell space space space space straight c end cell cell space space space space straight c squared end cell end table close vertical bar space minus space begin inline style 1 over abc end style space open vertical bar table row straight a cell space space space space space straight a squared end cell cell space space space space abc end cell row straight b cell space space space space space straight b squared end cell cell space space space space abc end cell row straight c cell space space space space straight c squared end cell cell space space space abc end cell end table close vertical bar space
space space space space space space space space space space space equals space space space open vertical bar table row 1 cell space space space space straight a end cell cell space space space straight a squared end cell row 1 cell space space space space straight b end cell cell space space space space straight b squared end cell row 1 cell space space space space straight c end cell cell space space space space straight c squared end cell end table close vertical bar space minus space begin inline style abc over abc end style space open vertical bar table row straight a cell space space space space space space space straight a squared end cell cell space space space space space space space space 1 end cell row straight b cell space space space space space space straight b squared end cell cell space space space space space space 1 end cell row straight c cell space space space space space space straight c squared end cell cell space space space space space space 1 end cell end table close vertical bar space
space space space space space space space space space space space equals space space space open vertical bar table row 1 cell space space space space straight a end cell cell space space space straight a squared end cell row 1 cell space space space space straight b end cell cell space space space space straight b squared end cell row 1 cell space space space space straight c end cell cell space space space space straight c squared end cell end table close vertical bar space minus space open vertical bar table row 1 cell space space space space straight a end cell cell space space space space space space space straight a squared end cell row 1 cell space space space space straight b end cell cell space space space space space space straight b squared end cell row 1 cell space space space space straight c end cell cell space space space space space space straight c squared end cell end table close vertical bar
space space space space space space space space space space space equals space space 0
space space space space space space space space space space space space
    Question 71
    CBSEENMA12034384

    If space straight a comma space straight b comma space straight c space are space positive space and space unequal comma space show space that space value space of space the space determinant
increment space space equals space open vertical bar table row straight a cell space space space straight b end cell cell space space space space straight c end cell row straight b cell space space space straight c end cell cell space space space space straight a end cell row straight c cell space space space straight a end cell cell space space space space straight b end cell end table close vertical bar space is space negative.

    Solution
    Let space increment space equals space open vertical bar table row straight a cell space space straight b end cell cell space space straight c end cell row straight b cell space space straight c end cell cell space space straight a end cell row straight c cell space space straight a end cell cell space space straight b end cell end table close vertical bar space equals straight a open vertical bar table row straight c cell space space straight a end cell row straight a cell space space space straight b end cell end table close vertical bar space minus straight b open vertical bar table row straight b cell space space space straight a end cell row straight c cell space space space straight b end cell end table close vertical bar space plus straight c space open vertical bar table row straight b cell space space space straight c end cell row straight c cell space space space straight a end cell end table close vertical bar
space space space space space space space space space space equals space space straight a left parenthesis bc minus straight a squared right parenthesis space minus straight b space left parenthesis straight b squared minus ca right parenthesis plus straight c left parenthesis ab minus straight c squared right parenthesis
space space space space space space space space space space equals space space abc minus straight a cubed minus straight b cubed space plus abc plus abc minus straight c cubed space equals 3 abc minus straight a cubed minus straight b cubed space minus straight c cubed
space space space space space space space space space space equals space minus space open square brackets table row cell straight a cubed end cell end table plus straight b cubed plus straight c cubed minus 3 abc close square brackets
space space space space space space space space space space equals space minus space left parenthesis straight a plus straight b plus straight c right parenthesis left parenthesis straight a squared plus straight b squared plus straight c squared minus ab minus bc minus ca right parenthesis
space space space space space space space space space space equals space minus 1 half space left parenthesis straight a plus straight b plus straight c right parenthesis open square brackets table row cell 2 straight a squared plus 2 straight b squared end cell end table plus 2 straight c squared minus 2 ab minus 2 bc minus 2 ca close square brackets
space space space space space space space space space space equals space minus 1 half space left parenthesis straight a plus straight b plus straight c right parenthesis open square brackets table row cell left parenthesis straight a squared plus straight b squared minus 2 ab right parenthesis plus left parenthesis straight b squared end cell end table plus straight c squared minus 2 bc right parenthesis plus left parenthesis straight c squared plus straight a squared minus 2 ca right parenthesis close square brackets
space space space space space space space space space equals space minus 1 half space left parenthesis straight a plus straight b plus straight c right parenthesis space open square brackets table row cell left parenthesis straight a minus straight b right parenthesis squared end cell end table plus left parenthesis straight b minus straight c right parenthesis squared plus straight c left parenthesis straight c minus straight a squared right parenthesis close square brackets space less than space 0
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets table row cell therefore space straight a comma space straight b comma space straight c space are space all space positive space and space not space equal end cell end table close square brackets
    Question 72
    CBSEENMA12034385

    prove space that
space open vertical bar table row cell negative straight a end cell cell space space ab end cell cell space space ac end cell row ba cell space space minus straight b squared end cell cell space space space bc end cell row ca cell space cb end cell cell negative straight c squared end cell end table close vertical bar space equals 4 space straight a to the power of 2 space end exponent straight b squared space straight c squared

    Solution
    Let space increment space space equals space space space open vertical bar table row cell negative straight a end cell cell space space ab end cell cell space space ac end cell row ba cell space space minus straight b squared end cell cell space space space bc end cell row ca cell space cb end cell cell negative straight c squared end cell end table close vertical bar space
Taking space straight a comma space straight b comma space straight c space common space from space first comma space second space and space third space column space respectively comma space we space have
space space space space space space increment space space space equals space abc space open vertical bar table row cell negative straight a end cell cell space space space space straight a end cell cell space space straight a end cell row straight b cell space minus straight b end cell cell space space straight b end cell row straight c cell space space space space straight c end cell cell space minus straight c end cell end table close vertical bar space
space space space space space space space space space space space space equals space straight a squared space straight b squared space straight c space squared space space space space open vertical bar table row cell negative 1 end cell cell space space space space space space 1 end cell cell space space space space space 1 end cell row 1 cell space space minus 1 end cell cell space space space space space 1 end cell row 1 cell space space space space space space 1 end cell cell space minus 1 end cell end table close vertical bar
by space taking space straight a. space straight b comma space straight c space common space from space 1 st comma space 2 nd comma space 3 rd space row space respectively.
space space space space space space space space space space space space equals straight a squared space straight b squared space straight c squared space space open vertical bar table row cell negative 1 end cell cell space space 0 end cell cell space space space 0 end cell row 1 cell space space 0 end cell cell space space space 2 end cell row 1 cell space space 2 end cell cell space space space 0 end cell end table close vertical bar space comma space by space straight C subscript 2 plus straight C subscript 1 comma space straight C subscript 3 plus straight C subscript 1
space space space space space space space space space space space space equals space straight a squared space straight b squared space straight c squared space space left parenthesis negative 1 right parenthesis space space space open vertical bar table row 0 cell space space space 2 end cell row 2 cell space space space 0 end cell end table close vertical bar space space equals space straight a squared space straight b squared space straight c squared space space left parenthesis negative 1 right parenthesis left parenthesis 0 minus 4 right parenthesis
space space space space space space space space space space space space equals space space 4 space straight a squared space straight b squared space straight c squared space
    Question 73
    CBSEENMA12034386

    Evaluate
space open vertical bar table row 0 cell space space space ab squared end cell cell space space ac squared end cell row cell straight a squared space straight b end cell 0 cell space bc squared end cell row cell straight a squared straight c end cell cell space space straight b squared space straight c end cell cell space 0 end cell end table close vertical bar

    Solution
    Let space space increment space equals space open vertical bar table row 0 cell space space space ab squared end cell cell space space ac squared end cell row cell straight a squared space straight b end cell 0 cell space bc squared end cell row cell straight a squared straight c end cell cell space space straight b squared space straight c end cell cell space 0 end cell end table close vertical bar space equals straight a squared space straight b squared space straight c squared space space open vertical bar table row 0 cell space space space straight a end cell cell space space straight a end cell row straight b cell space space space 0 end cell cell space space space straight b end cell row straight c cell space space space straight c end cell cell space space space 0 end cell end table close vertical bar
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space by space taking space straight a squared comma space straight b squared comma space straight c to the power of 2 space end exponent common space straight C subscript 1 space straight C subscript 2 space straight C subscript 3 space respectively
space space space space space equals straight a squared space straight b squared space straight c squared space space open vertical bar table row 0 cell space 0 end cell cell space space straight a end cell row straight b cell space minus straight b space space end cell cell space space straight b end cell row cell straight c space end cell straight c cell space straight c end cell end table close vertical bar space comma space by space straight C subscript 2 space minus straight C subscript 3
space space space space space equals space straight a squared space straight b squared space straight c squared space. straight a space open vertical bar table row straight b cell space space minus straight b end cell row straight c cell space space space space straight c end cell end table close vertical bar space space equals space straight a squared space straight b squared space straight c squared space. straight a space left parenthesis bc plus bc right parenthesis
space space space space space equals space straight a squared space straight b squared space straight c squared space. straight a.2 bc space equals space 2 space straight a cubed space straight b cubed space straight c cubed
    Question 74
    CBSEENMA12034387

    Evaluate
open vertical bar table row cell straight x plus straight lambda end cell straight x straight x row straight x cell space space straight x plus straight lambda end cell straight x row straight x straight x cell space space straight x plus straight lambda end cell end table close vertical bar

    Solution
    Let space space increment space equals open vertical bar table row cell straight x plus straight lambda end cell straight x straight x row straight x cell space space straight x plus straight lambda end cell straight x row straight x straight x cell space space straight x plus straight lambda end cell end table close vertical bar space
space space space space space space space space space space space space equals space open vertical bar table row cell 3 straight x plus straight lambda end cell cell space space space 3 straight x plus straight lambda end cell cell space space space 3 straight x plus straight lambda end cell row straight x cell straight x plus straight lambda end cell straight x row straight x straight x cell bold x bold plus bold lambda end cell end table close vertical bar space space comma space by space straight R subscript 1 space plus straight R subscript 2 space plus straight R subscript 3
space space space space space space space space space space space equals space left parenthesis 3 straight x plus straight lambda right parenthesis space open vertical bar table row 1 1 1 row straight x cell space space straight x plus straight lambda end cell straight x row straight x straight x cell space space space straight x plus straight lambda end cell end table close vertical bar space
space space space space space space space space space space space equals space left parenthesis 3 straight x plus straight lambda right parenthesis space open vertical bar table row 1 cell space space space space 0 space space end cell cell space space space 0 end cell row straight x cell space space straight lambda end cell cell space space 0 end cell row straight x cell space space 0 end cell cell space space straight lambda end cell end table close vertical bar space space by space straight C subscript 1 minus straight C subscript 2 space comma space straight C subscript 3 space minus straight C subscript 1
space space space space space space space space space space space equals space left parenthesis 3 straight x plus straight lambda right parenthesis space space open square brackets table row cell left parenthesis 1 right parenthesis left parenthesis straight lambda right parenthesis left parenthesis straight lambda right parenthesis end cell end table close square brackets
space space space space space space space space space space space equals space straight lambda squared space left parenthesis 3 straight x plus straight lambda right parenthesis
    Question 75
    CBSEENMA12034388

    Evalute space space open vertical bar table row cell straight b plus straight c end cell straight a straight a row straight b cell space space space space straight c plus straight a end cell straight b row straight c straight c cell space space straight a plus straight b end cell end table close vertical bar

    Solution
    Let space space increment space equals space space open vertical bar table row cell straight b plus straight c end cell straight a straight a row straight b cell space space space space straight c plus straight a end cell straight b row straight c straight c cell space space straight a plus straight b end cell end table close vertical bar space
space space space space space space space space space space space space equals space left parenthesis straight b plus straight c right parenthesis space space open vertical bar table row cell straight c plus straight a end cell cell space space straight b end cell row straight c cell space space straight a plus straight b end cell end table close vertical bar space minus straight a space open vertical bar table row straight b cell space space space space space space space space straight b end cell row straight c cell space space space space space straight a plus straight b end cell end table close vertical bar space plus straight a space open vertical bar table row straight b cell space space space straight c plus straight a end cell row straight c straight c end table close vertical bar space
space space space space space space space space space space space space equals space left parenthesis straight b plus straight c right parenthesis space space open square brackets table row cell left parenthesis straight c plus straight a right parenthesis left parenthesis straight a plus straight b right parenthesis minus bc end cell end table close square brackets space minus straight a space open square brackets table row cell straight b left parenthesis straight a plus straight b right parenthesis minus bc end cell end table close square brackets space plus straight a space open square brackets table row cell straight b minus straight c left parenthesis straight c plus straight a right parenthesis end cell end table close square brackets
space space space space space space space space space space space space equals space left parenthesis straight b plus straight c right parenthesis space left parenthesis ca plus straight a squared space plus ab right parenthesis minus straight a left parenthesis ab plus straight b squared space minus bc right parenthesis space plus straight a space left parenthesis bc minus straight c squared space minus ca right parenthesis
space space space space space space space space space space space space equals space abc plus straight a squared space straight b plus ab squared space plus straight c squared space straight a plus straight c space straight a to the power of 2 space end exponent space plus abc plus abc minus ac squared space minus ca squared
space space space space space space space space space space space space equals space 4 abc
    Question 76
    CBSEENMA12034389

    show that
    open vertical bar table row 1 cell space space space space straight x end cell cell space space space space straight x squared end cell row cell straight x squared end cell cell space space 1 end cell cell space space straight x end cell row straight x cell space space straight x squared end cell cell space space 1 end cell end table close vertical bar space equals space left parenthesis 1 minus x cubed right parenthesis squared

    Solution
    straight L. straight H. straight S space equals space open vertical bar table row 1 cell space space space space straight x end cell cell space space space space straight x squared end cell row cell straight x squared end cell cell space space 1 end cell cell space space straight x end cell row straight x cell space space straight x squared end cell cell space space 1 end cell end table close vertical bar space equals space open vertical bar table row cell 1 plus straight x plus straight x squared end cell cell space space straight x end cell cell space space straight x squared end cell row cell 1 plus straight x plus straight x squared end cell cell space space 1 end cell cell space space straight x end cell row cell 1 plus straight x plus straight x squared end cell cell space space space straight x squared end cell cell space 1 end cell end table close vertical bar space comma space by space straight C subscript 1 plus straight C subscript 2 plus straight C subscript 3
space space space space space space space space space space space equals space left parenthesis 1 plus straight x plus straight x squared right parenthesis space space open vertical bar table row 1 cell space space straight x end cell cell space space straight x squared end cell row 1 1 cell space straight x end cell row 1 cell space space straight x squared end cell cell space 1 end cell end table close vertical bar space
space space space space space space space space space space equals space space space left parenthesis 1 plus straight x plus straight x squared right parenthesis space open vertical bar table row 1 straight x cell straight x squared end cell row 0 cell space space 1 minus straight x end cell cell space space straight x minus straight x squared end cell row cell 0 space end cell cell space space straight x squared minus straight x end cell cell space 1 minus straight x squared end cell end table close vertical bar space comma space by space straight R subscript 2 minus straight R subscript 1 space comma space straight R subscript 3 minus straight R subscript 1
space space space space space space space space space equals space space space left parenthesis 1 plus straight x plus straight x squared right parenthesis space space open vertical bar table row 1 straight x row cell negative straight x end cell cell 1 plus straight x end cell end table close vertical bar space equals space left parenthesis 1 plus straight x plus straight x squared right parenthesis space left parenthesis 1 minus straight x right parenthesis squared space space open square brackets table row cell 1 plus straight x plus straight x squared end cell end table close square brackets
space space space space space space space space space equals space open square brackets table row cell left parenthesis 1 minus straight x right parenthesis left parenthesis 1 plus straight x plus straight x squared end cell end table close square brackets squared space equals space left parenthesis 1 minus straight x cubed right parenthesis squared
space space space space space space space space space equals straight R. straight H. straight S
space
    Question 77
    CBSEENMA12034390

    Using space properties space of space determinants comma space prove space that
space open vertical bar table row cell straight y plus straight z end cell cell space space space straight x end cell cell space space straight y end cell row cell straight z plus straight x end cell cell space space straight z end cell cell space space straight x end cell row cell straight x plus straight y end cell cell space space straight y end cell cell space straight z end cell end table close vertical bar space equals space left parenthesis straight x plus straight y plus straight z right parenthesis space left parenthesis straight x minus straight z right parenthesis squared

    Solution
    straight L. straight H. straight S space space space equals space open vertical bar table row cell straight y plus straight z end cell cell space space space straight x end cell cell space space straight y end cell row cell straight z plus straight x end cell cell space space straight z end cell cell space space straight x end cell row cell straight x plus straight y end cell cell space space straight y end cell cell space straight z end cell end table close vertical bar space equals space open vertical bar table row cell 2 left parenthesis straight x plus straight y plus straight z right parenthesis end cell cell space space space straight x plus straight y plus straight z end cell cell space space straight x plus straight y plus straight z end cell row cell straight z plus straight x end cell straight z straight x row cell straight x plus straight y end cell straight y straight z end table close vertical bar space comma space by space straight R subscript 1 plus straight R subscript 2 plus straight R subscript 3
space space space space space space space space space space space space space space equals space left parenthesis straight x plus straight y plus straight z right parenthesis space space open vertical bar table row 2 cell space 1 end cell cell space space 1 end cell row cell straight z plus straight x end cell cell space space straight z end cell cell space space straight x end cell row cell straight x plus straight y end cell cell space space straight y end cell cell space space straight z end cell end table close vertical bar space
space space space space space space space space space space space space space space equals space left parenthesis straight x plus straight y plus straight z right parenthesis space open vertical bar table row 0 1 cell space 1 end cell row cell straight z minus straight x end cell cell straight z minus straight x end cell cell space space straight x end cell row cell straight x plus straight y minus 2 straight z end cell cell straight y minus straight z end cell cell space space straight z end cell end table close vertical bar space comma space by space straight C subscript 1 minus 2 straight C subscript 3 space comma space straight C subscript 2 minus straight C subscript 3
space space space space space space space space space space space space space space equals space left parenthesis straight x plus straight y plus straight z right parenthesis space space open vertical bar table row cell straight z minus straight x end cell cell space space straight z minus straight x end cell row cell straight x plus straight y minus 2 straight z end cell cell space space straight y minus straight z end cell end table close vertical bar space
space space space space space space space space space space space space space space equals space left parenthesis straight z minus straight x right parenthesis space left parenthesis straight x plus straight y plus straight z right parenthesis space space space open vertical bar table row 1 1 row cell straight x plus straight y minus 2 straight z end cell cell space space straight y minus straight z end cell end table close vertical bar space
space space space space space space space space space space space space space equals space space left parenthesis straight z minus straight x right parenthesis space left parenthesis straight x plus straight y plus straight z right parenthesis space open square brackets table row cell straight y minus straight z minus straight x minus straight y plus 2 straight z end cell end table close square brackets space equals space left parenthesis straight z minus straight x right parenthesis left parenthesis straight x plus straight y plus straight z right parenthesis left parenthesis straight z minus straight x right parenthesis
space space space space space space space space space space space space space equals space straight R. straight H. straight S
    Question 78
    CBSEENMA12034391

    Using space properties space of space determinants comma space prove space that
open vertical bar table row cell straight y plus straight z end cell straight z cell space space straight y end cell row straight z cell space space straight z plus straight x end cell cell space space straight x end cell row straight y straight x cell space space space straight x plus straight y end cell end table close vertical bar space equals 4 xyz

    Solution
    Let space space increment space equals open vertical bar table row cell straight y plus straight z end cell straight z cell space space straight y end cell row straight z cell space space straight z plus straight x end cell cell space space straight x end cell row straight y straight x cell space space space straight x plus straight y end cell end table close vertical bar
space space space space space space space space space space space space equals space space open vertical bar table row cell 2 left parenthesis straight y plus straight z right parenthesis end cell cell space space 2 left parenthesis straight z plus straight x right parenthesis space space end cell cell 2 left parenthesis straight x plus straight y right parenthesis end cell row straight z cell straight z plus straight x end cell straight x row straight y straight x cell straight x plus straight y end cell end table close vertical bar space space comma space by space straight R subscript 1 space plus straight R subscript 2 space end subscript plus straight R subscript 3
space space space space space space space space space space space equals space 2 space open vertical bar table row cell straight y plus straight z end cell cell space space straight z plus straight x end cell cell space space straight x plus straight y end cell row straight z cell space space straight z plus straight x end cell straight x row straight y straight x cell space straight x plus straight y end cell end table close vertical bar space equals 2 space open vertical bar table row straight y cell space space 0 end cell straight y row straight z cell space space space straight z plus straight x end cell straight x row straight y straight x cell space space straight x plus straight y end cell end table close vertical bar space comma space by space straight R subscript 1 space minus straight R subscript 2 space end subscript
space space space space space space space space space space space equals space 2 space space open vertical bar table row straight y 0 0 row straight z cell space space space space straight z plus straight x end cell cell space space straight x minus straight z end cell row straight y straight x straight x end table close vertical bar space comma space by space straight C subscript 3 space minus straight C subscript 1
space space space space space space space space space space space equals space 2 straight y space open vertical bar table row cell straight z plus straight x end cell cell space space space straight x minus straight z end cell row straight x straight x end table close vertical bar space equals 2 straight y space open square brackets table row cell straight x left parenthesis straight z plus straight x right parenthesis minus straight x left parenthesis straight x minus straight z right parenthesis end cell end table close square brackets
space space space space space space space space space space equals space 2 xy space open square brackets table row cell left parenthesis straight z plus straight x right parenthesis minus left parenthesis straight x minus straight z right parenthesis end cell end table close square brackets space equals 2 xy space open square brackets table row cell straight z plus straight x minus straight x plus straight z end cell end table close square brackets
space space space space space space space space space space equals space 2 xy space cross times space 2 straight z space equals 4 xyz
    Question 79
    CBSEENMA12034392

    show space that
open vertical bar table row straight a cell space space space space space space space space space straight a plus straight b end cell cell straight a plus straight b plus straight c end cell row cell 2 straight a end cell cell space space space space space space space space 3 straight a plus 2 straight b end cell cell space space 4 straight a plus 3 straight b plus 2 straight c end cell row cell 3 straight a end cell cell space space space space space 6 straight a plus straight b end cell cell space space space space space 10 straight a plus 6 straight b plus 3 straight c end cell end table close vertical bar space equals straight a cubed

    Solution
    Let space space increment space equals space open vertical bar table row straight a cell space space space space space space space space space straight a plus straight b end cell cell straight a plus straight b plus straight c end cell row cell 2 straight a end cell cell space space space space space space space space 3 straight a plus 2 straight b end cell cell space space 4 straight a plus 3 straight b plus 2 straight c end cell row cell 3 straight a end cell cell space space space space space 6 straight a plus straight b end cell cell space space space space space 10 straight a plus 6 straight b plus 3 straight c end cell end table close vertical bar
space space space space space space space space space space space equals space open vertical bar table row straight a cell space space space space space space space straight a plus straight b space space space space space end cell cell straight a plus straight b plus straight c end cell row 0 straight a cell 2 straight a plus straight b end cell row 0 cell 3 straight a end cell cell 7 straight a plus 3 straight b end cell end table close vertical bar space comma space by space straight R subscript 2 space end subscript minus 2 straight R subscript 1 space comma space straight R subscript 3 space minus 3 space straight R subscript 1
space space space space space space space space space space equals space straight a space open vertical bar table row straight a cell space space 2 straight a plus straight b end cell row cell 3 straight a end cell cell space space space 7 straight a plus 3 straight b end cell end table close vertical bar space comma by space expanding space with space first space column
space space space space space space space space space space equals space straight a space space open square brackets table row cell 7 straight a squared end cell end table plus 3 ab minus 6 straight a squared space minus 3 ab close square brackets space equals straight a left parenthesis straight a squared right parenthesis space equals straight a cubed

    Sponsor Area

    Question 80
    CBSEENMA12034393

    Show thatopen vertical bar table row cell straight a plus straight b plus 2 straight c end cell straight a straight b row straight c cell space space space space space straight b plus straight c plus 2 straight a end cell straight b row straight c straight a cell space space straight c plus straight a plus 2 straight b end cell end table close vertical bar

    Solution
    Let space space increment space equals space open vertical bar table row cell straight a plus straight b plus 2 straight c end cell straight a straight b row straight c cell space space space space space straight b plus straight c plus 2 straight a end cell straight b row straight c straight a cell space space straight c plus straight a plus 2 straight b end cell end table close vertical bar space
space space space space space space space space space space space space equals space open vertical bar table row cell 2 left parenthesis straight a plus straight b plus straight c right parenthesis end cell straight a straight b row cell 2 left parenthesis straight a plus straight b plus straight c right parenthesis space space space end cell cell straight b plus straight c plus straight a end cell straight b row cell 2 left parenthesis straight a plus straight b plus straight c right parenthesis end cell straight a cell space space space space straight c plus straight a plus 2 straight b end cell end table close vertical bar space comma space by space straight C subscript 1 space plus straight C subscript 2 space plus space straight C subscript 3
Taking space out space common space 2 left parenthesis straight a plus straight b plus straight c right parenthesis space from space straight C subscript 1
space space space space space space space space space space space space equals space 2 left parenthesis straight a plus straight b plus straight c right parenthesis space open vertical bar table row 1 straight a straight b row 1 cell space space space space straight b plus straight c plus 2 straight a end cell straight b row 1 straight a cell space space straight c plus straight a plus 2 straight b end cell end table close vertical bar
space space space space space space space space space space space equals space 2 left parenthesis straight a plus straight b plus straight c right parenthesis space open vertical bar table row 1 straight a straight b row 0 cell space space space space straight a plus straight b plus straight c end cell 0 row 0 0 cell space space straight a plus straight b plus straight c end cell end table close vertical bar space comma space by space straight R subscript 2 minus straight R subscript 1 comma space straight R subscript 3 minus straight R subscript 1
space space space space space space space space space space space equals 2 space left parenthesis straight a plus straight b plus straight c right parenthesis space open square brackets table row cell left parenthesis 1 right parenthesis left parenthesis straight a plus straight b plus straight c right parenthesis left parenthesis straight a plus straight b plus straight c right parenthesis end cell end table close square brackets
space space space space space space space space space space space equals space 2 left parenthesis straight a plus straight b plus straight c right parenthesis cubed
    Question 81
    CBSEENMA12034394

    show that
    open vertical bar table row cell straight x minus straight y minus straight z end cell cell 2 straight x end cell cell 2 straight x end cell row cell 2 straight y end cell cell space space space straight y minus straight z minus straight x end cell cell 3 straight x end cell row cell 2 straight z end cell cell 2 space straight z end cell cell space space straight z minus straight x minus straight y end cell end table close vertical bar space equals space left parenthesis x plus y plus z right parenthesis cubed

    Solution
    Let space space space increment space equals space open vertical bar table row cell straight x minus straight y minus straight z end cell cell 2 straight x end cell cell 2 straight x end cell row cell 2 straight y end cell cell space space space straight y minus straight z minus straight x end cell cell 3 straight x end cell row cell 2 straight z end cell cell 2 space straight z end cell cell space space straight z minus straight x minus straight y end cell end table close vertical bar space
space space space space space space space space space space space space space equals space space space open vertical bar table row cell straight x minus straight y minus straight z end cell cell 2 straight x end cell cell 2 straight x end cell row cell 2 straight y end cell cell space space space straight y minus straight z minus straight x end cell cell 3 straight x end cell row cell 2 straight z end cell cell 2 space straight z end cell cell space space straight z minus straight x minus straight y end cell end table close vertical bar space comma space by space straight R subscript 1 plus straight R subscript 2 plus straight R subscript 3
Taking space out space straight x plus straight y plus straight z space common space from space straight R subscript 1
equals space left parenthesis straight x plus straight y plus straight z right parenthesis space space space open vertical bar table row cell straight x minus straight y minus straight z end cell cell 2 straight x end cell cell 2 straight x end cell row cell 2 straight y end cell cell space space space straight y minus straight z minus straight x end cell cell 3 straight x end cell row cell 2 straight z end cell cell 2 space straight z end cell cell space space straight z minus straight x minus straight y end cell end table close vertical bar
equals space left parenthesis straight x plus straight y plus straight z right parenthesis space space space open vertical bar table row 1 0 0 row cell 2 straight y end cell cell space space space space minus straight x minus straight y minus straight z end cell 0 row cell 2 straight z end cell 0 cell space minus straight x minus straight y minus straight z end cell end table close vertical bar space by space straight C subscript 2 minus straight C subscript 1 comma space straight C subscript 3 minus straight C subscript 1
equals left parenthesis straight x plus straight y plus straight z right parenthesis space space space space open vertical bar table row cell negative straight x minus straight y minus straight z end cell 0 row 0 cell negative straight x minus straight y minus straight z end cell end table close vertical bar space comma space expanding space by space first space row
equals left parenthesis straight x plus straight y plus straight z right parenthesis space open square brackets table row cell left parenthesis straight x minus straight y minus straight z right parenthesis left parenthesis negative straight x minus straight y minus straight z right parenthesis minus 0.0 end cell end table close square brackets
equals space left parenthesis straight x plus straight y plus straight z right parenthesis space left parenthesis straight x plus straight y plus straight z right parenthesis space left parenthesis straight x plus straight y plus straight z right parenthesis
equals space left parenthesis straight x plus straight y plus straight z right parenthesis cubed
space space
    Question 82
    CBSEENMA12034395

    show space that
open vertical bar table row cell straight a plus straight b plus nc end cell cell left parenthesis straight n minus 1 right parenthesis straight a end cell cell left parenthesis straight n minus 1 right parenthesis end cell row cell left parenthesis straight n minus 1 right parenthesis space straight c end cell cell straight b plus straight c plus na end cell cell left parenthesis straight n minus 1 right parenthesis end cell row cell left parenthesis straight n minus 1 right parenthesis straight c end cell cell left parenthesis straight n minus 1 right parenthesis straight a end cell cell straight c plus straight a plus nb end cell end table close vertical bar space equals straight n left parenthesis straight a plus straight b plus straight c right parenthesis cubed

    Solution
    Let space space space space increment space equals open vertical bar table row cell straight a plus straight b plus nc end cell cell left parenthesis straight n minus 1 right parenthesis straight a end cell cell left parenthesis straight n minus 1 right parenthesis end cell row cell left parenthesis straight n minus 1 right parenthesis space straight c end cell cell straight b plus straight c plus na end cell cell left parenthesis straight n minus 1 right parenthesis end cell row cell left parenthesis straight n minus 1 right parenthesis straight c end cell cell left parenthesis straight n minus 1 right parenthesis straight a end cell cell straight c plus straight a plus nb end cell end table close vertical bar space
space space space space space space space space space space space space space space space equals space open vertical bar table row cell straight n left parenthesis straight a plus straight b plus straight c right parenthesis end cell cell na plus straight a end cell cell nb minus straight b end cell row cell straight n left parenthesis straight a plus straight b plus straight c right parenthesis end cell cell space space straight b plus straight c plus nb end cell cell nb minus straight b end cell row cell straight n left parenthesis straight a plus straight b plus straight c right parenthesis end cell cell na minus straight a end cell cell space space straight c plus straight a plus nb end cell end table close vertical bar space space by space straight C subscript 1 plus straight C subscript 2 plus straight C subscript 3
space space space space space space space space space space space space space space equals space straight n left parenthesis straight a plus straight b plus straight c right parenthesis space space open vertical bar table row 1 cell straight n space straight a minus straight a end cell cell nb minus straight b end cell row 1 cell space space space space straight b plus straight c plus nb end cell cell nb minus straight b end cell row 1 cell na minus straight a end cell cell space space straight c plus straight a plus nb end cell end table close vertical bar space space comma space by space taking space space common space form space straight C subscript 1
space space space space space space space space space space space space space equals space straight n left parenthesis straight a plus straight b plus straight c right parenthesis space space open vertical bar table row 1 cell space space na minus straight a end cell cell nb minus straight b end cell row 0 cell space space space space straight a plus straight b plus straight c end cell 0 row 0 0 cell space straight a plus straight b plus straight c end cell end table close vertical bar space space space space space space comma space by space straight R subscript 2 minus straight R subscript 1 comma straight R subscript 3 minus straight R subscript 1
space space space space space space space space space space space space space equals space straight n left parenthesis straight a plus straight b plus straight c right parenthesis space space open square brackets table row cell 1. left parenthesis straight a plus straight b plus straight c right parenthesis space left parenthesis straight a plus straight b plus straight c right parenthesis end cell end table close square brackets space space open square brackets table row cell product space of space diagonal space element space straight s end cell end table close square brackets
space space space space space space space space space space space space space equals space straight n left parenthesis straight a plus straight b plus straight c right parenthesis cubed
space space
    Question 83
    CBSEENMA12034396

    show space that
open vertical bar table row 1 cell space space space space straight b plus straight c space end cell cell space space space space space straight b squared plus straight c squared end cell row 1 cell space space straight c plus straight a end cell cell space space space straight c squared plus straight a squared end cell row 1 cell space space straight a plus straight b end cell cell space space space space straight a squared plus straight b squared end cell end table close vertical bar

    Solution
    Let space increment space equals space open vertical bar table row 1 cell space space space space straight b plus straight c space end cell cell space space space space space straight b squared plus straight c squared end cell row 1 cell space space straight c plus straight a end cell cell space space space straight c squared plus straight a squared end cell row 1 cell space space straight a plus straight b end cell cell space space space space straight a squared plus straight b squared end cell end table close vertical bar
space space space space space space space space space space space equals space space open vertical bar table row 1 cell space space space space straight b plus straight c space end cell cell space space space space space straight b squared plus straight c squared end cell row 0 cell space space straight a minus straight b end cell cell space space space space space straight a squared space minus straight b squared end cell row 0 cell space space straight a minus straight c end cell cell space space space space space straight a squared minus straight c squared end cell end table close vertical bar space comma space by space straight R subscript 2 space minus straight R subscript 1 space comma space straight R subscript 3 space minus straight R subscript 1
space space space space space space space space space space equals space left parenthesis straight a minus straight b right parenthesis space left parenthesis straight b minus straight c right parenthesis space space space space space open vertical bar table row 1 cell space space space space straight b plus straight c space end cell cell space space space space space straight b squared plus straight c squared end cell row 0 1 cell space space space space space space straight a plus straight b end cell row 0 1 cell space space space space space space straight a plus straight c end cell end table close vertical bar
space space space space space space space space space equals space space left parenthesis straight a minus straight b right parenthesis space left parenthesis straight b minus straight c right parenthesis space space space space open vertical bar table row 1 cell space space space space straight b plus straight c space end cell cell space space space space space straight b squared plus straight c squared end cell row 0 1 cell space space space space space space straight a plus straight b end cell row 0 0 cell space space space space space space space straight c minus straight b end cell end table close vertical bar space comma space by space straight R subscript 3 space minus straight R subscript 2
space space space space space space space space space equals space space left parenthesis straight a minus straight b right parenthesis space left parenthesis straight b minus straight c right parenthesis space open square brackets table row cell left parenthesis 1 right parenthesis left parenthesis 1 right parenthesis space left parenthesis straight c minus straight b right parenthesis end cell end table close square brackets space
space space space space space space space space space space equals space left parenthesis straight a minus straight b right parenthesis space left parenthesis straight b minus straight c right parenthesis left parenthesis straight c minus straight b right parenthesis equals left parenthesis straight a minus straight b right parenthesis left parenthesis straight b minus straight c right parenthesis left parenthesis straight c minus straight a right parenthesis
    Question 84
    CBSEENMA12034397

    prove space that
open vertical bar table row cell 1 plus straight a squared plus straight b squared end cell cell 2 ab end cell cell negative 2 straight b end cell row cell 2 ab end cell cell 1 minus straight a squared space plus straight b squared end cell cell 2 straight a end cell row cell 2 straight b end cell cell negative 2 straight a end cell cell 1 minus straight a squared minus straight b squared end cell end table close vertical bar space equals left parenthesis 1 plus straight a squared space plus straight b squared right parenthesis cubed

    Solution
    Let space space increment space equals space open vertical bar table row cell 1 plus straight a squared plus straight b squared end cell cell 2 ab end cell cell negative 2 straight b end cell row cell 2 ab end cell cell 1 minus straight a squared space plus straight b squared end cell cell 2 straight a end cell row cell 2 straight b end cell cell negative 2 straight a end cell cell 1 minus straight a squared minus straight b squared end cell end table close vertical bar space
space space space space space space space space space space space space space equals space open vertical bar table row cell 1 plus straight a squared plus straight b squared end cell cell 2 ab end cell cell negative 2 straight b end cell row 0 cell 1 minus straight a squared space plus straight b squared end cell cell 2 straight a end cell row cell straight b space left parenthesis 1 plus straight a squared space plus straight b squared right parenthesis space end cell cell negative straight a left parenthesis 1 plus straight a squared space plus straight b squared right parenthesis end cell cell 1 minus straight a squared minus straight b squared end cell end table close vertical bar space by space straight C subscript 1 space minus straight b space straight C subscript 3 space comma space straight C subscript 2 space plus straight a space straight C subscript 3
space space space space space space space space space space space space equals space left parenthesis 1 plus straight a squared space plus straight b squared right parenthesis space squared space space space open vertical bar table row 1 cell space space space space space space space space 0 end cell cell negative 2 straight b end cell row 0 cell space space space space space space space 1 end cell cell 2 straight a end cell row cell straight b space end cell cell space space space space minus straight a end cell cell space space space space space 1 minus straight a squared minus straight b squared end cell end table close vertical bar space by space taking space 1 plus straight a squared space plus straight b squared space common space from space straight C subscript 1 space as space well space as space space straight C subscript 2
space space space space space space space space space space space space equals space left parenthesis 1 plus straight a squared space plus straight b squared right parenthesis space squared space space space open vertical bar table row 1 cell space space space space space space space space 0 end cell cell negative 2 straight b end cell row 0 cell space space space space space space space 1 end cell cell 2 straight a end cell row cell straight b space end cell cell space space space space minus straight a end cell cell space space space space space 1 minus straight a squared minus straight b squared end cell end table close vertical bar space comma space by space space straight C subscript 3 space plus 2 straight b. straight C subscript 1
space space space space space space space space space space space equals space left parenthesis 1 plus straight a squared space plus straight b squared right parenthesis space squared space space space open vertical bar table row 1 cell 2 straight a end cell row cell negative straight a end cell cell space space space space space 1 minus straight a squared plus straight b squared end cell end table close vertical bar space comma space expanding space by space space straight R subscript 1
space space space space space space space space space space space equals space left parenthesis 1 plus straight a squared space plus straight b squared right parenthesis space squared space space open square brackets table row cell 1 minus straight a squared plus straight b squared end cell end table plus 2 straight a squared close square brackets space equals space left parenthesis 1 plus straight a squared space plus straight b squared right parenthesis space squared space space left parenthesis 1 plus straight a squared space plus straight b squared right parenthesis space squared space
space space space space space space space space space space space equals space space left parenthesis 1 plus straight a squared space plus straight b squared right parenthesis space cubed space space

space space space space space space space space space space space space space space
    Question 85
    CBSEENMA12034398

    By space using space properties space of space determinants comma space show space that
open vertical bar table row cell straight x plus 4 end cell cell 2 space straight x end cell cell 2 space straight x end cell row cell 2 space straight x end cell cell space space straight x plus 4 end cell cell 2 space straight x end cell row cell 2 space straight x end cell cell 2 space straight x end cell cell space space straight x plus 4 end cell end table close vertical bar space equals space left parenthesis 5 space straight x plus 4 right parenthesis space left parenthesis 4 minus straight x right parenthesis squared

    Solution
    straight L. straight H. straight S space equals open vertical bar table row cell straight x plus 4 end cell cell 2 space straight x end cell cell 2 space straight x end cell row cell 2 space straight x end cell cell space space straight x plus 4 end cell cell 2 space straight x end cell row cell 2 space straight x end cell cell 2 space straight x end cell cell space space straight x plus 4 end cell end table close vertical bar space
space space space space space space space space space space space equals space space open vertical bar table row cell 5 straight x plus 4 end cell cell space space 2 space straight x end cell cell 2 space straight x end cell row cell 5 straight x plus 4 end cell cell space space space straight x plus 4 end cell cell 2 space straight x end cell row cell 5 straight x plus 4 end cell cell 2 space straight x end cell cell space space straight x plus 4 end cell end table close vertical bar space comma space by space straight C subscript 1 plus straight C subscript 2 plus straight C subscript 3
space space space space space space space space space space space equals space space space left parenthesis 5 straight x plus 4 right parenthesis space space open vertical bar table row 1 cell 2 space straight x end cell cell 2 space straight x end cell row 1 cell space space space straight x plus 4 end cell cell 2 space straight x end cell row 1 cell 2 space straight x end cell cell space space straight x plus 4 end cell end table close vertical bar space
space space space space space space space space space space space equals space space space left parenthesis 5 straight x plus 4 right parenthesis space space open vertical bar table row 1 cell 2 space straight x end cell cell 2 space straight x end cell row 1 cell space space space straight x plus 4 end cell cell 2 space straight x end cell row 1 cell 2 space straight x end cell cell space space straight x plus 4 end cell end table close vertical bar space by space straight R subscript 2 minus straight R subscript 1 space comma space straight R subscript 3 minus straight R subscript 1
space space space space space space space space space space space equals space space space left parenthesis 5 straight x plus 4 right parenthesis space space open curly brackets left parenthesis 1 right parenthesis left parenthesis 4 minus straight x right parenthesis left parenthesis 4 minus straight x right parenthesis close curly brackets
space space space space space space space space space space space equals space space space left parenthesis 5 straight x plus 4 right parenthesis space space left parenthesis 4 minus straight x right parenthesis squared
    Question 86
    CBSEENMA12034399

    space By space using space properties space of space determinants comma space show space that space
space space space space space space space open vertical bar table row cell straight y plus straight k end cell straight y straight y row straight y cell space space space straight y plus straight k end cell straight y row straight y straight y cell space space straight y plus straight k end cell end table close vertical bar space equals straight k squared space left parenthesis 3 straight y plus straight k right parenthesis

    Solution
    straight L. straight H. straight S space space equals space space space open vertical bar table row cell straight y plus straight k end cell straight y straight y row straight y cell space space space straight y plus straight k end cell straight y row straight y straight y cell space space straight y plus straight k end cell end table close vertical bar space space
space space space space space space space space space space space space space equals space open vertical bar table row cell 3 straight y plus straight k end cell straight y straight y row cell 3 straight y plus straight k end cell cell space space space straight y plus straight k end cell straight y row cell 3 straight y plus straight k end cell straight y cell space space straight y plus straight k end cell end table close vertical bar space comma space by space straight C subscript 1 space rightwards arrow space straight C subscript 1 space plus straight C subscript 2 space end subscript plus straight C subscript 3
space space space space space space space space space space space space space equals space left parenthesis 3 straight y plus straight k right parenthesis space space space space open vertical bar table row 1 straight y straight y row 1 cell space space space space straight y plus straight k end cell straight y row 1 1 cell space space straight y plus straight k end cell end table close vertical bar space
space space space space space space space space space space space space equals space left parenthesis 3 straight y plus straight k right parenthesis space space open vertical bar table row 1 cell space space space straight y end cell cell space space straight y end cell row 0 cell space straight k end cell cell space space 0 end cell row 0 cell space 0 end cell cell space space straight k end cell end table close vertical bar space comma space by space straight R subscript 2 space rightwards arrow straight R subscript 2 space rightwards arrow straight R subscript 1 plus straight R subscript 3 space rightwards arrow space straight R subscript 3 space minus straight R subscript 1
space space space space space space space space space space space equals space space left parenthesis 3 straight y plus straight k right parenthesis space open square brackets table row cell left parenthesis 1 right parenthesis left parenthesis straight k right parenthesis left parenthesis straight k right parenthesis end cell end table close square brackets
space space space space space space space space space space space equals space straight k squared space left parenthesis 3 straight y plus straight k right parenthesis
    Question 87
    CBSEENMA12034400
    Question 88
    CBSEENMA12034401

    show space that
space open vertical bar table row cell negative straight a left parenthesis straight b squared plus straight c squared minus straight a squared right parenthesis end cell cell 2 straight b cubed end cell cell 2 straight c cubed end cell row cell 2 straight a cubed end cell cell space space space minus straight b left parenthesis straight c squared plus straight a squared plus straight b squared right parenthesis end cell cell 2 straight c cubed end cell row cell 2 straight a cubed end cell cell 2 straight b cubed end cell cell space space space minus straight c left parenthesis straight a squared plus straight b squared space minus straight c squared right parenthesis end cell end table close vertical bar space equals abc space left parenthesis straight a squared plus straight b squared plus straight c squared right parenthesis

    Solution
    Let space space increment space space equals space space open vertical bar table row cell negative straight a left parenthesis straight b squared plus straight c squared minus straight a squared right parenthesis end cell cell 2 straight b cubed end cell cell 2 straight c cubed end cell row cell 2 straight a cubed end cell cell space space space minus straight b left parenthesis straight c squared plus straight a squared plus straight b squared right parenthesis end cell cell 2 straight c cubed end cell row cell 2 straight a cubed end cell cell 2 straight b cubed end cell cell space space space minus straight c left parenthesis straight a squared plus straight b squared space minus straight c squared right parenthesis end cell end table close vertical bar
space space space space space space space space space space space space space equals space abc space space space space space open vertical bar table row cell negative straight b squared minus straight c squared plus straight a end cell cell 2 straight b squared end cell cell 2 straight c squared end cell row cell 2 straight a squared end cell cell space space space space minus straight c squared minus straight a squared plus straight b squared end cell cell 2 straight c squared end cell row cell 2 straight a squared end cell cell 2 straight b squared end cell cell space space space space space space space space space space space minus straight a squared minus straight b squared plus straight c squared end cell end table close vertical bar space comma space by space taking space straight a comma straight b comma straight c space common space from space straight C subscript 1 comma end subscript straight C subscript 2 comma straight C subscript 3
space space space space space space space space space space space space equals space abc space space space space space space open vertical bar table row cell straight a squared plus straight b squared plus straight c squared end cell cell 2 straight b squared end cell cell 2 straight c squared end cell row cell straight a squared plus straight b squared plus straight c squared end cell cell space space space space space space space space space space minus straight c squared minus straight a squared plus straight b squared end cell cell 2 straight c squared end cell row cell straight a squared plus straight b squared plus straight c squared end cell cell 2 straight b squared end cell cell space space space space space space minus straight a squared minus straight b squared plus straight c squared end cell end table close vertical bar space space comma space by space straight C subscript 1 plus straight C subscript 2 plus straight C subscript 3
space space space space space space space space space space space space equals space abc space left parenthesis straight a squared space plus straight b squared space plus straight c squared space right parenthesis space open vertical bar table row 1 cell 2 straight b squared end cell cell 2 straight c squared end cell row 1 cell negative straight c squared minus straight a squared plus straight b squared end cell cell 2 straight c squared end cell row 1 cell 2 straight b squared end cell cell left parenthesis negative straight a squared minus straight b squared plus straight c 2 right parenthesis end cell end table close vertical bar space
space space space space space space space space space space space equals space abc space left parenthesis straight a squared space plus straight b squared space plus straight c squared space right parenthesis space space open square brackets table row cell 1 space open curly brackets negative straight a left parenthesis straight a squared plus straight b squared plus straight c squared close curly brackets. open curly brackets negative left parenthesis straight a squared plus straight b squared plus straight c squared close curly brackets end cell end table close square brackets
space space space space space space space space space space space equals space abc space left parenthesis straight a squared space plus straight b squared space plus straight c squared space right parenthesis cubed space
    Question 89
    CBSEENMA12034402

    prove space that
space open vertical bar table row straight a straight b cell space space space space space ax plus by end cell row straight b straight c cell space space space space space bx plus cy end cell row cell ax plus by space end cell cell space space bx plus cy end cell 0 end table close vertical bar space equals left parenthesis straight b squared minus ac right parenthesis left parenthesis ax squared plus 2 space straight b space straight x space straight y space plus straight c space straight y cubed right parenthesis

    Solution
    Let space space increment space equals space open vertical bar table row straight a straight b cell space space space space space ax plus by end cell row straight b straight c cell space space space space space bx plus cy end cell row cell ax plus by space end cell cell space space bx plus cy end cell 0 end table close vertical bar space
space space space space space space space space space space space space equals space begin inline style 1 over xy end style space space space open vertical bar table row straight a straight b cell space space space space space ax plus by end cell row straight b straight c cell space space space space space bx plus cy end cell row cell ax plus by space end cell cell space space bx plus cy end cell 0 end table close vertical bar space space Multiplying space straight C subscript 1 space end subscript by space straight x. straight C subscript 2 space by space straight y
space space space space space space space space space space space space equals space begin inline style 1 over xy end style space space space open vertical bar table row straight a straight b cell space space space space space ax plus by end cell row straight b straight c cell space space space space space bx plus cy end cell row cell ax plus by space end cell cell space space bx plus cy end cell 0 end table close vertical bar space by space straight C subscript 1 space end subscript plus. straight C subscript 2 minus straight C subscript 3
space space space space space space space space space space space space equals space begin inline style 1 over xy space space left parenthesis straight a space straight x end style squared space plus 2 space straight b space straight x space straight y space plus straight c space straight y squared right parenthesis space open vertical bar table row cell straight b space straight y end cell cell straight a space straight x plus straight b space straight y end cell row cell straight c space straight y end cell cell straight b space straight x plus straight c space straight y end cell end table close vertical bar space comma space expanding space by space first space column
space space space space space space space space space space space space equals space begin inline style fraction numerator straight a space straight x squared plus 2 space straight b space straight x space straight y plus straight c space straight y squared over denominator straight x space straight y end fraction end style open square brackets table row cell by space left parenthesis straight b space straight x plus straight c space straight y right parenthesis minus cy left parenthesis straight a space straight x plus straight b space straight y right parenthesis end cell end table close square brackets
space space space space space space space space space space space space equals space begin inline style fraction numerator straight a space straight x squared plus 2 space straight b space straight x space straight y plus straight c space straight y squared over denominator straight x space straight y end fraction space open square brackets table row cell straight b squared end cell end table space straight x space straight y space plus straight b space straight c space straight y squared space minus straight c space straight a space straight x space straight y space minus straight b space straight c space straight y squared close square brackets end style
space space space space space space space space space space space space equals space begin inline style fraction numerator straight a space straight x squared plus 2 space straight b space straight x space straight y plus straight c space straight y squared over denominator straight x space straight y end fraction space space open square brackets table row cell straight b squared end cell end table xy minus space straight c space straight a space straight x space straight y close square brackets space equals space fraction numerator straight a space straight x squared space plus 2 space straight b space straight x space straight y plus straight c space straight y squared over denominator straight x space straight y end fraction space space open square brackets table row cell left parenthesis straight b squared minus ca right parenthesis space straight x space straight y end cell end table close square brackets space end style
space space space space space space space space space space space space equals space space space left parenthesis straight b squared space minus ca right parenthesis space right parenthesis left parenthesis straight a space straight x squared space plus 2 space straight b space straight x space straight y plus straight c space straight y squared space right parenthesis
space space space space space space space space space space space space space space space space space
    Question 90
    CBSEENMA12034403

    prove space that space space increment space equals space open vertical bar table row cell straight a plus straight b space straight x end cell cell straight c plus straight d space straight x end cell cell space space space straight p plus straight q space straight x end cell row cell straight a space straight x plus straight b end cell cell straight c space straight x plus straight d end cell cell space space straight p space straight x plus straight q end cell row straight upsilon straight nu straight omega end table close vertical bar space equals space left parenthesis 1 minus straight x squared right parenthesis space space open vertical bar table row straight a cell space straight c end cell cell space space straight p end cell row straight b cell space space space straight d space space end cell cell space straight q end cell row straight u cell space straight v end cell cell space space straight w end cell end table close vertical bar

    Solution
    space increment space equals space open vertical bar table row cell straight a plus straight b space straight x end cell cell straight c plus straight d space straight x end cell cell space space space straight p plus straight q space straight x end cell row cell straight a space straight x plus straight b end cell cell straight c space straight x plus straight d end cell cell space space straight p space straight x plus straight q end cell row straight upsilon straight nu straight omega end table close vertical bar
space space space space space equals space open vertical bar table row cell straight a left parenthesis 1 minus straight x squared right parenthesis end cell cell space space straight c left parenthesis 1 minus straight x squared right parenthesis end cell cell space space space straight p left parenthesis 1 minus straight x squared right parenthesis end cell row cell straight a space straight x plus straight b end cell cell straight c space straight x space plus straight d end cell cell straight p space straight x plus straight q end cell row straight u straight v straight w end table close vertical bar space space by space straight R subscript 1 rightwards arrow straight R subscript 2 minus space straight x space straight R subscript 2
space space space space equals space left parenthesis 1 minus straight x squared right parenthesis space space open vertical bar table row cell straight a plus straight b space straight x end cell cell straight c plus straight d space straight x end cell cell space space space straight p plus straight q space straight w end cell row cell straight a space straight x plus straight b end cell cell straight c space straight x plus straight d end cell cell space space straight p space straight x plus straight q end cell row straight upsilon straight nu straight omega end table close vertical bar space
space space space space equals space left parenthesis 1 minus straight x squared right parenthesis space space open vertical bar table row straight a cell space space straight c end cell cell space space space straight p end cell row straight b cell space space straight d end cell cell space space straight q end cell row straight upsilon cell space space straight nu end cell cell space straight omega end cell end table close vertical bar space comma space by space straight R subscript 2 rightwards arrow space straight R subscript 2 space minus space straight x space straight R subscript 1
    Question 91
    CBSEENMA12034404

    Prove that:
    open vertical bar table row cell straight a squared end cell bc cell ac plus straight c squared end cell row cell straight a squared plus ab end cell cell straight b squared end cell ac row ab cell straight b squared plus bc end cell cell straight c squared end cell end table close vertical bar space equals space 4 straight a squared straight b squared straight c squared.

    Solution

    Let increment space equals space open vertical bar table row cell straight a squared end cell bc cell ac plus straight c squared end cell row cell straight a squared plus ab end cell cell straight b squared end cell ac row ab cell straight b squared plus bc end cell cell straight c squared end cell end table close vertical bar
    equals space abc open vertical bar table row straight a straight c cell straight a plus straight c end cell row cell straight a plus straight b end cell straight b straight a row straight b cell space space straight b plus straight c end cell straight c end table close vertical bar
equals space abc open vertical bar table row straight a cell space straight c end cell cell space space straight a plus straight c end cell row 0 cell space minus 2 straight c end cell cell space minus 2 straight c end cell row straight b cell space straight b plus straight c end cell cell space space space space straight c end cell end table close vertical bar comma space space space by space straight R subscript 2 space minus space straight R subscript 1 space minus space straight R subscript 3
space equals space minus 2 abc squared space open vertical bar table row straight a straight c cell straight a plus straight c end cell row 0 1 cell space 1 end cell row cell straight b space end cell cell space straight b plus straight c end cell cell space straight c end cell end table close vertical bar
equals space minus 2 abc squared space open vertical bar table row straight a cell space space minus straight a end cell cell space space straight a plus straight c end cell row 0 cell space space space space 0 end cell cell space 1 end cell row straight b cell space space space space straight b end cell cell space space straight c end cell end table close vertical bar comma space by space straight C subscript 2 space minus straight C subscript 3
equals negative 2 abc squared space open vertical bar table row straight a cell negative straight a end cell row straight b cell space space space space straight b end cell end table close vertical bar comma space expanding space with space straight R subscript 2
space equals space 2 abc squared left parenthesis ab plus ab right parenthesis space equals space 2 abc squared left parenthesis 2 space straight a space straight b right parenthesis space equals space 4 space straight a squared space straight b squared space straight c squared.

    Question 92
    CBSEENMA12034405

    Prove that:
    open vertical bar table row straight a cell space space space straight b minus straight c end cell cell space space space straight c minus straight b end cell row cell straight a minus straight c end cell straight b cell space space space space straight c minus straight a end cell row cell straight a minus straight b end cell cell space space space straight b minus straight a end cell cell space space space straight c end cell end table close vertical bar space equals space left parenthesis straight a plus straight b minus straight c right parenthesis thin space left parenthesis straight b plus straight c minus straight a right parenthesis thin space left parenthesis straight c plus straight a minus straight b right parenthesis

    Solution

    Let increment space equals space open vertical bar table row straight a cell space space space straight b minus straight c end cell cell space space space straight c minus straight b end cell row cell straight a minus straight c end cell straight b cell space space space space straight c minus straight a end cell row cell straight a minus straight b end cell cell space space space straight b minus straight a end cell cell space space space straight c end cell end table close vertical bar space
              equals space open vertical bar table row cell straight a plus straight b minus straight c end cell cell space space straight b minus straight c end cell 0 row cell straight a plus straight b minus straight c end cell straight b cell space space space straight b plus straight c minus straight a end cell row 0 cell space straight b minus straight a end cell cell space straight b plus straight c minus straight a end cell end table close vertical bar comma space by space straight C subscript 1 plus straight C subscript 2 plus straight C subscript 3 plus straight C subscript 2
space equals space left parenthesis straight a plus straight b minus straight c right parenthesis thin space left parenthesis straight b plus straight c minus straight a right parenthesis thin space open vertical bar table row 1 cell space space space space space straight b minus straight c end cell cell space space 0 end cell row 1 cell space straight b end cell cell space space 1 end cell row 0 cell space space space straight b minus straight a end cell cell space space 1 end cell end table close vertical bar
space equals space left parenthesis straight a plus straight b minus straight c right parenthesis thin space left parenthesis straight b plus straight c minus straight a right parenthesis space open vertical bar table row 1 cell space space space straight b minus straight c end cell cell space 0 end cell row 0 straight c cell space 1 end cell row 0 cell space straight b minus straight a end cell cell space 1 end cell end table close vertical bar comma space space space by space straight R subscript 2 space minus straight R subscript 1
equals space left parenthesis straight a plus straight b minus straight c right parenthesis thin space left parenthesis straight b plus straight c minus straight a right parenthesis thin space open vertical bar table row straight c cell space 1 end cell row cell straight b minus straight a end cell cell space 1 end cell end table close vertical bar
equals space left parenthesis straight a plus straight b minus straight c right parenthesis thin space left parenthesis straight b plus straight c minus straight a right parenthesis thin space left parenthesis straight c minus straight b plus straight a right parenthesis space equals space left parenthesis straight a plus straight b minus straight c right parenthesis thin space left parenthesis straight b plus straight c minus straight a right parenthesis thin space left parenthesis straight c plus straight a minus straight b right parenthesis
therefore space space space space open vertical bar table row straight a cell space space straight b minus straight c end cell cell straight c minus straight b end cell row cell straight a minus straight c end cell straight b cell straight c minus straight a end cell row cell straight a minus straight b end cell cell straight b minus straight a end cell straight c end table close vertical bar space equals space left parenthesis straight a plus straight b minus straight c right parenthesis thin space left parenthesis straight b plus straight c minus straight a right parenthesis thin space left parenthesis straight c plus straight a minus straight b right parenthesis

    Question 93
    CBSEENMA12034406

    Using properties of determinats, prove the following:
    open vertical bar table row straight a cell space straight b end cell cell space space straight c end cell row cell straight a minus straight b end cell cell space space space straight b minus straight c end cell cell space space space straight c minus straight a end cell row cell straight b plus straight c end cell cell space space straight c plus straight a end cell cell space space space straight a plus straight b end cell end table close vertical bar space equals space straight a cubed plus straight b cubed plus straight c cubed minus 3 abc.

    Solution

    L.H.S. = open vertical bar table row straight a cell space straight b end cell cell space space straight c end cell row cell straight a minus straight b end cell cell space space space straight b minus straight c end cell cell space space space straight c minus straight a end cell row cell straight b plus straight c end cell cell space space straight c plus straight a end cell cell space space space straight a plus straight b end cell end table close vertical bar space equals space open vertical bar table row cell straight a plus straight b plus straight c end cell cell space space space space straight a plus straight b plus straight c end cell cell space space straight a plus straight b plus straight c end cell row cell straight a minus straight b end cell cell straight b minus straight c end cell cell space straight c minus straight a end cell row cell straight b plus straight c end cell cell straight c plus straight a end cell cell straight a plus straight b end cell end table close vertical bar comma space by space straight R subscript 1 plus straight R subscript 3
            equals space left parenthesis straight a plus straight b plus straight c right parenthesis space open vertical bar table row 1 1 1 row cell straight a minus straight b end cell cell space straight b minus straight c end cell cell space straight c minus straight a end cell row cell straight b plus straight c end cell cell space straight c plus straight a end cell cell space space straight a plus straight b end cell end table close vertical bar
equals space left parenthesis straight a plus straight b plus straight c right parenthesis space open vertical bar table row 1 cell space space space space space 0 end cell 0 row cell straight a minus straight b end cell cell space space space space space space 2 straight b minus straight c minus straight a end cell cell space space space straight b plus straight c minus 2 straight a end cell row cell straight b plus straight c end cell cell space space space straight a minus straight b end cell cell space space straight a minus straight c end cell end table close vertical bar comma space by space straight C subscript 2 space minus space straight C subscript 1 comma space space straight C subscript 3 space minus space straight C subscript 1
equals space left parenthesis straight a plus straight b plus straight c right parenthesis space open vertical bar table row cell 2 straight b minus straight c minus straight a end cell cell space space space space space space straight b plus straight c minus 2 straight a end cell row cell straight a minus straight b end cell cell space space space space straight a minus straight c end cell end table close vertical bar
equals space left parenthesis straight a plus straight b plus straight c right parenthesis space open vertical bar table row cell straight b minus straight c end cell cell space space space straight b minus straight a end cell row cell straight a minus straight b end cell cell space space space straight a minus straight c end cell end table close vertical bar comma space by space straight R subscript 1 plus straight R subscript 2
equals left parenthesis straight a plus straight b plus straight c right parenthesis space open square brackets left parenthesis straight b minus straight c right parenthesis thin space left parenthesis straight a minus straight c right parenthesis space minus space left parenthesis straight a minus straight b right parenthesis thin space left parenthesis straight b minus straight a right parenthesis close square brackets
space equals left parenthesis straight a plus straight b plus straight c right parenthesis space open square brackets straight a space straight b space minus straight b space straight c minus straight c space straight a space plus space straight c squared plus straight a squared plus straight b squared minus 2 ab close square brackets
equals space left parenthesis straight a plus straight b plus straight c right parenthesis space left parenthesis straight a squared plus straight b squared plus straight c squared minus ab minus bc minus ca right parenthesis space equals space straight a cubed plus straight b cubed plus straight c cubed minus 3 abc
equals space straight R. straight H. straight S.

    Question 94
    CBSEENMA12034407

    Prove that
    open vertical bar table row cell 1 plus straight a end cell 1 1 row 1 cell 1 plus straight b end cell 1 row 1 1 cell 1 plus straight c end cell end table close vertical bar space equals space straight a space straight b space straight c space open parentheses 1 plus 1 over straight a plus 1 over straight b plus 1 over straight c close parentheses space space or space space straight a space straight b plus straight b space straight c plus straight c space straight a plus straight a space straight b space straight c

    Solution

    Let increment space equals space open vertical bar table row cell 1 plus straight a end cell 1 1 row 1 cell 1 plus straight b end cell 1 row 1 1 cell 1 plus straight c end cell end table close vertical bar
    equals space abc space open vertical bar table row cell 1 over straight a plus 1 end cell cell 1 over straight a end cell cell 1 over straight a end cell row cell 1 over straight b end cell cell 1 over straight b plus 1 end cell cell 1 over straight b end cell row cell 1 over straight c end cell cell 1 over straight c end cell cell space space 1 over straight c plus 1 end cell end table close vertical bar
                               by taking a, b, c common from straight R subscript 1 comma space straight R subscript 2 comma space straight R subscript 3 respectively
    equals space abc space open vertical bar table row cell 1 plus 1 over straight a plus 1 over straight b plus 1 over straight c end cell cell space space space space space 1 plus 1 over straight a plus 1 over straight b plus 1 over straight c end cell cell space space space space space 1 plus 1 over straight a plus 1 over straight b plus 1 over straight c end cell row cell 1 over straight b end cell cell 1 over straight b plus 1 end cell cell 1 over straight b end cell row cell 1 over straight c end cell cell 1 over straight c end cell cell space space space space 1 over straight c plus 1 end cell end table close vertical bar

                                                                         by straight R subscript 1 plus straight R subscript 2 plus straight R subscript 3
    equals space abc space open parentheses 1 plus 1 over straight a plus 1 over straight b plus 1 over straight c close parentheses space open vertical bar table row 1 1 1 row cell 1 over straight b end cell cell space space space 1 over straight b plus 1 end cell cell 1 over straight b end cell row cell 1 over straight c end cell cell 1 over straight c end cell cell space 1 over straight c plus 1 end cell end table close vertical bar
equals space abc open parentheses 1 plus 1 over straight a plus 1 over straight b plus 1 over straight c close parentheses space open vertical bar table row 1 cell space space 0 end cell cell space space space 0 end cell row cell 1 over straight b end cell cell space 1 end cell cell space space space 0 end cell row cell 1 over straight c end cell 0 cell space space space 1 end cell end table close vertical bar comma space by space straight C subscript 2 space minus space straight C subscript 1 comma space space straight C subscript 3 minus straight C subscript 1
equals space abc open parentheses 1 plus 1 over straight a plus 1 over straight b plus 1 over straight c close parentheses space left square bracket 1. space 1. space 1 space right square bracket space space space space space space space space left square bracket Product space of space diagonal space elements right square bracket
equals space abc space open parentheses 1 plus 1 over straight a plus 1 over straight b plus 1 over straight c close parentheses.

    Question 95
    CBSEENMA12034408

    Show that:
    increment space equals space open vertical bar table row cell left parenthesis straight y plus straight z right parenthesis squared end cell cell straight x space straight y end cell cell straight z space straight x end cell row cell straight x space straight y end cell cell left parenthesis straight x plus straight z right parenthesis squared end cell cell straight y space straight z end cell row cell straight x space straight z end cell cell straight y space straight z end cell cell left parenthesis straight x plus straight y right parenthesis squared end cell end table close vertical bar space equals space 2 xyz space left parenthesis straight x plus straight y plus straight z right parenthesis squared

    Solution
    increment space equals space open vertical bar table row cell left parenthesis straight y plus straight z right parenthesis squared end cell cell straight x space straight y end cell cell straight z space straight x end cell row cell straight x space straight y end cell cell left parenthesis straight x plus straight z right parenthesis squared end cell cell straight y space straight z end cell row cell straight x space straight z end cell cell straight y space straight z end cell cell left parenthesis straight x plus straight y right parenthesis squared end cell end table close vertical bar
    Applying straight R subscript 1 space rightwards arrow space xR subscript 1 comma space straight R subscript 2 rightwards arrow straight y space straight R subscript 2 comma space straight R subscript 3 space rightwards arrow space zR subscript 3 to increment and dividing by x y z , we get
                               increment space equals space 1 over xyz open vertical bar table row cell straight x left parenthesis straight y plus straight z right parenthesis squared end cell cell straight x squared straight y end cell cell straight x squared straight z end cell row cell straight x space straight y end cell cell straight y left parenthesis straight x plus straight z right parenthesis squared end cell cell straight y squared straight z end cell row cell straight x space straight z squared end cell cell straight y space straight z squared end cell cell straight z left parenthesis straight x plus straight y right parenthesis squared end cell end table close vertical bar
    Taking common factors, x y, z, from straight C subscript 1 comma space straight C subscript 2 space and space straight C subscript 3 comma space respectively, we get
    increment space equals space xyz over xyz space open vertical bar table row cell left parenthesis straight y plus straight z right parenthesis squared end cell cell straight x squared end cell cell straight x squared end cell row cell straight y squared end cell cell left parenthesis straight x plus straight z right parenthesis squared end cell cell straight y squared end cell row cell straight z squared end cell cell straight z squared end cell cell left parenthesis straight x plus straight y right parenthesis squared end cell end table close vertical bar
    Again straight C subscript 2 space rightwards arrow space straight C subscript 2 space minus space straight C subscript 1 comma space space straight C subscript 3 space minus space straight C subscript 1 comma we get
                             increment space equals space open vertical bar table row cell left parenthesis straight y plus straight z right parenthesis squared space space space space end cell cell straight x squared minus left parenthesis straight y plus straight z right parenthesis squared end cell cell space space space space space straight x squared minus left parenthesis straight y plus straight z right parenthesis squared end cell row cell straight y squared end cell cell left parenthesis straight x plus straight z right parenthesis squared minus straight y squared end cell 0 row cell straight z squared end cell 0 cell left parenthesis straight x plus straight y right parenthesis squared minus straight z squared end cell end table close vertical bar
    Taking common factor (x + y + z) from straight C subscript 2 space and space straight C subscript 3, we have
                          increment space equals space left parenthesis straight x plus straight y plus straight z right parenthesis squared space open vertical bar table row cell left parenthesis straight y plus straight z right parenthesis squared end cell cell space space space straight x minus left parenthesis straight y plus straight z right parenthesis end cell cell space space space space straight x minus left parenthesis straight y plus straight z right parenthesis end cell row cell straight y squared end cell cell space left parenthesis straight x plus straight z right parenthesis minus straight y end cell cell space space 0 end cell row cell straight z squared end cell cell space 0 end cell cell space space space space left parenthesis straight x plus straight y right parenthesis minus straight z end cell end table close vertical bar
    Applying straight R subscript 1 space rightwards arrow space straight R subscript 1 space minus space left parenthesis straight R subscript 2 space plus space straight R subscript 3 right parenthesis comma space we space have
                       increment space equals space left parenthesis straight x plus straight y plus straight z right parenthesis squared space open vertical bar table row cell 2 space straight y space straight z end cell cell negative 2 space straight z end cell cell negative 2 straight y end cell row cell straight y squared end cell cell straight x minus straight y plus straight z end cell 0 row cell straight z squared end cell 0 cell straight x plus straight y minus straight z end cell end table close vertical bar
    Applying straight C subscript 2 space rightwards arrow space open parentheses straight C subscript 2 plus 1 over straight y straight C subscript 1 close parentheses space and space straight C subscript 3 space rightwards arrow space open parentheses straight C subscript 3 plus 1 over straight z straight C subscript 1 close parentheses comma we get
                       increment space equals space left parenthesis straight x plus straight y plus straight z right parenthesis squared space open vertical bar table row cell 2 yz end cell 0 0 row cell straight y squared end cell cell straight x plus straight z end cell cell straight y squared over straight z end cell row cell straight z squared end cell cell straight z squared over straight y end cell cell straight x plus straight y end cell end table close vertical bar
    increment space equals space left parenthesis straight x plus straight y plus straight z right parenthesis squared space left parenthesis 2 yz right parenthesis thin space left square bracket left parenthesis straight x plus straight z right parenthesis thin space left parenthesis straight x plus straight y right parenthesis space minus space yz right square bracket
                                                                                   [Expanding by first row]
           equals space left parenthesis straight x plus straight y plus straight z right parenthesis squared space left parenthesis 2 space space straight y space straight z right parenthesis thin space left parenthesis straight x squared plus straight x space straight y plus straight x space straight z right parenthesis
equals space left parenthesis straight x plus straight y plus straight z right parenthesis cubed space left parenthesis 2 space straight x space straight y space straight z right parenthesis
equals space 2 space straight x space straight y space straight z space left parenthesis straight x plus straight y plus straight z right parenthesis cubed

                          
    Question 96
    CBSEENMA12034409
    Question 97
    CBSEENMA12034410

    Using properties of determinants, prove that
    open vertical bar table row cell straight b plus straight c end cell cell space straight c plus straight a end cell cell space straight a plus straight b end cell row cell straight c plus straight a end cell cell space straight a plus straight b end cell cell space straight b plus straight c end cell row cell straight a plus straight b end cell cell space straight b plus straight c end cell cell space straight c plus straight a end cell end table close vertical bar space equals space 2 left parenthesis straight a plus straight b plus straight c right parenthesis thin space left parenthesis ab plus bc plus ca minus straight a squared minus straight b squared minus straight c squared right parenthesis

    Solution

    L.H.S. = open vertical bar table row cell straight b plus straight c end cell cell straight c plus straight a end cell cell straight a plus straight b end cell row cell straight c plus straight a end cell cell straight a plus straight b end cell cell straight b plus straight c end cell row cell straight a plus straight b end cell cell straight b plus straight c end cell cell straight c plus straight a end cell end table close vertical bar space equals space open vertical bar table row cell 2 left parenthesis straight a plus straight b plus straight c right parenthesis end cell cell straight c plus straight a end cell cell straight a plus straight b end cell row cell 2 left parenthesis straight a plus straight b plus straight c right parenthesis end cell cell straight a plus straight b end cell cell straight b plus straight c end cell row cell 2 left parenthesis straight a plus straight b plus straight c right parenthesis end cell cell straight b plus straight c end cell cell straight c plus straight a end cell end table close vertical bar comma space space by space straight C subscript 1 plus straight C subscript 2 plus straight C subscript 3
    equals space 2 left parenthesis straight a plus straight b plus straight c right parenthesis space open vertical bar table row 1 cell straight c plus straight a end cell cell space straight a plus straight b end cell row 1 cell straight a plus straight b end cell cell space straight b plus straight c end cell row 1 cell straight b plus straight c end cell cell space straight c plus straight a end cell end table close vertical bar
space equals space 2 left parenthesis straight a plus straight b plus straight c right parenthesis thin space open vertical bar table row 1 cell space straight c plus straight a end cell cell space straight a plus straight b end cell row 0 cell space straight b minus straight c end cell cell space straight c minus straight a end cell row 0 cell space straight b minus straight a end cell cell space straight c minus straight b end cell end table close vertical bar comma space space space by space straight R subscript 2 space minus straight R subscript 1 comma space space straight R subscript 3 minus straight R subscript 1
equals space 2 left parenthesis straight a plus straight b plus straight c right parenthesis space open vertical bar table row cell straight b minus straight c end cell cell space space straight c minus straight a end cell row cell straight b minus straight a end cell cell space space straight c minus straight b end cell end table close vertical bar
equals space 2 left parenthesis straight a plus straight b plus straight c right parenthesis thin space left square bracket left parenthesis straight b minus straight c right parenthesis thin space left parenthesis straight c minus straight b right parenthesis space minus left parenthesis straight b minus straight a right parenthesis thin space left parenthesis straight c minus straight a right parenthesis right square bracket
equals space 2 left parenthesis straight a plus straight b plus straight c right parenthesis thin space left square bracket negative straight b squared minus straight c squared plus 2 bc minus bc plus ab plus ca minus straight a squared right square bracket
equals space 2 left parenthesis straight a plus straight b plus straight c right parenthesis space left parenthesis ab plus bc plus ca minus straight a squared minus straight b squared minus straight c squared right parenthesis
equals space straight R. straight H. straight S.
             

    Question 98
    CBSEENMA12034411

    Using properties of determinants, show that:
    open vertical bar table row cell straight b squared straight c end cell bc cell straight b plus straight c end cell row cell straight c squared straight a squared end cell ca cell straight c plus straight a end cell row cell straight a squared straight b squared end cell ab cell straight a plus straight b end cell end table close vertical bar space equals space 0

    Solution

    Let increment space equals space open vertical bar table row cell straight b squared straight c squared end cell cell space space space bc end cell cell space straight b plus straight c end cell row cell straight c squared straight a squared end cell cell space space ca end cell cell straight c plus straight a end cell row cell straight a squared straight b squared end cell cell space ab end cell cell straight a plus straight b end cell end table close vertical bar
    equals space straight a squared straight b squared straight c squared space open vertical bar table row bc cell space space space space 1 end cell cell space space 1 over straight b plus 1 over straight c end cell row ca cell space space space 1 end cell cell space space space space 1 over straight c plus 1 over straight a end cell row ab cell space space 1 end cell cell space space space 1 over straight a plus 1 over straight b end cell end table close vertical bar comma space by space taking space bc comma space ca comma space ab
                                                                common space from space straight R subscript 1 comma space straight R subscript 2 comma space straight R subscript 3 respectively
     equals space straight a cubed straight b cubed straight c cubed space equals space space open vertical bar table row cell 1 over straight a end cell cell space space space space 1 end cell cell space space space space space 1 over straight b plus 1 over straight c end cell row cell 1 over straight b end cell cell space space space space 1 end cell cell 1 over straight c plus 1 over straight a end cell row cell 1 over straight c end cell cell space space space 1 end cell cell 1 over straight a plus 1 over straight b end cell end table close vertical bar comma space dividing space elements space of space straight C subscript 1 comma space by space abc

equals space straight a cubed straight b cubed straight c cubed space equals space open vertical bar table row cell 1 over straight a end cell cell space space space space 1 end cell cell 1 over straight a plus 1 over straight b plus 1 over straight c end cell row cell 1 over straight b end cell cell space space space 1 end cell cell 1 over straight a plus 1 over straight b plus 1 over straight c end cell row cell 1 over straight c end cell cell space space 1 end cell cell 1 over straight a plus 1 over straight b plus 1 over straight c end cell end table close vertical bar comma space space by space straight C subscript 3 plus straight C subscript 1
equals space open parentheses 1 over straight a plus 1 over straight b plus 1 over straight c close parentheses straight a cubed straight b cubed straight c cubed space open vertical bar table row cell 1 over straight a end cell cell space space space space space space space 1 end cell cell space space space space space 1 end cell row cell 1 over straight b end cell cell space space space space space space 1 end cell cell space space space space space 1 end cell row cell 1 over straight c end cell cell space space space space space 1 end cell cell space space space space 1 end cell end table close vertical bar
equals space straight a cubed straight b cubed straight c cubed space open parentheses 1 over straight a plus 1 over straight b plus 1 over straight c close parentheses space left parenthesis 0 right parenthesis
equals space 0 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets because space two space columns space are space identical close square brackets space space space space space space space space space space space space space space space space space space space

    Question 99
    CBSEENMA12034412

    Prove that:
    open vertical bar table row cell straight a plus straight b end cell cell space space straight b plus straight c end cell cell space space space straight c plus straight a end cell row cell straight b plus straight c end cell cell space space straight c plus straight a end cell cell space space space straight a plus straight b end cell row cell straight c plus straight a end cell cell space space straight a plus straight b end cell cell space space space straight b plus straight c end cell end table close vertical bar space equals space 2 space open vertical bar table row straight a cell space space straight b end cell cell space straight c end cell row straight b cell space space straight c end cell cell space straight a end cell row straight c cell space straight a end cell cell space straight b end cell end table close vertical bar.

    Solution

    Let increment space equals space open vertical bar table row cell straight a plus straight b end cell cell space space space straight b plus straight c end cell cell space space straight c plus straight a end cell row cell straight b plus straight c end cell cell space space straight c plus straight a end cell cell space space straight a plus straight b end cell row cell straight c plus straight a end cell cell space space straight a plus straight b end cell cell space space space straight b plus straight c end cell end table close vertical bar
    equals space open vertical bar table row straight a cell space space straight b plus straight c end cell cell space space straight c plus straight a end cell row straight b cell space space straight c plus straight a end cell cell space straight a plus straight b end cell row straight c cell space space straight a plus straight b end cell cell space space straight b plus straight c end cell end table close vertical bar plus space open vertical bar table row straight b cell space space straight b plus straight c end cell cell space straight c plus straight a end cell row straight c cell space straight c plus straight a end cell cell space straight a plus straight b end cell row straight a cell space straight a plus straight b end cell cell space straight b plus straight c end cell end table close vertical bar
equals space open vertical bar table row straight a cell space space space straight b end cell cell space space space straight c plus straight a end cell row straight b cell space space space straight c end cell cell space space space straight a plus straight b end cell row straight c cell space space straight a end cell cell space space space straight b plus straight c end cell end table close vertical bar space plus space open vertical bar table row straight a cell space space space straight c end cell cell space space space straight c plus straight a end cell row straight b cell space space space space straight a end cell cell space space space straight a plus straight b end cell row straight c cell space space space space straight b end cell cell space space space space straight b plus straight c end cell end table close vertical bar plus space open vertical bar table row cell straight b space end cell cell space space straight b end cell cell space space straight c plus straight a end cell row straight c cell space space space straight c end cell cell space space straight a plus straight b end cell row straight a cell space space straight a end cell cell space space space straight b plus straight c end cell end table close vertical bar plus space open vertical bar table row straight b cell space space space straight c end cell cell space space straight c plus straight a end cell row straight c cell space space space straight a end cell cell space space straight a plus straight b end cell row straight a cell space space space straight b end cell cell space space space straight b plus straight c end cell end table close vertical bar
equals space open vertical bar table row straight a straight b straight c row straight b straight c straight a row straight c straight a straight b end table close vertical bar space plus space open vertical bar table row straight a straight b straight a row straight b straight c straight b row straight c straight a straight c end table close vertical bar space plus space open vertical bar table row straight a straight c straight c row straight b straight a straight a row straight c straight b straight b end table close vertical bar space plus space open vertical bar table row straight a straight c straight a row straight b straight a straight b row straight c straight b straight c end table close vertical bar plus 0 plus open vertical bar table row straight b straight c straight c row straight c straight a straight a row straight a straight b straight b end table close vertical bar plus open vertical bar table row straight b straight c straight a row straight c straight a straight b row straight a straight b straight c end table close vertical bar
equals space open vertical bar table row straight a straight b straight c row straight b straight c straight a row straight c straight a straight b end table close vertical bar plus 0 plus 0 plus 0 plus 0 plus 0 plus open vertical bar table row straight b straight c straight a row straight c straight a straight b row straight a straight b straight c end table close vertical bar
equals space open vertical bar table row straight a straight b straight c row straight b straight c straight a row straight c straight a straight b end table close vertical bar plus open vertical bar table row straight a straight b straight c row straight b straight c straight a row straight c straight a straight b end table close vertical bar
equals 2 space open vertical bar table row straight a straight b straight c row straight b straight c straight a row straight c straight a straight b end table close vertical bar.

    Question 100
    CBSEENMA12034413

    Show that:
    open vertical bar table row cell straight b plus straight c end cell cell straight c plus straight a end cell cell straight a plus straight b end cell row cell straight b apostrophe plus straight c apostrophe end cell cell straight c apostrophe plus straight a apostrophe end cell cell straight a apostrophe plus straight b apostrophe end cell row cell straight b " plus straight c " end cell cell straight c " plus straight a " end cell cell straight a " plus straight b " end cell end table close vertical bar space equals space 2 open vertical bar table row straight a straight b straight c row cell straight a apostrophe end cell cell straight b apostrophe end cell cell straight c apostrophe end cell row cell straight a " end cell cell straight b " end cell cell straight c " end cell end table close vertical bar

    Solution

    Let increment space equals space open vertical bar table row cell straight b plus straight c end cell cell straight c plus straight a end cell cell straight a plus straight b end cell row cell straight b apostrophe plus straight c apostrophe end cell cell straight c apostrophe plus straight a apostrophe end cell cell straight a apostrophe plus straight b apostrophe end cell row cell straight b " plus straight c " end cell cell straight c " plus straight a " end cell cell straight a " plus straight b " end cell end table close vertical bar
    equals space open vertical bar table row straight b cell straight c plus straight a end cell cell straight a plus straight b end cell row cell straight b apostrophe end cell cell straight c apostrophe plus straight a apostrophe end cell cell straight a apostrophe plus straight b apostrophe end cell row cell straight b " end cell cell straight c " plus straight a " end cell cell straight a " plus straight b " end cell end table close vertical bar space plus space open vertical bar table row straight c cell straight c plus straight a end cell cell straight a plus straight b end cell row cell straight c apostrophe end cell cell straight c apostrophe plus straight a apostrophe end cell cell straight a apostrophe plus straight b apostrophe end cell row cell straight c " end cell cell straight c " plus straight a " end cell cell straight a " plus straight b " end cell end table close vertical bar
equals space open vertical bar table row straight b straight c cell straight a plus straight b end cell row cell straight b apostrophe end cell cell straight c apostrophe end cell cell straight a apostrophe plus straight b apostrophe end cell row cell straight b " end cell cell straight c " end cell cell straight a " plus straight b " end cell end table close vertical bar space plus space open vertical bar table row straight b straight a cell straight a plus straight b end cell row cell straight b apostrophe end cell cell straight a apostrophe end cell cell straight a apostrophe plus straight b apostrophe end cell row cell straight b " end cell cell straight a " end cell cell straight a " plus straight b " end cell end table close vertical bar plus space open vertical bar table row straight c straight c cell straight a plus straight b end cell row cell straight c apostrophe end cell cell straight c apostrophe end cell cell apostrophe straight a plus straight b apostrophe end cell row cell straight c " end cell cell straight c " end cell cell straight a " plus straight b " end cell end table close vertical bar plus open vertical bar table row straight c straight a cell straight a plus straight b end cell row cell straight c apostrophe end cell cell straight a apostrophe end cell cell straight a apostrophe plus straight b apostrophe end cell row cell straight c " end cell cell straight a " end cell cell straight a " plus straight b " end cell end table close vertical bar
equals space open vertical bar table row straight b straight c straight a row cell straight b apostrophe end cell cell straight c apostrophe end cell cell straight a apostrophe end cell row cell straight b " end cell cell straight c " end cell cell straight a " end cell end table close vertical bar plus 0 plus 0 plus 0 plus 0 plus 0 plus open vertical bar table row straight c straight a straight b row cell straight c apostrophe end cell cell straight a apostrophe end cell cell straight b apostrophe end cell row cell straight c " end cell cell straight a " end cell cell straight b " end cell end table close vertical bar
equals space open vertical bar table row straight a straight b straight c row cell straight a apostrophe end cell cell straight b apostrophe end cell cell straight c apostrophe end cell row cell straight a " end cell cell straight b " end cell cell straight c " end cell end table close vertical bar plus space open vertical bar table row straight a straight b straight c row cell straight a apostrophe end cell cell straight b apostrophe end cell cell straight c apostrophe end cell row cell straight a " end cell cell straight b " end cell cell straight c " end cell end table close vertical bar
equals space 2 space open vertical bar table row straight a straight b straight c row cell straight a apostrophe end cell cell straight b apostrophe end cell cell straight c apostrophe end cell row cell straight a " end cell cell straight b " end cell cell straight c " end cell end table close vertical bar


    Question 101
    CBSEENMA12034414

    Show that:
    open vertical bar table row cell straight b plus straight c end cell cell space straight c plus straight a end cell cell space straight a plus straight b end cell row cell straight q plus straight r end cell cell space straight r plus straight p end cell cell space straight p plus straight q end cell row cell straight y plus straight z end cell cell space straight z plus straight x end cell cell space straight x plus straight y end cell end table close vertical bar space equals space 2 open vertical bar table row straight a cell space space space space straight b end cell cell space space straight c end cell row straight p cell space space space straight q end cell cell space space straight r end cell row straight x cell space space straight y end cell cell space space straight z end cell end table close vertical bar

    Solution

    Let increment space equals space open vertical bar table row cell straight b plus straight c end cell cell space space straight c plus straight a end cell cell space space straight a plus straight b end cell row cell straight q plus straight r end cell cell space straight r plus straight p end cell cell space space straight p plus straight q end cell row cell straight y plus straight z end cell cell space straight z plus straight x end cell cell space space straight x plus straight y end cell end table close vertical bar
                 equals space open vertical bar table row straight b cell space space space straight c plus straight a end cell cell space space space straight a plus straight b end cell row straight q cell space space space straight r plus straight p end cell cell space space space straight p plus straight q end cell row straight y cell space space space straight z plus straight x end cell cell space space space straight x plus straight y end cell end table close vertical bar plus space open vertical bar table row straight c cell space space straight c plus straight a end cell cell space space straight a plus straight b end cell row straight r cell space space straight r plus straight p end cell cell space space straight p plus straight q end cell row straight z cell space straight z plus straight x end cell cell space space straight x plus straight y end cell end table close vertical bar
equals space open vertical bar table row straight b cell space space straight c end cell cell space space straight a plus straight b end cell row straight q cell space space straight r end cell cell space space straight p plus straight q end cell row straight y cell space straight z end cell cell space space straight x plus straight y end cell end table close vertical bar plus space open vertical bar table row straight b cell space space space straight a end cell cell space space space straight a plus straight b end cell row straight q cell space space space straight p end cell cell space space space straight p plus straight q end cell row straight y cell space space space straight x end cell cell space space space space straight x plus straight y end cell end table close vertical bar plus space open vertical bar table row straight c straight c cell straight a plus straight b end cell row straight r straight r cell straight p plus straight q end cell row straight z straight z cell straight x plus straight y end cell end table close vertical bar plus open vertical bar table row straight c cell space straight a end cell cell space straight a plus straight b end cell row straight r cell space straight p end cell cell space straight p plus straight q end cell row straight z cell space straight x end cell cell space straight x plus straight y end cell end table close vertical bar
equals space open vertical bar table row straight b cell space space space space straight c end cell cell space space space straight a end cell row straight q cell space space space space straight r end cell cell space space space straight p end cell row straight y cell space space straight z end cell cell space space space straight x end cell end table close vertical bar plus open vertical bar table row straight b cell space space straight c end cell cell space space straight b end cell row straight q cell space space straight r end cell cell space space straight q end cell row straight y cell space straight z end cell cell space space straight y end cell end table close vertical bar plus open vertical bar table row straight b cell space space straight a end cell cell space space straight a end cell row straight q cell space space straight p end cell cell space space straight p end cell row straight y cell space space straight x end cell cell space space straight x end cell end table close vertical bar
plus space open vertical bar table row straight b cell space space space straight a end cell cell space space straight b end cell row straight q cell space space space straight p end cell cell space space straight q end cell row straight y cell space space straight x end cell cell space space straight y end cell end table close vertical bar plus 0 plus space open vertical bar table row straight c cell space space straight a end cell cell space space space straight a end cell row straight r cell space space straight p end cell cell space space space straight p end cell row straight z cell space straight x end cell cell space space space straight x end cell end table close vertical bar space plus space open vertical bar table row straight c cell space space straight a end cell cell space space space straight b end cell row straight r cell space space straight p end cell cell space space space straight q end cell row straight z cell space straight x end cell cell space space space straight y end cell end table close vertical bar

equals space open vertical bar table row straight b cell space space space straight c end cell cell space space straight a end cell row straight q cell space space space straight r end cell cell space space straight p end cell row straight y cell space space straight z end cell cell space space straight x end cell end table close vertical bar plus 0 plus 0 plus 0 plus 0 plus 0 plus open vertical bar table row straight c cell space space space straight a end cell cell space space space straight b end cell row straight r cell space space space straight p end cell cell space space space straight q end cell row straight z cell space space space space straight x end cell cell space space space straight y end cell end table close vertical bar
equals space open vertical bar table row straight a cell space space space straight b end cell cell space space space straight c end cell row straight p cell space space space straight q end cell cell space space space straight r end cell row straight x cell space space straight y end cell cell space space space straight z end cell end table close vertical bar plus space open vertical bar table row straight a cell space space straight b end cell cell space space space straight c end cell row straight p cell space space straight q end cell cell space space space straight r end cell row straight x cell space space straight y end cell cell space space space straight z end cell end table close vertical bar space equals space 2 space open vertical bar table row straight a cell space space space straight b end cell cell space space straight c end cell row straight p cell space space straight q end cell cell space space straight r end cell row straight x cell space space straight y end cell cell space space straight z end cell end table close vertical bar

    Question 102
    CBSEENMA12034415

    Show that:
    open vertical bar table row straight a cell space space straight b end cell cell space space straight c end cell row cell straight a plus 2 straight x end cell cell space straight b plus 2 straight y end cell cell space space space straight c plus 2 space straight z end cell row straight x straight y cell space straight z end cell end table close vertical bar space equals space 0


    Solution
    straight L. straight H. straight S. space equals space open vertical bar table row straight a cell space space straight b end cell cell space space straight c end cell row cell straight a plus 2 straight x end cell cell space space straight b plus 2 straight y end cell cell space space space straight c plus 2 straight z end cell row straight x straight y straight z end table close vertical bar
space space space space space space space space space space space space equals space open vertical bar table row straight a cell space space space straight b end cell cell space space straight c end cell row straight a cell space space straight b end cell cell space space straight c end cell row straight x cell space space straight y end cell cell space space straight z end cell end table close vertical bar space plus space open vertical bar table row straight a straight b straight c row cell 2 space straight x end cell cell 2 space straight y end cell cell 2 space straight z end cell row straight x straight y straight z end table close vertical bar
equals space open vertical bar table row straight a cell space space straight b end cell cell space space straight c end cell row straight a cell space space straight b end cell cell space space straight c end cell row straight x cell space space straight y end cell cell space space straight z end cell end table close vertical bar plus space 2 space open vertical bar table row straight a cell space space straight b end cell cell space space straight c end cell row straight x cell space space straight y end cell cell space space straight z end cell row straight x cell space space straight y end cell cell space space straight z end cell end table close vertical bar
equals space 0 plus 2 space left parenthesis 0 right parenthesis space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets because two space rows space are space identical close square brackets
space equals space 0 plus 0 space equals space 0 space equals space straight R. straight H. straight S.
    Question 103
    CBSEENMA12034416

    Factorise the determinant:
    open vertical bar table row 1 cell space space 1 end cell cell space space 1 end cell row straight a cell space space straight b end cell cell space straight c end cell row cell straight a squared end cell cell space space straight b squared end cell cell space space straight c squared end cell end table close vertical bar.

    Solution

    Let increment space equals space open vertical bar table row 1 cell space 1 end cell cell space 1 end cell row straight a cell space straight b end cell cell space straight c end cell row cell straight a squared end cell cell space straight b squared end cell cell space straight c squared end cell end table close vertical bar
    equals space open vertical bar table row 1 0 0 row straight a cell straight b minus straight a end cell cell straight c minus straight a end cell row cell straight a squared end cell cell straight b squared minus straight a squared end cell cell straight c squared minus straight a squared end cell end table close vertical bar comma space space by space straight C subscript 2 minus straight C subscript 1 comma space space straight C subscript 3 minus straight C subscript 1
equals space open vertical bar table row cell straight b minus straight a end cell cell space space space straight c minus straight a end cell row cell straight b squared minus straight a squared end cell cell space space space space straight c squared minus straight a squared end cell end table close vertical bar comma space expanding space by space first space row
equals space open vertical bar table row cell straight b minus straight a end cell cell space space space space space space straight c minus straight a end cell row cell left parenthesis straight b minus straight a right parenthesis thin space left parenthesis straight b plus straight a right parenthesis end cell cell space space space space space space space left parenthesis straight c minus straight a right parenthesis thin space left parenthesis straight c plus straight a right parenthesis end cell end table close vertical bar
Taking space out space left parenthesis straight b minus straight a right parenthesis comma space left parenthesis straight c minus straight a right parenthesis space common space from space straight C subscript 1 space and space straight C subscript 2.
space equals space left parenthesis straight b minus straight c right parenthesis thin space left parenthesis straight c minus straight a right parenthesis space open vertical bar table row 1 cell space space space space space space 1 end cell row cell straight b plus straight a end cell cell space space space space space straight c plus straight a end cell end table close vertical bar
equals space left parenthesis straight b minus straight c right parenthesis thin space left parenthesis straight c minus straight a right parenthesis space open square brackets left parenthesis straight c plus straight a right parenthesis space minus space left parenthesis straight b plus straight a right parenthesis close square brackets space equals space left parenthesis straight b minus straight a right parenthesis thin space left parenthesis straight c minus straight a right parenthesis thin space left square bracket straight c minus straight b right square bracket
space equals space left parenthesis straight a minus straight b right parenthesis thin space left parenthesis straight b minus straight c right parenthesis thin space left parenthesis straight c minus straight a right parenthesis.

    Question 104
    CBSEENMA12034417

    Prove that:
    open vertical bar table row 1 1 1 row cell straight a squared end cell cell straight b squared end cell cell straight c squared end cell row cell straight a cubed end cell cell straight b cubed end cell cell straight c cubed end cell end table close vertical bar space equals space left parenthesis straight a minus straight b right parenthesis thin space left parenthesis straight b minus straight c right parenthesis thin space left parenthesis straight c minus straight a right parenthesis thin space left parenthesis straight a space straight b space plus space straight b space straight c space plus space straight c space straight a right parenthesis.

    Solution

    Let increment space equals space open vertical bar table row 1 cell space space 1 end cell cell space space 1 end cell row cell straight a squared end cell cell space space straight b squared end cell cell space space straight c squared end cell row cell straight a cubed end cell cell space space straight b cubed end cell cell space space straight c cubed end cell end table close vertical bar
             equals space open vertical bar table row 1 cell space space 0 end cell cell space space space 0 end cell row cell straight a squared end cell cell space space straight b squared minus straight a squared end cell cell space space space straight c squared minus straight a squared end cell row cell straight a cubed end cell cell space space straight b cubed minus straight a cubed end cell cell space space space straight c cubed minus straight a cubed end cell end table close vertical bar comma space space by space straight C subscript 2 minus straight C subscript 1 comma space space straight C subscript 3 minus straight C subscript 1
equals space open vertical bar table row cell straight b squared minus straight a squared end cell cell space space space space space space straight c squared minus straight a squared end cell row cell straight b cubed minus straight a cubed end cell cell space space space space space straight c cubed minus straight a cubed end cell end table close vertical bar comma space expanding space with space first space row.
equals space open vertical bar table row cell left parenthesis straight b minus straight a right parenthesis thin space left parenthesis straight b plus straight a right parenthesis end cell cell space space space space space left parenthesis straight c minus straight a right parenthesis thin space left parenthesis straight c plus straight a right parenthesis end cell row cell left parenthesis straight b minus straight a right parenthesis thin space left parenthesis straight b squared plus straight a squared plus ba right parenthesis end cell cell space space space space space space space left parenthesis straight c minus straight a right parenthesis thin space left parenthesis straight c squared plus straight a squared plus ca right parenthesis end cell end table close vertical bar
equals space left parenthesis straight b minus straight a right parenthesis thin space left parenthesis straight c minus straight a right parenthesis thin space open vertical bar table row cell straight b plus straight a end cell cell space space space space space space space space space straight c plus straight a end cell row cell straight b squared plus straight a squared plus ba end cell cell space space space space space space space space space straight c squared plus straight a squared plus ca end cell end table close vertical bar
equals space left parenthesis straight b minus straight c right parenthesis thin space left parenthesis straight c minus straight a right parenthesis thin space open vertical bar table row cell straight b plus straight a end cell cell space space space space space space space space space space space space space space space straight c minus straight b end cell row cell straight b squared plus straight a squared plus ba end cell cell space space space space space space space space space space space space straight c squared minus straight b squared plus ca minus ba end cell end table close vertical bar comma space by space straight C subscript 2 minus straight C subscript 1
equals space left parenthesis straight b minus straight a right parenthesis thin space left parenthesis straight c minus straight a right parenthesis thin space open vertical bar table row cell straight b plus straight a end cell cell straight c minus straight b end cell row cell straight b squared plus straight a squared plus ba end cell cell space space space space space space space space space space space space left parenthesis straight c minus straight b right parenthesis thin space left parenthesis straight c plus straight b right parenthesis plus left parenthesis straight c minus straight b right parenthesis space straight a end cell end table close vertical bar
equals space left parenthesis straight b minus straight a right parenthesis thin space left parenthesis straight c minus straight a right parenthesis thin space left parenthesis straight c minus straight b right parenthesis thin space open vertical bar table row cell straight b plus straight a end cell cell space space space space space space 1 end cell row cell straight b squared plus straight a squared plus ba end cell cell space space space space space space space space straight c plus straight b plus straight a end cell end table close vertical bar
equals left parenthesis straight a minus straight b right parenthesis thin space left parenthesis straight b minus straight c right parenthesis thin space left parenthesis straight c minus straight a right parenthesis space left square bracket bc plus straight b squared plus ab plus ca plus ab plus straight a squared minus straight b squared minus straight a squared minus ab right square bracket
equals space left parenthesis straight a minus straight b right parenthesis thin space left parenthesis straight b minus straight c right parenthesis thin space left parenthesis straight c minus straight a right parenthesis thin space left parenthesis straight a space straight b space plus space straight b space straight c space plus space straight c space straight a right parenthesis

    Question 105
    CBSEENMA12034418

    By using properties of determinants, show that:
    open vertical bar table row 1 cell space space space space straight a end cell cell space space space straight a squared end cell row 1 cell space space space straight b end cell cell space space space straight b squared end cell row 1 cell space space straight c end cell cell space space space straight c squared end cell end table close vertical bar space equals space left parenthesis straight a minus straight b right parenthesis thin space left parenthesis straight b minus straight c right parenthesis space left parenthesis straight c minus straight a right parenthesis





    Solution

    Let increment space equals space open vertical bar table row 1 cell space space space straight a end cell cell space space space straight a squared end cell row 1 cell space space space straight b end cell cell space space space straight b squared end cell row 1 cell space space space straight c end cell cell space space space straight c squared end cell end table close vertical bar
                equals space open vertical bar table row 1 cell space space space straight a end cell cell space space space straight a squared end cell row 0 cell space space straight b minus straight a end cell cell space space space straight b squared minus straight a squared end cell row 0 cell space space space straight c minus straight a end cell cell space space space space straight c squared minus straight a squared end cell end table close vertical bar comma space space by space straight R subscript 2 space minus space straight R subscript 1 comma space space straight R subscript 3 minus straight R subscript 1
equals space open vertical bar table row cell straight b minus straight a end cell cell space space space space space space straight b squared minus straight a squared end cell row cell straight c minus straight a end cell cell space space space space space space straight c squared minus straight a squared end cell end table close vertical bar comma space space expanding space by space first space column
space equals space left parenthesis straight b minus straight a right parenthesis thin space left parenthesis straight c minus straight a right parenthesis space open vertical bar table row 1 cell space space space straight b plus straight a end cell row 1 cell space space space space straight c plus straight a end cell end table close vertical bar comma
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space by space taking space straight b minus straight a space common space from space straight R subscript 1 space and space straight c minus straight a space from space space straight R subscript 2.
equals space left parenthesis straight b minus straight a right parenthesis thin space left parenthesis straight c minus straight a right parenthesis space left square bracket straight c plus straight a minus straight b minus straight a right square bracket
equals space left parenthesis straight b minus straight a right parenthesis thin space left parenthesis straight c minus straight a right parenthesis thin space left parenthesis straight c minus straight b right parenthesis space equals space left parenthesis straight a minus straight b right parenthesis thin space left parenthesis straight b minus straight c right parenthesis thin space left parenthesis straight c minus straight a right parenthesis.

    Question 106
    CBSEENMA12034420

    Prove the following identities:
    open vertical bar table row 1 cell space space space 1 end cell cell space space space 1 end cell row straight a cell space space straight b end cell cell space space space straight c end cell row cell straight a cubed end cell cell space space space straight b cubed end cell cell space space space straight c cubed end cell end table close vertical bar space equals space left parenthesis straight a minus straight b right parenthesis thin space left parenthesis straight b minus straight c right parenthesis thin space left parenthesis straight c minus straight a right parenthesis thin space left parenthesis straight a plus straight b plus straight c right parenthesis







    Solution

        Let space increment space equals space open vertical bar table row 1 cell space space space straight a end cell cell space space straight a cubed end cell row 1 cell space space straight b end cell cell space space straight b cubed end cell row 1 cell space space straight c end cell cell space space straight c cubed end cell end table close vertical bar
equals space open vertical bar table row 1 cell space space 1 end cell cell space space 1 end cell row straight a cell space space straight b end cell cell space space straight c end cell row cell straight a cubed end cell cell space space straight b cubed end cell cell space space straight c cubed end cell end table close vertical bar comma space by space interchanging space row space and space columns
equals space open vertical bar table row 1 0 cell space space 0 end cell row straight a cell space space straight b minus straight a end cell cell space space straight c minus straight a end cell row cell straight a cubed end cell cell space space straight b cubed minus straight a cubed end cell cell space space straight c cubed minus straight a cubed end cell end table close vertical bar comma space by space straight C subscript 2 minus straight C subscript 1 comma space space straight C subscript 3 minus straight C subscript 1

equals space open vertical bar table row cell straight b minus straight a end cell cell space space space space space space straight c minus straight a end cell row cell straight b cubed minus straight a cubed end cell cell space space space space space straight c cubed minus straight a cubed end cell end table close vertical bar comma space expanding space with space first space row.
equals space open vertical bar table row cell straight b minus straight a end cell cell space space space space space space space space space space space space space space space space space space straight c minus straight a end cell row cell left parenthesis straight b minus straight a right parenthesis thin space left parenthesis straight b squared plus straight a squared plus ba right parenthesis end cell cell space space space space space left parenthesis straight c minus straight a right parenthesis thin space left parenthesis straight c squared plus straight a squared plus ca right parenthesis end cell end table close vertical bar
equals space left parenthesis straight b minus straight a right parenthesis thin space left parenthesis straight c minus straight a right parenthesis space open vertical bar table row 1 cell space space space space space space space space space 1 end cell row cell straight b squared plus straight a squared plus ba end cell cell space space space space space space space straight c squared plus straight a squared plus ca end cell end table close vertical bar
equals space left parenthesis straight b minus straight a right parenthesis thin space left parenthesis straight c minus straight a right parenthesis thin space left square bracket straight c squared plus straight a squared plus ca minus straight b squared minus straight a squared minus ba right square bracket
equals space left parenthesis straight b minus straight a right parenthesis thin space left parenthesis straight c minus straight a right parenthesis thin space left square bracket left parenthesis straight c squared minus straight b squared right parenthesis space plus space left parenthesis ca minus ba right parenthesis right square bracket
equals space left parenthesis straight b minus straight a right parenthesis thin space left parenthesis straight c minus straight a right parenthesis thin space left square bracket left parenthesis straight c minus straight b right parenthesis thin space left parenthesis straight c plus straight b right parenthesis space plus space straight a space left parenthesis straight c minus straight b right parenthesis right square bracket
equals space left parenthesis straight b minus straight a right parenthesis thin space left parenthesis straight c minus straight a right parenthesis thin space left parenthesis straight c minus straight b right parenthesis thin space left parenthesis straight c plus straight b plus straight a right parenthesis space equals space left parenthesis straight a minus straight b right parenthesis thin space left parenthesis straight b minus straight c right parenthesis thin space left parenthesis straight c minus straight a right parenthesis space left parenthesis straight a plus straight b plus straight c right parenthesis.

    Question 107
    CBSEENMA12034422

    Prove the following identities:
    open vertical bar table row 1 cell space space space straight a end cell cell space space space straight a cubed end cell row 1 cell space space straight b end cell cell space space straight b cubed end cell row 1 cell space space straight c end cell cell space space straight c cubed end cell end table close vertical bar space equals space left parenthesis straight a minus straight b right parenthesis thin space left parenthesis straight b minus straight c right parenthesis thin space left parenthesis straight c minus straight a right parenthesis thin space left parenthesis straight a plus straight b plus straight c right parenthesis








    Solution

    Let increment space equals space open vertical bar table row 1 cell space space space straight a end cell cell space space space space straight a cubed end cell row 1 cell space space space straight b end cell cell space space space straight b cubed end cell row 1 cell space space space straight c end cell cell space space space space straight c cubed end cell end table close vertical bar
    equals space open vertical bar table row 1 cell space space space 0 end cell cell space space space 0 end cell row straight a cell space space straight b minus straight a end cell cell space space straight c minus straight a end cell row cell straight a cubed end cell cell space space straight b cubed minus straight a cubed end cell cell space space space straight c cubed minus straight a cubed end cell end table close vertical bar comma space space space by space straight C subscript 2 minus straight C subscript 1 comma space space straight C subscript 3 minus straight C subscript 1
equals space open vertical bar table row cell straight b minus straight a end cell cell space space space space straight c minus straight a end cell row cell straight b cubed minus straight a cubed end cell cell space space space space space straight c cubed minus straight a cubed end cell end table close vertical bar comma space expanding space with space first space row.
equals space open vertical bar table row cell straight b minus straight a end cell cell space space space space space space space space space space space space space space space space straight c minus straight a end cell row cell left parenthesis straight b minus straight a right parenthesis space left parenthesis straight b squared plus straight a squared plus ba right parenthesis end cell cell space space space space space space space space space space left parenthesis straight c minus straight a right parenthesis thin space left parenthesis straight c squared plus straight a squared plus ca right parenthesis end cell end table close vertical bar
space equals space left parenthesis straight b minus straight a right parenthesis thin space left parenthesis straight c minus straight a right parenthesis space open vertical bar table row 1 1 row cell straight b squared plus straight a squared plus ba end cell cell space space space space space space straight c squared plus straight a squared plus ca end cell end table close vertical bar
equals space left parenthesis straight b minus straight a right parenthesis space left parenthesis straight c minus straight a right parenthesis space open square brackets straight c squared plus straight a squared plus ca minus straight b squared minus straight a squared minus ba close square brackets
equals left parenthesis straight b minus straight a right parenthesis thin space left parenthesis straight c minus straight a right parenthesis thin space open square brackets left parenthesis straight c squared minus straight b squared right parenthesis space plus space left parenthesis ca minus ba right parenthesis close square brackets
equals space left parenthesis straight b minus straight a right parenthesis thin space left parenthesis straight c minus straight a right parenthesis thin space open square brackets left parenthesis straight c minus straight b right parenthesis thin space left parenthesis straight c plus straight b right parenthesis space plus space straight a space left parenthesis straight c minus straight b right parenthesis close square brackets
equals space left parenthesis straight b minus straight a right parenthesis thin space left parenthesis straight c minus straight a right parenthesis thin space left parenthesis straight c minus straight b right parenthesis thin space left parenthesis straight c plus straight b plus straight a right parenthesis space equals space left parenthesis straight a minus straight b right parenthesis thin space left parenthesis straight b minus straight c right parenthesis thin space left parenthesis straight c minus straight a right parenthesis thin space left parenthesis straight a plus straight b plus straight c right parenthesis.

    Question 108
    CBSEENMA12034424

    Prove the following identities:
    open vertical bar table row 1 cell space space space straight x end cell cell space space space straight x cubed end cell row 1 cell space space straight y end cell cell space space straight y cubed end cell row 1 cell space straight z end cell cell space space straight z cubed end cell end table close vertical bar space equals space left parenthesis straight x minus straight y right parenthesis thin space left parenthesis straight y minus straight z right parenthesis thin space left parenthesis straight z minus straight x right parenthesis thin space left parenthesis straight x plus straight y plus straight z right parenthesis









    Solution

    Let increment space equals space open vertical bar table row 1 cell space space space space straight x end cell cell space space space straight x cubed end cell row 1 cell space space space straight y end cell cell space space space straight y cubed end cell row 1 cell space space straight z end cell cell space space space straight z cubed end cell end table close vertical bar
                equals space open vertical bar table row 1 cell space space space space space space straight x end cell cell space space space space straight x cubed end cell row 0 cell space space space space space straight y minus straight x end cell cell space space space space space space straight y cubed minus straight x cubed end cell row 0 cell space space space straight z minus straight x end cell cell space space space straight z cubed minus straight x cubed end cell end table close vertical bar comma space by space straight R subscript 2 minus straight R subscript 1 comma space space straight R subscript 3 minus straight R subscript 1
equals space open vertical bar table row cell straight y minus straight x end cell cell space space space space space straight y cubed minus straight x cubed end cell row cell straight z minus straight x end cell cell space space space space space space straight z cubed minus straight x cubed end cell end table close vertical bar space equals space open vertical bar table row cell straight y minus straight x end cell cell space space space space space left parenthesis straight y minus straight x right parenthesis thin space left parenthesis straight y squared plus straight x squared plus yx right parenthesis end cell row cell straight z minus straight x end cell cell space space space space space space left parenthesis straight z minus straight x right parenthesis thin space left parenthesis straight z squared plus straight x squared plus zx right parenthesis end cell end table close vertical bar
equals space left parenthesis straight y minus straight x right parenthesis thin space left parenthesis straight z minus straight x right parenthesis thin space space open vertical bar table row 1 cell space space space space space straight y squared plus straight x squared plus yx end cell row 1 cell space space space space straight z squared plus straight x squared plus zx end cell end table close vertical bar
space equals space left parenthesis straight y minus straight x right parenthesis thin space left parenthesis straight z minus straight x right parenthesis thin space left square bracket straight z squared plus straight x squared plus zx minus straight y squared minus straight x squared minus yx right square bracket
equals space left parenthesis straight y minus straight x right parenthesis thin space left parenthesis straight z minus straight x right parenthesis thin space open square brackets left parenthesis straight z squared minus straight y squared right parenthesis space plus straight x left parenthesis straight z minus straight y right parenthesis close square brackets
space equals space left parenthesis straight y minus straight x right parenthesis thin space left parenthesis straight z minus straight x right parenthesis thin space open square brackets left parenthesis straight z minus straight y right parenthesis thin space left parenthesis straight z plus straight y right parenthesis plus straight x space left parenthesis straight z minus straight y right parenthesis close square brackets
equals space left parenthesis straight y minus straight x right parenthesis thin space left parenthesis straight z minus straight x right parenthesis thin space left parenthesis straight z minus straight y right parenthesis thin space left square bracket straight z plus straight y plus straight x right square bracket
equals space left parenthesis straight x minus straight y right parenthesis thin space left parenthesis straight y minus straight z right parenthesis thin space left parenthesis straight z minus straight x right parenthesis thin space left parenthesis straight x plus straight y plus straight z right parenthesis

    Question 109
    CBSEENMA12034432

    Using properties of determinants, prove that:
    open vertical bar table row straight x cell space space space straight y end cell cell space space space straight z end cell row cell straight x squared end cell cell space space straight y squared end cell cell space space space straight z squared end cell row cell straight x cubed end cell cell space space straight y cubed end cell cell space space straight z cubed end cell end table close vertical bar space equals space space straight x space straight y space straight z space left parenthesis straight x minus straight y right parenthesis thin space left parenthesis straight y minus straight z right parenthesis thin space left parenthesis straight z minus straight x right parenthesis

    Solution

    Let increment equals space space open vertical bar table row straight x cell space straight y end cell cell space straight z end cell row cell straight x squared end cell cell space straight y squared end cell cell space straight z squared end cell row cell straight x cubed end cell cell space straight y cubed end cell cell space straight z cubed end cell end table close vertical bar
            equals space straight x space straight y space straight z space open vertical bar table row 1 cell space 1 end cell cell space 1 end cell row straight x cell space straight y end cell cell space straight z end cell row cell straight x squared end cell cell space straight y squared end cell cell space straight z squared end cell end table close vertical bar
equals space straight x space straight y space straight z space open vertical bar table row 1 0 cell space 0 end cell row straight x cell space straight y minus straight x end cell cell space straight z minus straight x end cell row cell straight x squared end cell cell space straight y squared minus straight x squared end cell cell space straight z squared minus straight x squared end cell end table close vertical bar comma space by space straight C subscript 2 minus straight C subscript 1 comma space space straight C subscript 3 minus straight C subscript 1
equals space straight x space straight y space straight z space open vertical bar table row cell straight y minus straight x end cell cell space space space space space space straight z minus straight x end cell row cell straight y squared minus straight x squared end cell cell space space space space space straight z squared minus straight x squared end cell end table close vertical bar comma space expanding space with space straight R subscript 1
equals space space straight x space straight y space straight z space left parenthesis straight y minus straight x right parenthesis thin space left parenthesis straight z minus straight x right parenthesis space open vertical bar table row 1 cell space space space space space space space 1 end cell row cell straight y plus straight x end cell cell space space space space straight z plus straight x end cell end table close vertical bar
equals space space straight x space straight y space straight z space left parenthesis straight y minus straight x right parenthesis thin space left parenthesis straight z minus straight x right parenthesis thin space left parenthesis straight z plus straight x minus straight y minus straight x right parenthesis
equals space straight x space straight y space straight z space left parenthesis straight y minus straight x right parenthesis thin space left parenthesis straight z minus straight x right parenthesis thin space left parenthesis straight z minus straight y right parenthesis
equals space straight x space straight y space straight z space left parenthesis straight x minus straight y right parenthesis thin space left parenthesis straight y minus straight z right parenthesis thin space left parenthesis straight z minus straight x right parenthesis

    Question 110
    CBSEENMA12034436

    Prove that:
    open vertical bar table row 1 cell space space 1 end cell cell space space 1 end cell row straight alpha cell space space straight beta end cell cell space straight gamma end cell row βγ cell space space γα end cell cell space space αβ end cell end table close vertical bar space equals space left parenthesis straight beta minus straight gamma right parenthesis thin space left parenthesis straight gamma minus straight alpha right parenthesis thin space left parenthesis straight alpha minus straight beta right parenthesis

    Solution

    Let increment space equals open vertical bar table row 1 cell space space 1 end cell cell space space 1 end cell row straight alpha cell space straight beta end cell cell space space straight gamma end cell row βγ cell space γα end cell cell space space αβ. end cell end table close vertical bar
                equals space 1 over αβγ open vertical bar table row straight alpha cell space straight beta end cell cell space space straight gamma end cell row cell straight alpha squared end cell cell space straight beta squared end cell cell space space straight gamma squared end cell row αβγ cell space αβγ end cell cell space αβγ end cell end table close vertical bar
                                                          open square brackets Multiplying space straight C subscript 1 comma space straight C subscript 2 comma space straight C subscript 3 comma space by space straight alpha comma space straight beta comma space straight gamma space respectively close square brackets
                     equals space αβγ over αβγ open vertical bar table row straight alpha cell space straight beta end cell cell space space space straight gamma end cell row cell straight alpha squared end cell cell space space straight beta squared end cell cell space space space straight gamma squared end cell row 1 1 cell space space 1 end cell end table close vertical bar comma space
                                                                 taking space straight alpha space straight beta space straight gamma space common space from space third space row.
                       equals left parenthesis negative 1 right parenthesis squared space open vertical bar table row 1 cell space space 1 end cell cell space space 1 end cell row straight alpha cell space straight beta end cell cell space space straight gamma end cell row cell straight alpha squared end cell cell space space straight beta squared end cell cell space space straight gamma squared end cell end table close vertical bar
                                                                   open square brackets because space space third space row space passes space over space two space rows close square brackets       
                equals space open vertical bar table row 1 cell space space space 1 end cell cell space space 1 end cell row straight alpha cell space space straight beta end cell cell space space straight gamma end cell row cell straight alpha squared end cell cell space space straight beta squared end cell cell space space straight gamma squared end cell end table close vertical bar
equals space open vertical bar table row 1 0 cell space 0 end cell row straight alpha cell space straight beta minus straight alpha end cell cell space space straight gamma minus straight alpha end cell row cell straight alpha squared end cell cell space space straight beta squared minus straight alpha squared end cell cell space space straight gamma squared minus straight alpha squared end cell end table close vertical bar comma space by space straight C subscript 2 minus straight C subscript 1 comma space space straight C subscript 3 minus straight C subscript 1
equals space open vertical bar table row cell straight beta minus straight alpha end cell cell straight gamma minus straight alpha end cell row cell left parenthesis straight beta minus straight alpha right parenthesis thin space left parenthesis straight beta plus straight alpha right parenthesis end cell cell left parenthesis straight gamma minus straight alpha right parenthesis space left parenthesis straight gamma plus straight alpha right parenthesis end cell end table close vertical bar comma space expanding space by space first space row
equals space left parenthesis straight beta minus straight alpha right parenthesis space left parenthesis straight gamma minus straight alpha right parenthesis space open vertical bar table row 1 cell space space space space space space space 1 end cell row cell straight beta plus straight alpha end cell cell space space space space space space space straight gamma plus straight alpha end cell end table close vertical bar
left square bracket Taking space straight beta minus straight alpha comma space straight gamma minus straight alpha space common space from space first space and space second space column space respectively right square bracket
space equals space left parenthesis straight beta minus straight alpha right parenthesis space left parenthesis straight gamma minus straight alpha right parenthesis thin space left parenthesis straight gamma plus straight alpha minus straight beta minus straight alpha right parenthesis space equals space left parenthesis straight beta minus straight alpha right parenthesis thin space left parenthesis straight gamma minus straight alpha right parenthesis thin space left parenthesis straight gamma minus straight beta right parenthesis
equals space left parenthesis straight alpha minus straight beta right parenthesis thin space left parenthesis straight beta minus straight gamma right parenthesis thin space left parenthesis straight gamma minus straight alpha right parenthesis.
             

    Question 111
    CBSEENMA12034438

    Prove that:
    open vertical bar table row 1 cell space straight a end cell cell space space bc end cell row 1 cell space straight b end cell cell space space ca end cell row 1 cell space straight c end cell cell space ab end cell end table close vertical bar space equals space left parenthesis straight a minus straight b right parenthesis thin space left parenthesis straight b minus straight c right parenthesis thin space left parenthesis straight c minus straight a right parenthesis



    Solution
    Let space increment space equals space space open vertical bar table row 1 cell space space straight a end cell cell space space space bc end cell row 1 cell space space straight b end cell cell space space space ca end cell row 1 cell space space straight c end cell cell space space space ab end cell end table close vertical bar space equals space 1 over abc open vertical bar table row straight a cell space space straight a squared end cell cell space space abc end cell row straight b cell space space straight b squared end cell cell space space abc end cell row straight c cell space space straight c squared end cell cell space space abc end cell end table close vertical bar
                                                     by multiplying straight R subscript 1 comma space straight R subscript 2 comma space straight R subscript 3 space with space straight a comma space straight b comma space straight c space respectively
                   equals space abc over abc open vertical bar table row straight a cell space space space straight a squared end cell cell space space 1 end cell row straight b cell space space straight b squared end cell cell space space 1 end cell row straight c cell space space straight c squared end cell cell space space 1 end cell end table close vertical bar
space equals space open vertical bar table row 1 cell space space straight a end cell cell space space space straight a squared end cell row 1 cell space space straight b end cell cell space space space straight b squared end cell row 1 cell space space straight c end cell cell space space space straight c squared end cell end table close vertical bar comma space by space passing space straight R subscript 3 space over space two space rows.
equals space open vertical bar table row 1 cell space space space straight a end cell cell space space space space straight a squared end cell row 0 cell space space space space straight b minus straight a end cell cell space space space space space straight b squared minus straight a squared end cell row 0 cell space space space space straight c minus straight a end cell cell space space space straight c squared minus straight a squared end cell end table close vertical bar comma space by space straight R subscript 2 minus straight R subscript 1 comma space space straight R subscript 3 minus straight R subscript 1
equals space open vertical bar table row cell straight b minus straight a end cell cell space space space space space space straight b squared minus straight a squared end cell row cell straight c minus straight a end cell cell space space space space space straight c squared minus straight a squared end cell end table close vertical bar comma space by space expanding space with space straight C subscript 1
equals space left parenthesis straight b minus straight a right parenthesis thin space left parenthesis straight c minus straight a right parenthesis space open vertical bar table row 1 cell space space space straight b plus straight a end cell row 1 cell space space space straight c plus straight a end cell end table close vertical bar space equals space left parenthesis straight b minus straight a right parenthesis thin space left parenthesis straight c minus straight a right parenthesis thin space left parenthesis straight c plus straight a minus straight b minus straight a right parenthesis
equals space left parenthesis straight b minus straight a right parenthesis thin space left parenthesis straight c minus straight a right parenthesis thin space left parenthesis straight c minus straight b right parenthesis space equals space left parenthesis straight a minus straight b right parenthesis thin space left parenthesis straight b minus straight c right parenthesis thin space left parenthesis straight c minus straight a right parenthesis.
    Question 112
    CBSEENMA12034440

    Prove that:
    open vertical bar table row 1 cell space space straight x end cell cell space space yz end cell row 1 cell space space straight y end cell cell space space zx end cell row 1 cell space straight z end cell cell space space xy end cell end table close vertical bar space equals space left parenthesis straight x minus straight y right parenthesis thin space left parenthesis straight y minus straight z right parenthesis thin space left parenthesis straight z minus straight x right parenthesis




    Solution

    Let increment space equals space open vertical bar table row 1 cell space space straight x end cell cell space yz end cell row 1 cell space straight y end cell cell space zx end cell row 1 cell space straight z end cell cell space xy end cell end table close vertical bar space equals space 1 over xyz space open vertical bar table row straight x cell space space straight x squared end cell cell space space xyz end cell row straight y cell space straight y squared end cell cell space space xyz end cell row straight z cell space straight z squared end cell cell space xyz end cell end table close vertical bar,
                                        by multiplying straight R subscript 1 comma space straight R subscript 2 comma space straight R subscript 3 space and space with space straight a comma space straight b comma space straight c space respectively.
        equals xyz over xyz open vertical bar table row straight x cell space space straight x squared end cell cell space 1 end cell row straight y cell space straight y squared end cell cell space 1 end cell row straight z cell space straight z squared end cell cell space 1 end cell end table close vertical bar
equals space open vertical bar table row 1 cell space space straight x end cell cell space space straight x squared end cell row 1 cell space space straight y end cell cell space space straight y squared end cell row 1 cell space space straight z end cell cell space space straight z squared end cell end table close vertical bar comma space space by space passing space straight R subscript 3 space over space two space rows.
equals space open vertical bar table row 1 cell space space space straight x end cell cell space space space space space space straight x squared end cell row 0 cell space space space straight y minus straight x end cell cell space space space space space space straight y squared minus straight x squared end cell row 0 cell space space straight z minus straight x end cell cell space space space space space straight z squared minus straight x squared end cell end table close vertical bar comma space space by space straight R subscript 2 minus straight R subscript 1 comma space straight R subscript 3 minus straight R subscript 1
equals space open vertical bar table row cell straight y minus straight x end cell cell space space space space space space space straight y squared minus straight x squared end cell row cell straight z minus straight x end cell cell space space space space space space straight z squared minus straight x squared end cell end table close vertical bar comma space by space expanding space with space straight C subscript 1
equals space left parenthesis straight y minus straight x right parenthesis thin space left parenthesis straight z minus straight x right parenthesis thin space open vertical bar table row 1 cell space space space straight y plus straight x end cell row 1 cell space space space straight z plus straight x end cell end table close vertical bar space equals space left parenthesis straight y minus straight x right parenthesis thin space left parenthesis straight z minus straight x right parenthesis thin space left parenthesis straight z plus straight x minus straight y minus straight x right parenthesis
equals space left parenthesis straight y minus straight x right parenthesis thin space left parenthesis straight z minus straight x right parenthesis thin space left parenthesis straight z minus straight y right parenthesis space equals space left parenthesis straight x minus straight y right parenthesis thin space left parenthesis straight y minus straight z right parenthesis thin space left parenthesis straight z minus straight x right parenthesis.
                  

    Question 113
    CBSEENMA12034443

    Prove that:
    open vertical bar table row straight a straight b straight c row cell straight a squared end cell cell straight b squared end cell cell straight c squared end cell row bc ca ab end table close vertical bar space equals space left parenthesis ab plus bc plus ca right parenthesis thin space left parenthesis straight a minus straight b right parenthesis thin space left parenthesis straight b minus straight c right parenthesis thin space left parenthesis straight c minus straight a right parenthesis





    Solution

    Let increment space equals space open vertical bar table row straight a cell space straight b end cell cell space straight c end cell row cell straight a squared end cell cell space straight b squared end cell cell space straight c squared end cell row bc ca ab end table close vertical bar
       equals space 1 over abc open vertical bar table row cell straight a squared end cell cell straight b squared end cell cell straight c squared end cell row cell straight a cubed end cell cell straight b cubed end cell cell straight c cubed end cell row abc abc abc end table close vertical bar space equals space abc over abc space open vertical bar table row cell straight a squared end cell cell space space straight b squared end cell cell space space straight c squared end cell row cell straight a cubed end cell cell space straight b cubed end cell cell space space straight c cubed end cell row 1 1 1 end table close vertical bar
equals space open vertical bar table row 1 1 1 row cell straight a squared end cell cell straight b squared end cell cell straight c squared end cell row cell straight a cubed end cell cell straight b cubed end cell cell straight c cubed end cell end table close vertical bar
equals space open vertical bar table row 1 0 cell space space 0 end cell row cell straight a squared end cell cell space space straight b squared minus straight a squared end cell cell space space space straight c squared minus straight a squared end cell row cell straight a cubed end cell cell straight b cubed minus straight a cubed end cell cell space space straight c cubed minus straight a cubed end cell end table close vertical bar comma space space by space straight C subscript 2 minus straight C subscript 1 comma space space straight C subscript 3 minus straight C subscript 1
equals space open vertical bar table row cell straight b squared minus straight a squared end cell cell space space space space space space straight c squared minus straight a squared end cell row cell straight b cubed minus straight a cubed end cell cell space space space space space straight c cubed minus straight a cubed end cell end table close vertical bar comma space expanding space with space first space row comma
equals space open vertical bar table row cell left parenthesis straight b minus straight a right parenthesis thin space left parenthesis straight b plus straight a right parenthesis end cell cell space space space space space space space space space space left parenthesis straight c minus straight a right parenthesis thin space left parenthesis straight c plus straight a right parenthesis end cell row cell left parenthesis straight b minus straight a right parenthesis thin space left parenthesis straight b squared plus straight a squared plus ba right parenthesis end cell cell space space space space space space space space space left parenthesis straight c minus straight a right parenthesis thin space left parenthesis straight c squared plus straight a squared plus ca right parenthesis end cell end table close vertical bar
equals space left parenthesis straight b minus straight a right parenthesis thin space left parenthesis straight c minus straight a right parenthesis space open vertical bar table row cell straight b plus straight a end cell cell space space space space space straight c plus straight a end cell row cell straight b squared plus straight a squared plus ba end cell cell space space space space space space space space space space space space space straight c squared plus straight a squared plus ca end cell end table close vertical bar
equals space left parenthesis straight b minus straight c right parenthesis thin space left parenthesis straight c minus straight a right parenthesis space open vertical bar table row cell straight b plus straight a end cell cell space space space space space space straight c minus straight b end cell row cell straight b squared plus straight a squared plus ba end cell cell space space space space space space straight c squared minus straight b squared plus ca minus ba end cell end table close vertical bar comma space by space straight C subscript 2 minus straight C subscript 1
equals left parenthesis straight b minus straight a right parenthesis thin space left parenthesis straight c minus straight a right parenthesis space left parenthesis straight c minus straight b right parenthesis space open vertical bar table row cell straight b plus straight a end cell cell space space space space space space space space space space space space space space 1 end cell row cell straight b squared plus straight a squared plus ba end cell cell space space space space space space space space space space space space straight c plus straight b plus straight a end cell end table close vertical bar
equals left parenthesis straight a minus straight b right parenthesis thin space left parenthesis straight b minus straight c right parenthesis thin space left parenthesis straight c minus straight a right parenthesis space open square brackets bc plus straight b squared plus ab plus ca plus ab plus straight a squared minus straight b squared minus straight a squared minus ab close square brackets

equals left parenthesis straight a minus straight b right parenthesis thin space left parenthesis straight b minus straight c right parenthesis thin space left parenthesis straight c minus straight a right parenthesis thin space left parenthesis ab plus bc plus ca right parenthesis

    Question 114
    CBSEENMA12034446

    Prove that:
    open vertical bar table row straight a cell space space straight a squared end cell cell space space straight b plus straight c end cell row straight b cell space space straight b squared end cell cell space space straight c plus straight a end cell row straight c cell space straight c squared end cell cell space space straight a plus straight b end cell end table close vertical bar space equals space left parenthesis straight a plus straight b plus straight c right parenthesis thin space left parenthesis straight a minus straight b right parenthesis thin space left parenthesis straight b minus straight c right parenthesis thin space left parenthesis straight c minus straight a right parenthesis

    Solution

    Let increment space equals space open vertical bar table row straight a cell space space straight a squared end cell cell space space straight b plus straight c end cell row straight b cell space straight b squared end cell cell space space straight c plus straight a end cell row straight c cell space straight c squared end cell cell space straight a plus straight b end cell end table close vertical bar space equals space open vertical bar table row straight a cell space space space straight a squared end cell cell space space straight a plus straight b plus straight c end cell row straight b cell space space straight b squared end cell cell space space straight a plus straight b plus straight c end cell row straight c cell space space straight c squared end cell cell space space straight a plus straight b plus straight c end cell end table close vertical bar comma space by space straight C subscript 3 plus straight C subscript 1
                 equals left parenthesis straight a plus straight b plus straight c right parenthesis space open vertical bar table row straight a cell space space straight a squared end cell 1 row straight b cell space straight b squared end cell 1 row straight c cell space straight c squared end cell 1 end table close vertical bar space equals space left parenthesis straight a plus straight b plus straight c right parenthesis space open vertical bar table row 1 cell space straight a end cell cell space straight a squared end cell row 1 cell space straight b end cell cell space straight b squared end cell row 1 cell space straight c end cell cell space straight c squared end cell end table close vertical bar
equals space left parenthesis straight a plus straight b plus straight c right parenthesis thin space left parenthesis straight a minus straight b right parenthesis space left parenthesis straight b minus straight c right parenthesis thin space left parenthesis straight c minus straight a right parenthesis space space space space space space space space space space space space space space space space left parenthesis Prove space it right parenthesis
                

    Question 115
    CBSEENMA12034448

    Prove that:
    open vertical bar table row straight alpha cell space space straight beta end cell cell space space space space straight gamma end cell row cell straight alpha squared end cell cell space space straight beta squared end cell cell space space space straight gamma squared end cell row cell straight beta plus straight gamma end cell cell space space space straight gamma plus straight alpha end cell cell space space space space straight alpha plus straight beta end cell end table close vertical bar space equals space left parenthesis straight beta minus straight gamma right parenthesis space left parenthesis straight gamma minus straight alpha right parenthesis thin space left parenthesis straight alpha minus straight beta right parenthesis thin space left parenthesis straight alpha plus straight beta plus straight gamma right parenthesis

    Solution
    Let space increment space equals space open vertical bar table row straight alpha cell space straight beta end cell cell space space straight gamma end cell row cell straight alpha squared end cell cell space straight beta squared end cell cell space space straight gamma squared end cell row cell straight beta plus straight gamma end cell cell space straight gamma plus straight alpha end cell cell space space straight alpha plus straight beta end cell end table close vertical bar
    space open vertical bar table row straight alpha cell space space straight beta end cell cell space space space straight gamma end cell row cell straight alpha squared end cell cell space space straight beta squared end cell cell space space space straight gamma squared end cell row cell straight alpha plus straight beta plus straight gamma end cell cell space space straight alpha plus straight beta plus straight gamma end cell cell space space space straight alpha plus straight beta plus straight gamma end cell end table close vertical bar comma space by space straight R subscript 3 plus straight R subscript 1
equals space left parenthesis straight alpha plus straight beta plus straight gamma right parenthesis space open vertical bar table row straight alpha cell space space straight beta end cell cell space space straight gamma end cell row cell straight alpha squared end cell cell space space straight beta squared end cell cell space space straight gamma squared end cell row 1 1 1 end table close vertical bar
equals space left parenthesis straight alpha plus straight beta plus straight gamma right parenthesis space open vertical bar table row 1 cell space 1 end cell cell space space 1 end cell row straight alpha cell space straight beta end cell cell space straight gamma end cell row cell straight alpha squared end cell cell space straight beta squared end cell cell space space straight gamma squared end cell end table close vertical bar
equals space left parenthesis straight alpha plus straight beta plus straight gamma right parenthesis space open vertical bar table row 1 0 0 row straight alpha cell straight beta minus straight alpha end cell cell straight gamma minus straight alpha end cell row cell straight alpha squared end cell cell straight beta squared minus straight alpha squared end cell cell straight gamma squared minus straight alpha squared end cell end table close vertical bar comma space by space straight C subscript 2 minus straight C subscript 1 comma space space space straight C subscript 3 minus straight C subscript 1
equals space left parenthesis straight alpha plus straight beta plus straight gamma right parenthesis space left parenthesis straight beta minus straight alpha right parenthesis space left parenthesis straight gamma minus straight alpha right parenthesis space open vertical bar table row 1 cell space 0 end cell cell space space 0 end cell row straight alpha cell space 1 end cell cell space 1 end cell row cell straight alpha squared end cell cell space space straight beta plus straight alpha end cell cell space space straight gamma plus straight alpha end cell end table close vertical bar
equals space left parenthesis straight alpha plus straight beta plus straight gamma right parenthesis space left parenthesis straight beta minus straight alpha right parenthesis space left parenthesis straight gamma minus straight alpha right parenthesis space open vertical bar table row 1 cell space space space space 1 end cell row cell straight beta plus straight alpha end cell cell space space space space straight gamma plus straight alpha end cell end table close vertical bar
equals space left parenthesis straight alpha plus straight beta plus straight gamma right parenthesis space left parenthesis straight beta minus straight alpha right parenthesis space left parenthesis straight gamma minus straight alpha right parenthesis thin space left parenthesis straight gamma plus straight alpha minus straight beta minus straight alpha right parenthesis
equals space left parenthesis straight alpha plus straight beta plus straight gamma right parenthesis thin space left parenthesis straight beta minus straight alpha right parenthesis space left parenthesis straight gamma minus straight alpha right parenthesis thin space left parenthesis straight gamma minus straight beta right parenthesis
equals space left parenthesis straight alpha plus straight beta plus straight gamma right parenthesis thin space left parenthesis straight beta minus straight gamma right parenthesis thin space left parenthesis straight gamma minus straight alpha right parenthesis thin space left parenthesis straight alpha minus straight beta right parenthesis.
    Question 116
    CBSEENMA12034449

    Show that:
    open vertical bar table row 1 cell space space straight x end cell cell space space yz end cell row 1 cell space straight y end cell cell space space zx end cell row 1 cell space straight z end cell cell space space xy end cell end table close vertical bar space equals space open vertical bar table row 1 cell space space space straight x end cell cell space space straight x squared end cell row 1 cell space space straight y end cell cell space space straight y squared end cell row 1 cell space straight z end cell cell space space straight z squared end cell end table close vertical bar
    and hence factorise.

    Solution

    Let Let space increment space equals space open vertical bar table row 1 cell space space straight x end cell cell space space yz end cell row 1 cell space space straight y end cell cell space space zx end cell row 1 cell space straight z end cell cell space space xy end cell end table close vertical bar space equals space 1 over xyz open vertical bar table row straight x cell space space straight x squared end cell cell space xyz end cell row cell straight y space end cell cell straight y squared end cell cell space xyz end cell row straight z cell straight z squared end cell cell space xyz end cell end table close vertical bar comma
                                          by multiplying straight R subscript 1 semicolon space straight R subscript 2 comma space straight R subscript 3 space with space straight a comma space straight b comma space straight c space respectively
                      equals space xyz over xyz open vertical bar table row straight x cell space space space straight x squared end cell cell space space 1 end cell row straight y cell space space straight y squared end cell cell space space 1 end cell row straight z cell space space straight z squared end cell cell space space 1 end cell end table close vertical bar
                       equals space open vertical bar table row 1 cell space space straight x end cell cell space space straight x squared end cell row 1 cell space space straight y end cell cell space space straight y squared end cell row 1 straight z cell space space straight z squared end cell end table close vertical bar comma space space by space passing space straight C subscript 3 space over space two space columns.
    Proceed as in (a) (i) by changing a to x, b to y, c to z.

    Question 117
    CBSEENMA12034450

    Using the properties of determinants, show that:
    open vertical bar table row 1 cell space space space straight x plus straight y end cell cell space space space straight x squared plus straight y squared end cell row 1 cell space straight y plus straight z end cell cell space space straight y squared plus straight z squared end cell row 1 cell space straight z plus straight x end cell cell space space straight z squared plus straight x squared end cell end table close vertical bar space equals space left parenthesis straight x minus straight y right parenthesis thin space left parenthesis straight y minus straight z right parenthesis thin space left parenthesis straight z minus straight x right parenthesis

    Solution
    Let space space increment space equals space open vertical bar table row 1 cell space space space straight x plus straight y end cell cell space space space straight x squared plus straight y squared end cell row 1 cell space space straight y plus straight z end cell cell space space space straight y squared plus straight z squared end cell row 1 cell space straight z plus straight x end cell cell space space space straight z squared plus straight x squared end cell end table close vertical bar space space space space space space space space space space
               equals space open vertical bar table row 1 cell space space straight x plus straight y end cell cell space space space straight x squared plus straight y squared end cell row 0 cell space space straight z minus straight x end cell cell space space space straight z squared minus straight x squared end cell row 0 cell space space straight z minus straight y end cell cell space space space straight z squared minus straight y squared end cell end table close vertical bar space by space straight R subscript 2 minus straight R subscript 1 comma space space space straight R subscript 3 minus straight R subscript 1
equals space open vertical bar table row cell straight z minus straight x end cell cell space space space space straight z squared minus straight x squared end cell row cell straight z minus straight y end cell cell space space space space straight z squared minus straight y squared end cell end table close vertical bar comma space by space space expanding space with space straight C subscript 1
equals space left parenthesis straight z minus straight x right parenthesis thin space left parenthesis straight z minus straight y right parenthesis thin space open vertical bar table row 1 cell space space space straight z plus straight x end cell row 1 cell space space space space straight z plus straight y end cell end table close vertical bar space equals space left parenthesis straight z minus straight x right parenthesis thin space left parenthesis straight z minus straight y right parenthesis thin space left parenthesis straight z plus straight y minus straight z minus straight x right parenthesis
equals space left parenthesis straight z minus straight x right parenthesis thin space left parenthesis straight z minus straight y right parenthesis thin space left parenthesis straight y minus straight x right parenthesis
equals space left parenthesis straight x minus straight y right parenthesis thin space left parenthesis straight y minus straight z right parenthesis thin space left parenthesis straight z minus straight x right parenthesis
    Question 118
    CBSEENMA12034458

    Using properties of determinants, prove that
    open vertical bar table row straight x cell space straight x squared end cell cell space yz end cell row straight y cell space straight y squared end cell cell space zx end cell row straight z cell space straight z squared end cell cell space xy end cell end table close vertical bar space equals space left parenthesis straight x minus straight y right parenthesis thin space left parenthesis straight y minus straight z right parenthesis thin space left parenthesis straight z minus straight x right parenthesis thin space left parenthesis xy plus yz plus zx right parenthesis

    Solution

    L.H.S. = open vertical bar table row straight x cell space straight x squared end cell cell space yz end cell row straight y cell space straight y squared end cell cell space zx end cell row straight z cell space straight z squared end cell cell space xy end cell end table close vertical bar
            equals space 1 over xyz open vertical bar table row cell straight x squared end cell cell space space straight x cubed end cell cell space space xyz end cell row cell straight y squared end cell cell space space straight y cubed end cell cell space space xyz end cell row cell straight z squared end cell cell space space straight z cubed end cell cell space xyz end cell end table close vertical bar space equals space xyz over xyz space open vertical bar table row cell straight x squared end cell cell space straight x cubed end cell cell space space 1 end cell row cell straight y squared end cell cell space straight y cubed end cell cell space 1 end cell row cell straight z squared end cell cell space straight z cubed end cell cell space 1 end cell end table close vertical bar space equals space open vertical bar table row 1 cell space straight x squared end cell cell space straight x cubed end cell row 1 cell space straight y squared end cell cell space straight y cubed end cell row 1 cell space straight z squared end cell cell space straight z cubed end cell end table close vertical bar
equals space open vertical bar table row 1 cell space space space straight x squared end cell cell space space space straight x cubed end cell row 0 cell space space space space straight y squared minus straight x squared end cell cell space space space space space straight y cubed minus straight x cubed end cell row 0 cell space space space straight z squared minus straight x squared end cell cell space space straight z cubed minus straight x cubed end cell end table close vertical bar comma space by space straight R subscript 2 minus straight R subscript 2 comma space straight R subscript 3 minus straight R subscript 1
equals space open vertical bar table row cell straight y squared minus straight x squared end cell cell space space space space straight y cubed minus straight x cubed end cell row cell straight z squared minus straight x squared end cell cell space space space space straight z cubed minus straight x cubed end cell end table close vertical bar space equals space space open vertical bar table row cell left parenthesis straight y minus straight x right parenthesis thin space left parenthesis straight y plus straight x right parenthesis end cell cell left parenthesis straight y minus straight x right parenthesis thin space left parenthesis straight y squared plus straight x squared plus yx right parenthesis end cell row cell left parenthesis straight z minus straight x right parenthesis space left parenthesis straight z plus straight x right parenthesis end cell cell left parenthesis straight z minus straight x right parenthesis thin space left parenthesis straight z squared plus straight x squared plus zx right parenthesis end cell end table close vertical bar
equals space left parenthesis straight y minus straight x right parenthesis thin space left parenthesis straight z minus straight x right parenthesis space open vertical bar table row cell straight y plus straight x end cell cell space space space space space space space space straight y squared plus straight x squared plus yx end cell row cell straight z plus straight x end cell cell space space space space space space space straight z squared plus straight x squared plus zx end cell end table close vertical bar
equals space left parenthesis straight y minus straight x right parenthesis thin space left parenthesis straight z minus straight x right parenthesis thin space open vertical bar table row cell straight y plus straight x end cell cell space straight y squared plus straight x squared plus yx end cell row cell straight z minus straight y end cell cell space space space space space space space space space space space space space space space space space space space space space space left parenthesis straight z minus straight y right parenthesis thin space left parenthesis straight z plus straight y right parenthesis space plus straight x space left parenthesis straight z minus straight y right parenthesis end cell end table close vertical bar
space equals space left parenthesis straight y minus straight x right parenthesis thin space left parenthesis straight z minus straight x right parenthesis thin space left parenthesis straight z minus straight y right parenthesis space open vertical bar table row cell straight y plus straight x end cell cell space space space space space space space space straight y squared plus straight x squared plus yx end cell row 1 cell space space space space space space straight z plus straight y plus straight x end cell end table close vertical bar
equals space left parenthesis straight x minus straight y right parenthesis thin space left parenthesis straight y minus straight z right parenthesis thin space left parenthesis straight z minus straight x right parenthesis thin space open square brackets yz plus straight y squared plus xy plus zx plus xy plus straight x squared minus straight y squared minus straight x squared minus xy close square brackets
equals space left parenthesis straight x minus straight y right parenthesis thin space left parenthesis straight y minus straight z right parenthesis thin space left parenthesis straight z minus straight x right parenthesis thin space left parenthesis xy plus yz plus zx right parenthesis
equals space straight R. straight H. straight S.

    Question 119
    CBSEENMA12034459

    Prove that
    open vertical bar table row cell straight a cubed plus 1 end cell cell space space space straight a squared end cell cell space space straight a end cell row cell straight b cubed plus 1 end cell cell space straight b squared end cell cell space space straight b end cell row cell straight c cubed plus 1 end cell cell straight c squared end cell cell space straight c end cell end table close vertical bar space equals space minus left parenthesis straight a minus straight b right parenthesis thin space left parenthesis straight b minus straight c right parenthesis thin space left parenthesis straight c minus straight a right parenthesis thin space left parenthesis straight a space straight b space straight c space plus space 1 right parenthesis.

    Solution
    Let space increment space equals space open vertical bar table row cell straight a cubed plus 1 end cell cell space space straight a squared end cell cell space space straight a end cell row cell straight b cubed plus 1 end cell cell space space straight b squared end cell cell space straight b end cell row cell straight c cubed plus 1 end cell cell space straight c squared end cell cell space space straight c end cell end table to the power of blank close vertical bar space equals space open vertical bar table row cell straight a cubed end cell cell space space straight a squared end cell cell space straight a end cell row cell straight b cubed end cell cell space straight b squared end cell straight b row cell straight c cubed end cell cell space straight c squared end cell straight c end table close vertical bar space plus space open vertical bar table row 1 cell space space straight a squared end cell cell space space straight a end cell row 1 cell space straight b squared end cell cell space space straight b end cell row 1 cell space straight c squared end cell cell space space straight c end cell end table close vertical bar
space space space space space equals negative open vertical bar table row straight a cell space space straight a squared end cell cell space straight a cubed end cell row straight b cell space straight b squared end cell cell space straight b cubed end cell row straight c cell space straight c squared end cell cell space straight c cubed end cell end table close vertical bar minus 1 open vertical bar table row 1 cell space space straight a end cell cell space space straight a squared end cell row 1 cell space straight b end cell cell space space straight b squared end cell row 1 cell space space straight c end cell cell space space straight c squared end cell end table close vertical bar
space space space space equals negative abc space open vertical bar table row 1 cell space straight a end cell cell space straight a squared end cell row 1 cell space straight b end cell cell space straight b squared end cell row 1 cell space straight c end cell cell space straight c squared end cell end table close vertical bar minus open vertical bar table row 1 cell space straight a end cell cell space straight a squared end cell row 1 cell space straight b end cell cell space straight b squared end cell row 1 cell space straight c end cell cell space straight c squared end cell end table close vertical bar space equals space minus left parenthesis abc plus 1 right parenthesis space open vertical bar table row 1 cell space straight a end cell cell space straight a squared end cell row 1 cell space straight b end cell cell space straight b squared end cell row 1 cell space straight c end cell cell space straight c squared end cell end table close vertical bar
equals negative left parenthesis abc plus 1 right parenthesis space open vertical bar table row 1 cell space space straight a end cell cell space space space straight a squared end cell row 0 cell space space straight b minus straight a end cell cell space space space space straight b squared minus straight a squared end cell row 0 cell space space straight c minus straight a end cell cell space space space straight c squared minus straight a squared end cell end table close vertical bar comma space by space straight R subscript 2 minus straight R subscript 1 comma space straight R subscript 3 minus straight R subscript 1
equals space minus left parenthesis abc plus 1 right parenthesis thin space open vertical bar table row cell straight b minus straight a end cell cell space space space space space straight b squared minus straight a squared end cell row cell straight c minus straight a end cell cell straight c squared minus straight a squared end cell end table close vertical bar
equals space minus left parenthesis abc plus 1 right parenthesis thin space left parenthesis straight b minus straight a right parenthesis thin space left parenthesis straight c minus straight a right parenthesis thin space open vertical bar table row 1 cell space space space space space space straight b plus straight a end cell row 1 cell space space space space space space straight c plus straight a end cell end table close vertical bar
equals space minus left parenthesis abc plus 1 right parenthesis thin space left parenthesis straight b minus straight a right parenthesis thin space left parenthesis straight c minus straight a right parenthesis thin space left parenthesis straight c plus straight a minus straight b minus straight a right parenthesis
equals negative left parenthesis abc plus 1 right parenthesis thin space left parenthesis straight b minus straight a right parenthesis thin space left parenthesis straight c minus straight a right parenthesis thin space left parenthesis straight c minus straight b right parenthesis
equals negative left parenthesis straight a minus straight b right parenthesis thin space left parenthesis straight b minus straight c right parenthesis thin space left parenthesis straight c minus straight a right parenthesis thin space left parenthesis abc plus 1 right parenthesis
therefore space space space space space space open vertical bar table row cell straight a cubed plus 1 end cell cell space space space straight a squared end cell cell space space straight a end cell row cell straight b cubed plus 1 end cell cell space straight b squared end cell cell space straight b end cell row cell straight c cubed plus 1 end cell cell space straight c squared end cell cell space straight c end cell end table close vertical bar space equals space minus left parenthesis straight a minus straight b right parenthesis thin space left parenthesis straight b minus straight c right parenthesis thin space left parenthesis straight c minus straight a right parenthesis thin space left parenthesis abc plus 1 right parenthesis

    Sponsor Area

    Question 120
    CBSEENMA12034460

    If x = – 9 is a root of
    open vertical bar table row straight x cell space space 3 end cell cell space space 7 end cell row 2 cell space space straight x end cell cell space space 2 end cell row 7 cell space 6 end cell cell space straight x end cell end table close vertical bar space equals 0 comma
    find the other roots.

    Solution
    The given equation is
    open vertical bar table row straight x cell space 3 end cell cell space 7 end cell row 2 cell space straight x end cell cell space 2 end cell row 7 cell space 6 end cell cell space straight x end cell end table close vertical bar space equals space 0
    or          open vertical bar table row cell straight x plus 9 end cell cell straight x plus 9 end cell cell straight x plus 9 end cell row 2 straight x 2 row 7 6 straight x end table close vertical bar space equals 0 comma space space by space space space straight R subscript 1 plus straight R subscript 2 plus straight R subscript 3
    or space left parenthesis straight x plus 9 right parenthesis space open vertical bar table row 1 cell space 1 end cell cell space 1 end cell row 2 cell space straight x end cell cell space 2 end cell row 7 cell space 6 end cell cell space straight x end cell end table close vertical bar space equals space 0
or space left parenthesis straight x plus 9 right parenthesis thin space open vertical bar table row 1 0 cell space space space 0 end cell row cell 2 space end cell cell space space space straight x minus 2 end cell cell space space space 0 end cell row 7 cell negative 1 end cell cell straight x minus 7 end cell end table close vertical bar space equals 0 comma space by space straight C subscript 2 minus straight C subscript 1 comma space space straight C subscript 3 minus straight C subscript 1
space or space left parenthesis straight x plus 9 right parenthesis space open square brackets left parenthesis 1 right parenthesis thin space left parenthesis straight x minus 2 right parenthesis thin space left parenthesis straight x minus 7 right parenthesis close square brackets space equals space 0 space space space space space space space space space space space space space space space left square bracket Product space of space diagonal space elements right square bracket
or space space left parenthesis straight x minus 2 right parenthesis thin space left parenthesis straight x minus 7 right parenthesis thin space left parenthesis straight x plus 9 right parenthesis space equals space 0
therefore space space space space straight x space equals space 2 comma space space 7 comma space space minus 9
because space space space straight x space equals space minus 9 space is space given space root
therefore space space other space roots space are space 2 comma space 7.
    Question 121
    CBSEENMA12034461

    Solve the equation
    open vertical bar table row cell straight x plus straight a end cell cell space straight x end cell cell space straight x end cell row straight x cell space straight x plus straight a end cell cell space straight x end cell row straight x straight x cell space straight x plus straight a end cell end table close vertical bar space equals space 0 comma space space space straight a not equal to space 0.

    Solution

    The given equation is
          open vertical bar table row cell straight x plus straight a end cell cell space straight x end cell cell space straight x end cell row straight x cell space straight x plus straight a end cell cell space straight x end cell row straight x straight x cell space straight x plus straight a end cell end table close vertical bar space equals space 0
    rightwards double arrow space open vertical bar table row cell 3 straight x plus straight a end cell cell space 3 straight x plus straight a end cell cell 3 straight x plus straight a end cell row straight x cell straight x plus straight a end cell straight x row straight x straight x cell straight x plus straight a end cell end table close vertical bar space equals space 0 comma space space by space straight R subscript 1 space rightwards arrow space straight R subscript 1 plus straight R subscript 2 plus straight R subscript 3
rightwards double arrow space left parenthesis 3 straight x plus straight a right parenthesis thin space open vertical bar table row 1 cell space space space 1 end cell cell space 1 end cell row straight x cell space space space space straight x plus straight a end cell cell space straight x end cell row straight x straight x cell space straight x plus straight a end cell end table close vertical bar space equals space 0
rightwards double arrow space left parenthesis 3 straight x plus straight a right parenthesis thin space open vertical bar table row 1 cell space space space 0 end cell cell space space space 0 end cell row straight x cell space space straight a end cell cell space space 0 end cell row straight x cell space space 0 end cell cell space space straight a end cell end table close vertical bar space equals space 0 comma space space by space straight C subscript 2 space rightwards arrow space straight C subscript 2 space minus space straight C subscript 1 comma space space straight C subscript 3 minus straight C subscript 1
rightwards double arrow space space space left parenthesis 3 straight x plus straight a right parenthesis thin space left square bracket left parenthesis 1 right parenthesis space left parenthesis straight a space left parenthesis straight a right parenthesis right square bracket space equals 0 space space space space space space space space space space space space space space space space left square bracket Product space of space diagonal space elements right square bracket
rightwards double arrow space space space space space straight a squared left parenthesis 3 straight x plus straight a right parenthesis space equals space 0
rightwards double arrow space space space space space space space space space 3 straight x plus straight a space equals space 0 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets because space straight a not equal to space 0 close square brackets
rightwards double arrow space space space space space space space straight x equals negative straight a over 3

    Question 122
    CBSEENMA12034463

    Solve:
    open vertical bar table row cell straight x plus 1 end cell 2 3 row 3 cell straight x plus 2 end cell 1 row 1 2 cell straight x plus 3 end cell end table close vertical bar space equals 0

    Solution

    The given equation is
          open vertical bar table row cell straight x plus 1 end cell 2 cell space space space 3 end cell row 3 cell straight x plus 2 end cell cell space space space space 1 end cell row 1 2 cell straight x plus 3 end cell end table close vertical bar space equals space 0
    or   open vertical bar table row cell straight x plus 6 end cell cell space 2 end cell 3 row cell straight x plus 6 end cell cell space straight x plus 2 end cell 1 row cell straight x plus 6 end cell 2 cell straight x plus 3 end cell end table close vertical bar space equals space 0 comma space space by space straight C subscript 1 space rightwards arrow space straight C subscript 1 space plus space straight C subscript 2 plus straight C subscript 3 
    or  left parenthesis straight x plus 6 right parenthesis space equals space open vertical bar table row 1 cell space space space space 2 end cell cell space space 3 end cell row 1 cell space space space space straight x plus 2 end cell cell space space 1 end cell row 1 2 cell space space straight x plus 3 end cell end table close vertical bar space equals space 0 
      or space space left parenthesis straight x plus 6 right parenthesis space open vertical bar table row 1 cell space space space 2 end cell cell space space 3 end cell row 0 cell space space space straight x end cell cell space space minus 2 end cell row 0 cell space space 0 end cell cell space space straight x end cell end table close vertical bar space equals space 0 comma space space by space straight R subscript 1 space rightwards arrow space straight R subscript 2 space minus space straight R subscript 1 comma space space space straight R subscript 3 space rightwards arrow space straight R subscript 3 space minus straight R subscript 1
or space space left parenthesis straight x plus 6 right parenthesis thin space left square bracket left parenthesis 1 right parenthesis thin space left parenthesis straight x right parenthesis thin space left parenthesis straight x right parenthesis right square bracket space equals space 0 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets Product space of space diagonal space elements close square brackets
or space space space straight x squared left parenthesis straight x plus 6 right parenthesis space equals space 0
therefore space space space space straight x space equals space 0 comma space space 0 comma space space minus 6
therefore space space space space roots space of space given space equation space are space 0 comma space minus 6.

    Question 123
    CBSEENMA12034466

    Prove that:
    open vertical bar table row cell straight a squared plus 1 end cell cell straight a space straight b end cell cell straight a space straight c end cell row cell straight a space straight b end cell cell straight b squared plus 1 end cell cell straight b space straight c end cell row cell straight a space straight c end cell cell straight b space straight c end cell cell straight c squared plus 1 end cell end table close vertical bar space equals space 1 plus straight a squared plus straight b squared plus straight c squared.

    Solution
    Let space increment space equals space open vertical bar table row cell straight a squared plus 1 end cell cell space straight a space straight b end cell cell straight a space straight c end cell row cell straight a space straight b end cell cell space space straight b squared plus 1 end cell cell straight b space straight c end cell row cell straight a space straight c end cell cell straight b space straight c end cell cell straight c squared plus 1 end cell end table close vertical bar
space space space space space space space equals space 1 over abc open vertical bar table row cell straight a left parenthesis straight a squared plus 1 right parenthesis end cell cell ab squared end cell cell straight a space straight c squared end cell row cell straight a squared straight b end cell cell straight b left parenthesis straight b squared plus 1 right parenthesis end cell cell straight b space straight c squared end cell row cell straight a squared straight c end cell cell straight b squared straight c end cell cell straight c left parenthesis straight c squared plus 1 right parenthesis end cell end table close vertical bar comma
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space by space multiplying space straight C subscript 1 comma space straight C subscript 2 comma space straight C subscript 3 space by space straight a comma space straight b comma space straight c space respectively.
space space space space space space equals space abc over abc open vertical bar table row cell straight a squared plus 1 end cell cell space straight b squared end cell cell straight c squared end cell row cell straight a squared end cell cell space straight b squared plus 1 end cell cell straight c squared end cell row cell straight a squared end cell cell straight b squared end cell cell straight c squared plus 1 end cell end table close vertical bar. space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space by space taking space straight a comma space straight b space straight c comma space common space from space straight R subscript 1 comma space straight R subscript 2 comma space straight R subscript 3 space respectively.
space space space space equals space open vertical bar table row cell 1 plus straight a squared plus straight b squared plus straight c squared end cell cell space space straight b squared end cell cell space space straight c squared end cell row cell 1 plus straight a squared plus straight b squared plus straight c squared end cell cell space space space space space straight b squared plus 1 end cell cell straight c squared end cell row cell 1 plus straight a squared plus straight b squared plus straight c squared end cell cell straight b squared end cell cell space straight c squared plus 1 end cell end table close vertical bar space comma space by space straight C subscript 1 plus straight C subscript 2 plus straight C subscript 3

equals space left parenthesis 1 plus straight a squared plus straight b squared plus straight c squared right parenthesis space open vertical bar table row 1 cell space space straight b squared end cell cell straight c squared end cell row 1 cell space space straight b squared plus 1 end cell cell straight c squared end cell row 1 cell straight b squared end cell cell straight c squared plus 1 end cell end table close vertical bar
space space space equals space left parenthesis 1 plus straight a squared plus straight b squared space plus straight c squared right parenthesis thin space space open vertical bar table row 1 cell space space space space straight b squared end cell cell straight c squared end cell row 0 1 0 row 0 0 1 end table close vertical bar comma space space space by space straight R subscript 2 space minus space straight R subscript 1 comma space space space straight R subscript 3 space minus space straight R subscript 1
equals space left parenthesis 1 plus straight a squared plus straight b squared plus straight c squared right parenthesis thin space left square bracket 1.1.1 right square bracket space space space space space space space space space space space space space space space space left square bracket Products space of space diagonal space elements right square bracket space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space
equals space 1 plus straight a squared plus straight b squared plus straight c squared.
space space space space space space space space space space space space space space space space
    Question 124
    CBSEENMA12034468

    If x, y, z are different and
    increment space equals space open vertical bar table row straight x cell space space space space straight x squared end cell cell space 1 plus straight x cubed end cell row straight y cell space space space straight y squared end cell cell space 1 plus straight y cubed end cell row straight z cell space space straight z squared end cell cell space 1 plus straight z cubed end cell end table close vertical bar space equals space 0 comma space space then space show space that space 1 plus xyz space equals 0

    Solution
    increment space equals space open vertical bar table row straight x cell space space space straight x squared end cell cell space space 1 plus straight x cubed end cell row straight y cell space space space straight y squared end cell cell space space 1 plus straight y cubed end cell row straight z cell space space straight z squared end cell cell space space 1 plus straight z cubed end cell end table close vertical bar space equals space open vertical bar table row straight x cell space space space straight x squared end cell cell space 1 end cell row straight y cell space space straight y squared end cell cell space 1 end cell row straight z cell space space straight z squared end cell cell space 1 end cell end table close vertical bar plus space open vertical bar table row straight x cell space space space straight x squared end cell cell space space space straight x cubed end cell row straight y cell space space straight y squared end cell cell space space straight y cubed end cell row straight z cell space space straight z squared end cell cell space space straight z cubed end cell end table close vertical bar
space space space equals space open vertical bar table row 1 cell space space straight x end cell cell space space straight x squared end cell row 1 cell space space straight y end cell cell space space straight y squared end cell row 1 cell space space straight z end cell cell space space straight z squared end cell end table close vertical bar plus space straight x space straight y space straight z space space open vertical bar table row 1 cell space space straight x end cell cell space space straight x squared end cell row 1 cell space straight y end cell cell space space straight y squared end cell row 1 cell space straight z end cell cell space space straight z squared end cell end table close vertical bar
space equals space left parenthesis 1 plus xyz right parenthesis space open vertical bar table row 1 cell space space space straight x end cell cell space space space straight x squared end cell row 1 cell space space straight y end cell cell space space straight y squared end cell row 1 cell space space straight z end cell cell space space space straight z squared end cell end table close vertical bar
space equals space left parenthesis 1 plus xyz right parenthesis thin space left parenthesis straight x minus straight y right parenthesis thin space left parenthesis straight y minus straight z right parenthesis thin space left parenthesis straight z minus straight x right parenthesis
Now space increment space equals space 0
rightwards double arrow space space space space left parenthesis 1 plus xyz right parenthesis thin space left parenthesis straight x minus straight y right parenthesis thin space left parenthesis straight y minus straight z right parenthesis thin space left parenthesis straight z minus straight x right parenthesis
rightwards double arrow space space space space space space space 1 plus xyz space equals 0 space space space space space space space space space space space space space open square brackets table row cell because space space space straight x comma space straight y comma space straight z space are space all space different end cell row cell because space straight x space minus space straight y space not equal to 0 comma space space straight y minus straight z not equal to 0 comma space space straight z minus straight x not equal to 0 end cell end table close square brackets
    Question 125
    CBSEENMA12034470

    Prove that:
    open vertical bar table row straight x cell space space space straight x squared end cell cell space space 1 plus px cubed end cell row straight y cell space space straight y squared end cell cell space space 1 plus py cubed end cell row straight z cell space space straight z squared end cell cell space space 1 plus pz cubed end cell end table close vertical bar space equals space left parenthesis 1 plus pxyz right parenthesis thin space left parenthesis straight x minus straight y right parenthesis thin space left parenthesis straight y minus straight z right parenthesis thin space left parenthesis straight z minus straight x right parenthesis
    where p is any scalar.

    Solution

    Let increment space equals space open vertical bar table row straight x cell space space space straight x squared end cell cell space space 1 plus px cubed end cell row straight y cell space space space straight y squared end cell cell space space 1 plus py cubed end cell row straight z cell space space straight z squared end cell cell space 1 plus pz cubed end cell end table close vertical bar
               equals space open vertical bar table row straight x cell space space space straight x squared end cell cell space space 1 end cell row straight y cell space space straight y squared end cell cell space space 1 end cell row straight z cell space space straight z squared end cell cell space 1 end cell end table close vertical bar plus space open vertical bar table row straight x cell space space space straight x squared end cell cell space space px cubed end cell row straight y cell space space straight y squared end cell cell space space py cubed end cell row straight z cell space space straight z squared end cell cell space space pz cubed end cell end table close vertical bar space equals space open vertical bar table row 1 cell space straight x end cell cell space straight x squared end cell row 1 cell space straight y end cell cell space straight y squared end cell row 1 cell space straight z end cell cell space straight z squared end cell end table close vertical bar plus straight p space open vertical bar table row straight x cell space space straight x squared end cell cell space straight x cubed end cell row straight y cell space straight y squared end cell cell space straight y cubed end cell row straight z cell space straight z squared end cell cell space straight z cubed end cell end table close vertical bar
equals space open vertical bar table row 1 cell space straight x end cell cell space straight x squared end cell row 1 cell space straight y end cell cell space straight y squared end cell row 1 cell space straight z end cell cell space straight z squared end cell end table close vertical bar plus space pxyz space open vertical bar table row 1 straight x cell straight x squared end cell row 1 straight y cell straight y squared end cell row 1 straight z cell straight z squared end cell end table close vertical bar space equals space left parenthesis 1 plus pxyz right parenthesis thin space open vertical bar table row 1 cell space space straight x end cell cell space space straight x squared end cell row 1 cell space space straight y end cell cell space space straight y squared end cell row 1 cell space space straight z end cell cell space space straight z squared end cell end table close vertical bar
       equals space left parenthesis 1 plus straight p space straight x space straight y space straight z right parenthesis thin space open vertical bar table row 1 cell space space space straight x end cell cell space space space space space straight x squared end cell row 0 cell space space space straight y minus straight x end cell cell space space space space straight y squared minus straight x squared end cell row 0 cell space space straight z minus straight x end cell cell space space straight z squared minus straight x squared end cell end table close vertical bar comma space by space straight R subscript 2 minus straight R subscript 1 comma space space space straight R subscript 3 minus straight R subscript 1
equals space left parenthesis 1 plus straight p space straight x space straight y space straight z right parenthesis space open vertical bar table row cell straight y minus straight x end cell cell space space space space straight y squared minus straight x squared end cell row cell straight z minus straight x end cell cell space space space space straight z squared minus straight x squared end cell end table close vertical bar space equals space left parenthesis 1 plus pxyz right parenthesis space open vertical bar table row cell straight y minus straight x end cell cell space space left parenthesis straight y minus straight x right parenthesis thin space left parenthesis straight y plus straight x right parenthesis end cell row cell straight z minus straight x end cell cell space left parenthesis straight z minus straight x right parenthesis thin space left parenthesis straight z plus straight x right parenthesis end cell end table close vertical bar
equals space left parenthesis 1 plus pxyz right parenthesis thin space left parenthesis straight y minus straight x right parenthesis thin space left parenthesis straight z minus straight x right parenthesis space open vertical bar table row 1 cell space space straight y plus straight x end cell row 1 cell space space straight z plus straight x end cell end table close vertical bar
equals space left parenthesis 1 plus pxyz right parenthesis thin space left parenthesis straight y minus straight x right parenthesis thin space left parenthesis straight z minus straight x right parenthesis thin space left square bracket straight z plus straight x minus straight y minus straight x right square bracket
equals space left parenthesis 1 plus pxyz right parenthesis thin space left parenthesis straight y minus straight x right parenthesis thin space left parenthesis straight z minus straight x right parenthesis thin space left parenthesis straight z minus straight y right parenthesis space equals space left parenthesis 1 plus pxyz right parenthesis thin space left parenthesis straight x minus straight y right parenthesis thin space left parenthesis straight y minus straight z right parenthesis thin space left parenthesis straight z minus straight x right parenthesis

    Question 127
    CBSEENMA12034473

    Let the three digit numbers A28,3B9 and 62C where A, B, and C are any integers between 0 and 9, be divisible by a fixed integer k. Show that the determinant
    open vertical bar table row straight A cell space space 3 end cell cell space space space 6 end cell row 8 cell space 9 end cell cell space space straight C end cell row 2 cell space straight B end cell cell space space 2 end cell end table close vertical bar
    is divisible by k.

    Solution
    The numbers A28, 3B9, 62C are divisible by k.
    Let A28 = ka, 3B9 = k b, 62C = kc where a , b , c are integers.
    Let space increment space equals space open vertical bar table row straight A cell space space 3 end cell cell space space 6 end cell row 8 cell space space 9 end cell cell space space straight C end cell row 2 cell space space straight B end cell cell space space 2 end cell end table close vertical bar
           equals space open vertical bar table row straight A 3 6 row cell 8 plus 100 straight A plus 10.2 end cell cell space space space space space space space 9 plus 100. space 3 plus 10. space straight B end cell cell space space space space space space space space space straight C plus 100.6 plus 10.2 end cell row 2 straight B 2 end table close vertical bar
space space
                                                                                     by straight R subscript 2 plus 100 space straight R subscript 1 plus 10 space straight R subscript 3
           equals space open vertical bar table row straight A cell space space space space 3 end cell cell space space space space 6 end cell row cell straight A 28 end cell cell space space space 3 straight B 9 end cell cell space space space space 62 straight C end cell row 2 straight B cell space space space 2 end cell end table close vertical bar
equals space open vertical bar table row straight A cell space space space 3 end cell cell space space space 6 end cell row cell straight k space straight a end cell cell space space space straight k space straight b end cell cell space space space space straight k space straight c end cell row 2 straight B cell space space 2 end cell end table close vertical bar space equals space straight k space open vertical bar table row straight A cell space space space 3 end cell cell space space space 6 end cell row straight a cell space space straight b end cell cell space space space straight c end cell row 2 cell space space straight B end cell cell space space space 2 end cell end table close vertical bar
equals space integral space multiple space of space straight k
therefore space space space space space increment space is space divisible space by space straight k.
    Question 128
    CBSEENMA12034475

    Prove that:
    open vertical bar table row cell left parenthesis straight b plus straight c right parenthesis squared end cell cell straight a squared end cell cell straight a squared end cell row cell straight b squared end cell cell left parenthesis straight c plus straight a right parenthesis squared end cell cell straight b squared end cell row cell straight c squared end cell cell straight c squared end cell cell left parenthesis straight a plus straight b right parenthesis squared end cell end table close vertical bar space equals space 2 space abc space left parenthesis straight a plus straight b plus straight c right parenthesis cubed.

    Solution

     Let space increment space equals space open vertical bar table row cell left parenthesis straight b plus straight c right parenthesis squared end cell cell straight a squared end cell cell straight a squared end cell row cell straight b squared end cell cell left parenthesis straight c plus straight a right parenthesis squared end cell cell straight b squared end cell row cell straight c squared end cell cell straight c squared end cell cell left parenthesis straight a plus straight b right parenthesis squared end cell end table close vertical bar                               ...(1)
    Putting a = 0 in (1), we get,
        increment space equals space open vertical bar table row cell left parenthesis straight b plus straight c right parenthesis squared end cell 0 cell space space space 0 end cell row cell straight b squared end cell cell straight c squared end cell cell space space space straight b squared end cell row cell straight c squared end cell cell straight a squared end cell cell space space straight b squared end cell end table close vertical bar space equals space straight b squared straight c squared space open vertical bar table row cell left parenthesis straight b plus straight c right parenthesis squared end cell cell space space space 0 end cell cell space space 0 end cell row cell straight b squared end cell 1 cell space space 1 end cell row cell straight c squared end cell 1 cell space space 1 end cell end table close vertical bar
space space space space space equals space straight b squared straight c squared left parenthesis 0 right parenthesis space equals space 0 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets because space two space columns space are space identical close square brackets
therefore space space space space space space straight a space minus space 0 space space straight i. straight e. comma space straight a space is space factor space of space increment.
Similarly comma space straight b comma space straight c space are space factors space of space increment.
    Again putting a + b + c = 0 in (1), we get,
    increment space equals space open vertical bar table row cell left parenthesis negative straight a right parenthesis squared end cell cell space space straight a squared end cell cell space space space space space straight a squared end cell row cell straight b squared end cell cell left parenthesis negative straight b right parenthesis squared end cell cell space space space space straight b squared end cell row cell straight c squared end cell cell straight c squared end cell cell space space left parenthesis negative straight c right parenthesis squared end cell end table close vertical bar space equals space open vertical bar table row cell straight a squared end cell cell space space space straight a squared end cell cell space space straight a squared end cell row cell straight b squared end cell cell space space straight b squared end cell cell space space straight b squared end cell row cell straight c squared end cell cell space space straight c squared end cell cell space space straight c squared end cell end table close vertical bar space equals space 0
therefore space space space left parenthesis straight a plus straight b plus straight c right parenthesis squared space is space straight a space factor space of space increment.
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets table row cell because space all space the space three space columns space of space increment space become space identical space when space we space put end cell row cell straight a plus straight b plus straight c space equals space 0 end cell end table close square brackets
Now space increment space is space of space sixth space degree
therefore space space space space space increment space has space got space one space more space linear space factor space of space the space type space straight k space left parenthesis straight a plus straight b plus straight c right parenthesis
therefore space space space space space space space space increment space equals space straight k space straight a space straight b space straight c space left parenthesis straight a plus straight b plus straight c right parenthesis cubed space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis space space space space space space space space space space space space space space
or space space space space space space space space space space space open vertical bar table row cell left parenthesis straight b plus straight c right parenthesis squared end cell cell straight a squared end cell cell straight a squared end cell row cell straight b squared end cell cell left parenthesis straight c plus straight a right parenthesis squared end cell cell straight b squared end cell row cell straight c squared end cell cell straight c squared end cell cell left parenthesis straight a plus straight b right parenthesis squared end cell end table close vertical bar space equals space straight k space straight a space straight b space straight c space left parenthesis straight a plus straight b plus straight c right parenthesis cubed
Put space straight a space equals space straight b space equals space straight c space space equals space 1
therefore space space space space open vertical bar table row 4 cell space space 1 end cell cell space space space 1 end cell row 1 cell space space space 4 end cell cell space space space 1 end cell row 1 cell space space 1 end cell cell space space space 4 end cell end table close vertical bar space equals space 27 space straight k
therefore space space space space open vertical bar table row 0 cell space space 0 end cell cell space space 1 end cell row cell negative 3 end cell cell space 3 end cell cell space space 1 end cell row cell negative 15 end cell cell space space minus 3 end cell cell space space 4 end cell end table close vertical bar space equals space 27 space straight k comma space by space straight C subscript 1 minus 4 space straight C subscript 3 comma space straight C subscript 2 minus straight C subscript 1
therefore space space space space space open vertical bar table row cell negative 3 end cell cell space space space space space space space space 3 end cell row cell negative 15 end cell cell space space space space minus 3 end cell end table close vertical bar space equals space 27 space straight k
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space


    therefore space space 9 plus 45 space equals space 27 space straight k space space space rightwards double arrow space space space 27 space straight k space equals space 54 space space space rightwards double arrow space space space straight k space equals space 2
therefore space space space from space left parenthesis 2 right parenthesis comma space space increment space equals space 2 space abc thin space left parenthesis straight a plus straight b plus straight c right parenthesis cubed
or space space space space space space space space space space space space space space open vertical bar table row cell left parenthesis straight b plus straight c right parenthesis squared end cell cell straight a squared end cell cell straight a squared end cell row cell straight b squared end cell cell left parenthesis straight c plus straight a right parenthesis squared end cell cell straight b squared end cell row cell straight c squared end cell cell straight c squared end cell cell left parenthesis straight a plus straight b right parenthesis squared end cell end table close vertical bar space equals space 2 space straight a space straight b space straight c space left parenthesis straight a plus straight b plus straight c right parenthesis cubed
    Question 129
    CBSEENMA12034478

    Prove that:
    open vertical bar table row cell negative 2 straight a end cell cell space space space space straight a plus straight b end cell cell space space space straight a plus straight c end cell row cell straight b plus straight a end cell cell space space minus 2 straight b end cell cell space space space straight b plus straight c end cell row cell straight c plus straight a end cell cell space space straight c plus straight b end cell cell space space minus 2 straight c end cell end table close vertical bar space equals space 4 left parenthesis straight a plus straight b right parenthesis thin space left parenthesis straight b plus straight c right parenthesis thin space left parenthesis straight c plus straight a right parenthesis.


    Solution
    Let space increment space equals space open vertical bar table row cell negative 2 straight a end cell cell space space space space space space straight a plus straight b end cell cell space space space space straight a plus straight c end cell row cell straight b plus straight a end cell cell space space minus 2 straight b end cell cell space space space straight b plus straight c end cell row cell straight c plus straight a end cell cell space straight c plus straight b end cell cell space space space minus 2 straight c end cell end table close vertical bar space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
Putting space straight a plus straight b space equals space 0 space space space or space space straight a space equals negative straight b space in space left parenthesis 1 right parenthesis comma space we space get comma
increment space equals space open vertical bar table row cell 2 straight b end cell cell space space 0 end cell cell space space space space straight c minus straight b end cell row 0 cell space space minus 2 straight b end cell cell space space space space straight b plus straight c end cell row cell straight c minus straight b end cell cell space space space straight c plus straight b end cell cell space space space minus 2 straight c end cell end table close vertical bar
space space space space equals space 2 straight b open vertical bar table row cell negative 2 straight b end cell cell space space space space space space space space space space straight b plus straight c end cell row cell straight c plus straight b end cell cell space space space space space space minus 2 straight c end cell end table close vertical bar plus left parenthesis straight c minus straight b right parenthesis space open vertical bar table row 0 cell space space space space space space space minus 2 straight b end cell row cell straight c minus straight b end cell cell space space space space space space space space space straight c plus straight b end cell end table close vertical bar
space space space space space equals space 2 space straight b open square brackets 4 space straight b space straight c space minus straight b squared minus straight c squared minus 2 space straight b space straight c close square brackets space plus space left parenthesis straight c minus straight b right parenthesis space left square bracket 0 plus 2 space straight b space straight c minus 2 space straight b squared right square bracket
space space space space equals 2 space straight b space left parenthesis negative straight b squared minus straight c squared plus 2 bc right parenthesis plus left parenthesis straight c minus straight b right parenthesis thin space left parenthesis 2 space straight b space straight c space minus space 2 space straight b squared right square bracket
space space space space equals space minus 2 straight b cubed minus 2 bc squared plus 4 straight b squared straight c minus 2 bc squared minus 2 straight b squared straight c minus 2 straight b squared straight c plus 2 straight b cubed
space space space space space equals space 0
therefore space space space space space space space straight a plus straight b minus 0 space space space space space straight i. straight e. space space space straight a plus straight b space is space straight a space factor space of space increment
Similarly space straight b plus straight c comma space space space straight c plus straight a space space space space are space factors space of space increment.
Now space increment space is space of space 3 rd space degree
    therefore space space space space space space increment space equals space straight k space left parenthesis straight a plus straight b right parenthesis thin space left parenthesis straight b plus straight c right parenthesis thin space left parenthesis straight c plus straight a right parenthesis                                                ...(2)
    or space space open vertical bar table row cell negative 2 straight a end cell cell space space space straight a plus straight b end cell cell space space space space space straight a plus straight c end cell row cell straight b plus straight a end cell cell space space space minus 2 straight b end cell cell space space space space straight b plus straight c end cell row cell straight c plus straight a end cell cell space space straight c plus straight b end cell cell space space space minus 2 straight c end cell end table close vertical bar space equals space straight k left parenthesis straight a plus straight b right parenthesis thin space left parenthesis straight b plus straight c right parenthesis thin space left parenthesis straight c plus straight a right parenthesis
Put space straight a space equals space 0 comma space space space straight b space equals space 1 comma space space straight c space equals space 1
therefore space space space space open vertical bar table row 0 cell space space space 1 end cell cell space space space 1 end cell row 1 cell space space minus 2 end cell cell space space space space space 2 end cell row 1 cell space space 2 end cell cell space space minus 2 end cell end table close vertical bar space equals space straight k left parenthesis 0 plus 1 right parenthesis thin space left parenthesis 1 plus 1 right parenthesis thin space left parenthesis 1 plus 0 right parenthesis
therefore space space space space open vertical bar table row 0 cell space space space space space space space 0 end cell cell space space space space space space 1 end cell row 1 cell space space space minus 4 end cell cell space space space space space space 2 end cell row 1 cell space space space space space space 4 end cell cell space space space minus 2 end cell end table close vertical bar space equals space 2 space straight k space space space space space space space rightwards double arrow space space space space space space open vertical bar table row 1 cell space space space space minus 4 end cell row 1 cell space space space space space space space 4 end cell end table close vertical bar space equals space 2 space straight k
rightwards double arrow space space space 4 plus 4 space equals space 2 space straight k space space space space space space space space rightwards double arrow space space space space space space space 8 space equals space 2 space straight k space space space space space space space rightwards double arrow space space space straight k space equals space 4
therefore space space space from space left parenthesis 2 right parenthesis comma space space space increment space equals space 4 left parenthesis straight a plus straight b right parenthesis thin space left parenthesis straight b plus straight c right parenthesis thin space left parenthesis straight c plus straight a right parenthesis
or space space space space space space open vertical bar table row cell negative 2 straight a end cell cell space space space straight a plus straight b end cell cell space space space space straight a plus straight c end cell row cell straight b plus straight a end cell cell space space minus 2 straight b end cell cell space space space straight b plus straight c end cell row cell straight c plus straight a end cell cell space space straight c plus straight b end cell cell space space minus 2 straight c end cell end table close vertical bar space equals space 4 left parenthesis straight a plus straight b right parenthesis thin space left parenthesis straight b plus straight c right parenthesis thin space left parenthesis straight c plus straight a right parenthesis.
    Question 131
    CBSEENMA12034482

    If a, b, c are in A.P, then the determinant
    open vertical bar table row cell straight x plus 2 end cell cell space space space straight x plus 3 end cell cell space space space straight x plus 2 straight a end cell row cell straight x plus 3 end cell cell space space straight x plus 4 end cell cell space space straight x plus 2 straight b end cell row cell straight x plus 4 end cell cell space space straight x plus 5 end cell cell space space space straight x plus 2 straight c end cell end table close vertical bar


    • 0

    • 1

    • v

    • 2x

    Solution

    A.

    0

    Since a, b, c are in A.P.
    therefore space space space space space space space 2 straight b space equals space straight a plus straight c space                                                     ...(1)
    Let space increment space equals space open vertical bar table row cell straight x plus 2 end cell cell space space space space space straight x plus 3 end cell cell space space space straight x plus 2 straight a end cell row cell straight x plus 3 end cell cell space space space straight x plus 4 end cell cell space space straight x plus 2 straight b end cell row cell straight x plus 4 end cell cell space space straight x plus 5 end cell cell space space straight x plus 2 straight c end cell end table close vertical bar
space space space space space space space space space space equals space 1 half open vertical bar table row cell straight x plus 2 end cell cell space space straight x plus 3 end cell cell space space straight x plus 2 straight a end cell row cell 2 straight x plus 6 end cell cell space space space 2 straight x plus 8 end cell cell space space space 2 straight x plus 4 straight b end cell row cell straight x plus 4 end cell cell space straight x plus 5 end cell cell space space straight x plus 2 straight c end cell end table close vertical bar comma space by space straight R subscript 2 space rightwards arrow space 2 straight R subscript 2
space space space space space space space space space space equals space 1 half open vertical bar table row cell straight x plus 2 end cell cell space space space space space straight x plus 3 end cell cell space space space straight x plus 2 straight a end cell row 0 cell space 0 end cell cell space space space space space 4 straight b minus 2 straight a minus 2 straight c end cell row cell straight x plus 4 end cell cell space space space straight x plus 5 end cell cell straight x plus 2 straight c end cell end table close vertical bar comma space space by space straight R subscript 2 rightwards arrow straight R subscript 2 space minus straight R subscript 1 space minus straight R subscript 3
space space space space space space space space space space equals space 1 half open vertical bar table row cell straight x plus 2 end cell cell space space space space space straight x plus 3 end cell cell space space space straight x plus 2 straight a end cell row 0 cell space space 0 end cell 0 row cell straight x plus 4 end cell cell space space straight x plus 5 end cell cell straight x plus 2 straight c end cell end table close vertical bar space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets because space of space left parenthesis 1 right parenthesis close square brackets
space space space space space space space space space space equals space 1 half cross times 0 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets because space each space element space of space second space row space is space zero close square brackets
space space space space space space space space space space space equals space 0
therefore space space space space space left parenthesis straight A right parenthesis space is space correct space answer.
space space space space space space

    Question 132
    CBSEENMA12034483

    Find the area of the triangle with vertices (2, 7), (1, 1), (10, 8).

    Solution
    Let ∆ be the area of the triangle whose vertices are (2, 7), (1, 1), (10, 8).
    therefore space space space space increment space equals space 1 half open vertical bar table row 2 cell space space space 7 end cell cell space space space 1 end cell row 1 cell space 1 end cell cell space space space 1 end cell row 10 cell space space 8 end cell cell space space space 1 end cell end table close vertical bar space equals space 1 half open vertical bar table row 2 cell space space 7 end cell cell space space space 1 end cell row cell negative 1 end cell cell space space 6 end cell cell space space 0 end cell row 8 1 cell space space 0 end cell end table close vertical bar comma space by space straight R subscript 2 space minus space straight R subscript 1 comma space straight R subscript 3 space minus straight R subscript 1
space space space space space space space space space space space space equals space 1 half cross times 1 space open vertical bar table row cell negative 1 end cell cell space space minus 6 end cell row 8 cell space space 1 end cell end table close vertical bar comma space by space expanding space with space straight C subscript 3
space space space space space space space space space space space space equals space 1 half left parenthesis negative 1 plus 48 right parenthesis space equals space 47 over 2 space equals space 23.5 space sq. space units. space
    Question 133
    CBSEENMA12034484

    Find the area of the triangle, whose vertices are (3, 1), (4, 3) and (-5, 4).

    Solution
    Let ∆ be the area of the triangle whose vertices are (3, 1), (4, 3), (–5, 4).
    therefore space space space space increment space equals space 1 half open vertical bar table row 3 cell space space 1 end cell cell space space 1 end cell row 4 cell space 3 end cell cell space space 1 end cell row cell negative 5 end cell cell space 1 end cell cell space space 1 end cell end table close vertical bar space equals space 1 half open vertical bar table row 3 cell space 1 end cell cell space 1 end cell row 1 cell space 2 end cell cell space 0 end cell row cell negative 8 end cell cell space 3 end cell cell space 0 end cell end table close vertical bar comma space by space straight R subscript 2 minus straight R subscript 1 comma space space straight R subscript 3 minus straight R subscript 1
space space space space space space space space space space space space space space equals space 1 half open vertical bar table row 1 cell space space space 2 end cell row cell negative 8 end cell cell space space space 3 end cell end table close vertical bar space equals space 1 half left parenthesis 3 plus 16 right parenthesis space equals space 19 over 2 sq. space units. space
    Question 134
    CBSEENMA12034485

    Find the area of the triangle with vertices at the points given in each of the following:
    (1, 0)  (6,0), (4, 3) 

    Solution
    Let ∆ be the area of the triangle whose vertices are (1,0), (6, 0), (4,3).
    therefore space space space space space space space increment space equals space 1 half open vertical bar table row 1 cell space space 0 end cell cell space space 1 end cell row 6 cell space 0 end cell cell space space 1 end cell row 4 cell space 3 end cell cell space space 1 end cell end table close vertical bar space equals space 1 half open square brackets 1 space open vertical bar table row 0 cell space space space 1 end cell row 3 cell space space space space 1 end cell end table close vertical bar plus 1 space open vertical bar table row 6 cell space space space 0 end cell row 4 cell space space space space 3 end cell end table close vertical bar close square brackets
space space space space space space space space space space space space space space space space equals space 1 half open square brackets 1 left parenthesis 0 minus 3 right parenthesis plus 1 space left parenthesis 18 minus 0 right parenthesis close square brackets space equals space 1 half left parenthesis negative 3 plus 18 right parenthesis space equals space 15 over 2 space equals space 7.5 space sq. space units.
    Question 135
    CBSEENMA12034486

    Find the area of the triangle with vertices at the points given in each of the following:
    (2, 7), (1, 1), (10, 8)

    Solution
    Let ∆ be the area of thee triangle whose vertices are (2, 7), (1, 1), (10, 8).
    therefore space space space space increment space equals space 1 half open vertical bar table row 2 cell space space space space 7 end cell cell space space space space 1 end cell row 1 cell space space space 1 end cell cell space space space space 1 end cell row 10 cell space space space 8 end cell cell space space space space space 1 end cell end table close vertical bar
space space space space space space space space space space space space space equals space 1 half open vertical bar table row 2 cell space space space space space space space 7 end cell cell space space space space space 1 end cell row cell negative 1 end cell cell space space space minus 6 end cell cell space space space space space 0 end cell row 8 cell space space space space space 1 end cell cell space space space space space 0 end cell end table close vertical bar comma space space by space straight R subscript 2 space rightwards arrow space straight R subscript 2 minus straight R subscript 1 comma space space straight R subscript 3 space rightwards arrow straight R subscript 3 space minus straight R subscript 1
space space space space space space space space space space space space space space equals 1 half cross times 1 space open vertical bar table row cell negative 1 end cell cell space space space space space minus 6 end cell row 8 cell space space space space space space space space space space 1 end cell end table close vertical bar comma space by space expanding space with space straight C subscript 3
space space space space space space space space space space space space space space equals space 1 half left parenthesis negative 1 plus 48 right parenthesis space equals space 47 over 2 space equals space 23.5 space sq. space units. space
    Question 136
    CBSEENMA12034487

    Find the area of the triangle with vertices at the points given in each of the following:
    (–2,–3), (3, 2), (–1,–8)

    Solution

    Let ∆ be the area of the triangle whose vertices are (–2,  –3), (3,  2), (–1,  –8).
    therefore space space space space space space space increment space equals space 1 half open vertical bar table row cell negative 2 end cell cell space space space minus 3 end cell cell space space space 1 end cell row 3 cell space space space space space 2 end cell cell space space space 1 end cell row cell negative 1 end cell cell space space minus 8 end cell cell space space space 1 end cell end table close vertical bar
space space space space space space space space space space space space space space space space space equals space 1 half open vertical bar table row cell negative 2 end cell cell space space space space minus 3 end cell cell space space space 1 end cell row 5 cell space space space space space space space 5 end cell cell space space space 0 end cell row 1 cell space space space minus 5 end cell cell space space space 0 end cell end table close vertical bar comma space space by space straight R subscript 2 space rightwards arrow space straight R subscript 2 minus straight R subscript 1 comma space space space straight R subscript 3 space rightwards arrow space straight R subscript 3 space minus straight R subscript 1
space space space space space space space space space space space space space space space space space equals space 1 half open vertical bar table row 5 cell space space space space space space space space space 5 end cell row 1 cell space space space space space space minus 5 end cell end table close vertical bar space equals space 1 half left parenthesis negative 25 minus 5 right parenthesis space equals space minus 15
space space space space space space space space space space space space space space space space space equals space 15 space left parenthesis in space magnitude right parenthesis space sq. space units.

    Question 137
    CBSEENMA12034488

    Show that points A(a, b +  c),  B(b, c + a),  C(c, a + b) are collinear.

    Solution

    Let ∆ be the area of the triangle formed by the points
    A (a, b + c), B (b, c + a), C(c, a + b)
    therefore space space space space space increment space equals space 1 half open vertical bar table row straight a cell space space straight b plus straight c end cell cell space space 1 end cell row straight b cell space straight c plus straight a end cell cell space space 1 end cell row straight c cell space straight a plus straight b end cell cell space space 1 end cell end table close vertical bar space equals space 1 half open vertical bar table row cell straight a plus straight b plus straight c end cell cell space space straight b plus straight c end cell cell space space 1 end cell row cell straight b plus straight c plus straight a end cell cell space space straight c plus straight a end cell cell space space 1 end cell row cell straight c plus straight a plus straight b end cell cell space space straight a plus straight b end cell cell space space 1 end cell end table close vertical bar comma space by space straight C subscript 1 space rightwards arrow space straight C subscript 1 plus straight C subscript 2
space space space space space space space space space space space space space space equals space 1 half left parenthesis straight a plus straight b plus straight c right parenthesis space open vertical bar table row 1 cell space space straight b plus straight c end cell cell space space 1 end cell row 1 cell space straight c plus straight a end cell cell space space 1 end cell row 1 cell space space straight a plus straight b end cell cell space space 1 end cell end table close vertical bar
space space space space space space space space space space space space space space equals space 1 half left parenthesis straight a plus straight b plus straight c right parenthesis thin space left parenthesis 0 right parenthesis space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets because space two space columns space are space identical close square brackets
space space space space space space space space space space space space space space space equals space 0
therefore space space space space given space points space straight A left parenthesis straight a comma space straight b space plus space straight c right parenthesis comma space straight B left parenthesis straight b comma space straight c space plus space straight a right parenthesis comma space straight C left parenthesis straight c comma space straight a space plus space straight b right parenthesis space are space collinear.

space space

    Question 138
    CBSEENMA12034490

    Using determinants, show that the points (11, 7), (5, 5) and (– 1, 3) are collinear.

    Solution
    Let ∆ be the area of the triangle whose vertices are (11, 7), (5, 5), (– 1, 3).
    therefore space space increment space equals space 1 half open vertical bar table row 11 cell space space 7 end cell cell space space 1 end cell row 5 cell space space 5 end cell cell space space 1 end cell row cell negative 1 end cell cell space space 3 end cell cell space space 1 end cell end table close vertical bar space space space equals space 1 half open vertical bar table row 11 cell space space space space 7 end cell cell space space space space 1 end cell row cell negative 6 end cell cell space minus 2 end cell cell space space space space 0 end cell row cell negative 12 end cell cell space minus 4 end cell cell space space space space 0 end cell end table close vertical bar comma space space straight R subscript 2 space minus straight R subscript 1 comma space space straight R subscript 3 space minus straight R subscript 1
space space space space space equals space 1 half open vertical bar table row cell negative 6 end cell cell space space space minus 2 end cell row cell negative 12 end cell cell space space space minus 4 end cell end table close vertical bar space equals space 1 half left parenthesis 24 minus 24 right parenthesis space equals space 0.
therefore space space space given space points space left parenthesis 11 comma space 7 right parenthesis comma space left parenthesis 5 comma space 5 right parenthesis space and space left parenthesis negative 1 comma space 3 right parenthesis space are space collinear.
space space space space space

    Question 139
    CBSEENMA12034492

    Determine x so that the points (3, 2), (x, 2) and (8, 8) lie on a line. 

    Solution
    Since the points (3, – 2), (x, 2) and (8, 8) lie on a line area of the triangle formed by the points is zero.
    therefore space space space 1 half open vertical bar table row 3 cell space space minus 2 end cell cell space space 1 end cell row straight x cell space 2 end cell cell space 1 end cell row 8 cell space 8 end cell cell space space 1 end cell end table close vertical bar space equals space 0 space space space space space rightwards double arrow space space space space space space space open vertical bar table row 3 cell negative 2 end cell 1 row straight x 2 1 row 8 8 1 end table close vertical bar space equals space 0
rightwards double arrow space space open vertical bar table row 3 cell space space minus 2 end cell cell space space 1 end cell row cell straight x minus 3 end cell cell space space 4 end cell cell space space space 0 end cell row 5 cell space 10 end cell cell space space space 0 end cell end table close vertical bar space equals space 0 comma space space space by space straight R subscript 2 space minus straight R subscript 1 comma space space straight R subscript 3 space minus straight R subscript 1
rightwards double arrow space open vertical bar table row cell straight x minus 3 end cell cell space space space space space 4 end cell row 5 cell space space space 10 end cell end table close vertical bar space equals space 0 comma space expanding space with space third space column space straight C subscript 3.
rightwards double arrow space space 10 left parenthesis straight x minus 3 right parenthesis minus 20 space equals space 0 space space space space rightwards double arrow space space straight x minus 3 minus 2 space equals 0 space space space space rightwards double arrow space space space straight x space equals space 5.
    Question 140
    CBSEENMA12034493

    Find the value of x if the area of triangle is 35 square cm. with vertices (x, 4), (2, – 6) and (5, 4).

    Solution

    Since area of triangle formed by the points (x , 4), (2, – 6). (5, 4) is 35 sq. cm.
    therefore space space space space 1 half open vertical bar table row straight x cell space space space space 4 end cell cell space space 1 end cell row 2 cell space space minus 6 end cell cell space space 1 end cell row 5 cell space space 4 end cell cell space space 1 end cell end table close vertical bar space equals space plus-or-minus 35 space space space space space space space space space space space space space space space space space space space rightwards double arrow space open vertical bar table row straight x cell space space space 4 end cell cell space space 1 end cell row 2 cell space minus 6 end cell cell space space 1 end cell row 5 4 cell space space 1 end cell end table close vertical bar space equals space plus-or-minus 70
rightwards double arrow space space space space space space straight x open vertical bar table row cell negative 6 end cell cell space space space 1 end cell row 4 cell space space space 1 end cell end table close vertical bar minus 4 space open vertical bar table row 2 cell space space space space 1 end cell row 5 cell space space space space 1 end cell end table close vertical bar plus space 1 space open vertical bar table row 2 cell negative 6 end cell row 5 4 end table close vertical bar space equals space plus-or-minus 70
rightwards double arrow space space space space space left parenthesis negative 6 minus 4 right parenthesis straight x minus 4 left parenthesis 2 minus 5 right parenthesis plus 1 left parenthesis 8 plus 30 right parenthesis space equals space plus-or-minus 70
rightwards double arrow space space space space minus 10 straight x plus 12 plus 38 space equals space plus-or-minus 70 space space space space space space space space space space space space rightwards double arrow space space space 10 straight x space equals space 20 comma space space space minus 120 space space space rightwards double arrow space space straight x space equals space 2 comma space minus 12.

    Tips: -

    Whenever area of a triangle is given, ± sign should be taken.
    Question 141
    CBSEENMA12034495

    Find values of k if area of triangle is 4 sq. units and vertices are (k, 0), (4, 0), (0, 2).

    Solution
    Since area of the triangle formed by the points (k, &), (4, 0), (0, 2) is 4 sq. units
    therefore space space space space space space space 1 half open vertical bar table row straight k cell space space 0 end cell cell space space 1 end cell row 4 cell space 0 end cell cell space space 1 end cell row 0 cell space space 2 end cell cell space space 1 end cell end table close vertical bar space equals space plus-or-minus 4 space space space space space space space space space space space space space space space rightwards double arrow space space space space space space space space space space open vertical bar table row straight k cell space space 0 end cell cell space space 1 end cell row 4 cell space space 0 end cell cell space space space 1 end cell row 0 cell space space 2 end cell cell space space space 1 end cell end table close vertical bar space equals space plus-or-minus 8
therefore space space space space space space minus 2 space open vertical bar table row straight k cell space space 1 end cell row 4 cell space space 1 end cell end table close vertical bar space equals space plus-or-minus 8 space space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space space space minus 2 left parenthesis straight k minus 4 right parenthesis space equals space plus-or-minus 8
therefore space space space space space minus 2 space straight k space plus space 8 space equals space 8 comma space space minus 8 space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space minus 2 space straight k space equals space 0 comma space space minus 16
therefore space space space space space space space space space straight k space equals space 0 comma space space 8 space space space space space space space space space space
    Question 142
    CBSEENMA12034496

    Find values of k if area of triangle is 4 sq. units and vertices are (– 2, 0), (0, 4), (0, k)

    Solution
    Since area of triangle formed by the points (k, 0), (0, 4), (0, 2) is 4 sq. units.
    therefore space space space 1 half space open vertical bar table row cell negative 2 end cell cell space space 0 end cell cell space space 1 end cell row 0 cell space space 4 end cell cell space space 1 end cell row 0 cell space space straight k end cell cell space space 1 end cell end table close vertical bar space equals space plus-or-minus space 4 space space space space space space rightwards double arrow space space space space space space space open vertical bar table row cell negative 2 end cell cell space space 0 end cell cell space space 1 end cell row 0 cell space space 4 end cell cell space space 1 end cell row 0 cell space space straight k end cell cell space space 1 end cell end table close vertical bar space equals space plus-or-minus space 8
therefore space space space space minus 2 open vertical bar table row 4 cell space space space 1 end cell row straight k cell space space space 1 end cell end table close vertical bar space equals space plus-or-minus 8 space space space space space space space space space space space space rightwards double arrow space space space space space space space minus 2 left parenthesis 4 minus straight k right parenthesis space equals space plus-or-minus 8
therefore space space space space space minus 8 plus 2 space straight k space equals space 8 comma space minus 8 space space space space space space space space space space space space rightwards double arrow space space space space space 2 space straight k space equals space 16 comma space 0
therefore space space space space space space space straight k space equals space 0 comma space space 8 space space
    Question 143
    CBSEENMA12034498

    Find the equation of the line joining A(l, 3) and B(0, 0) using determinants and find k if D(A, 0) is a point such that area of triangle ABD is 3 sq. units.

    Solution
    Let P(1, 3) be any point on the line joining A(l, 3) and B(0, 0).
    therefore space area space of space increment ABP space equals space 0
therefore space space space 1 half open vertical bar table row 1 cell space space 3 end cell cell space space 1 end cell row 0 cell space 0 end cell cell space space 1 end cell row straight x cell space space straight y end cell cell space space 1 end cell end table close vertical bar space equals space 0 space space space space space rightwards double arrow space space space space space open vertical bar table row 1 cell space space 3 end cell cell space space 1 end cell row 0 cell space space 0 end cell cell space space 1 end cell row straight x cell space space straight y end cell cell space space 1 end cell end table close vertical bar space equals space 0
therefore space space space space minus 1 space open vertical bar table row 1 cell space space 3 end cell row straight x cell space space space straight y end cell end table close vertical bar space equals space 0 space space space space space space space space space space rightwards double arrow space space space space space open vertical bar table row 1 cell space space space 3 end cell row straight x cell space space space straight y end cell end table close vertical bar space equals space 0
therefore space space space space space space space space straight y minus 3 straight x space equals space 0 space space space or space space straight y space equals space 3 straight x

    which is equation of line AB.
    Now D is (k, 0).
    From given condition,
    area of ∆ABD = 3
    therefore space space space space space space space 1 half open vertical bar table row 1 cell space space 3 end cell cell space 1 end cell row 0 cell space space 0 end cell cell space 1 end cell row straight k cell space space 0 end cell cell space 1 end cell end table close vertical bar space equals space plus-or-minus 3
therefore space space space space space space space space space open vertical bar table row 1 cell space space space space 3 end cell cell space space space 1 end cell row 0 cell space space space 0 end cell cell space space space 1 end cell row straight k cell space space space 0 end cell cell space space space space 1 end cell end table close vertical bar space equals space plus-or-minus 6 space space space space space rightwards double arrow space space minus space open vertical bar table row 1 cell space space space 3 end cell row straight k cell space space space 0 end cell end table close vertical bar space equals space plus-or-minus 6
therefore space space space space space minus left parenthesis 0 minus 3 space straight k right parenthesis space equals space plus-or-minus 6 space space space space space space rightwards double arrow space space space 3 space straight k space equals space plus-or-minus 6
therefore space space space space space straight k space equals space plus-or-minus 2

    Question 144
    CBSEENMA12034499

    Find equation of line joining (1, 2) and (3, 6) using determinants.

    Solution
    Let P(x, y) be any point on the line joining A(1, 2) and B(3, 6).
    therefore space space space area space of space triangle space ABP space equals space 0
therefore space space space space 1 half open vertical bar table row 1 cell space space space 2 end cell cell space space 1 end cell row 3 cell space space 6 end cell cell space space 1 end cell row straight x cell space space straight y end cell cell space space 1 end cell end table close vertical bar space equals space 0 space space space space space space space space rightwards double arrow space space space space space open vertical bar table row 1 cell space space space 2 end cell cell space space 1 end cell row 3 cell space space 6 end cell cell space space 1 end cell row straight x cell space straight y end cell cell space space 1 end cell end table close vertical bar space equals space 0
therefore space space space space space 1 open vertical bar table row 6 cell space space 1 end cell row straight y cell space space space 1 end cell end table close vertical bar space minus space 2 open vertical bar table row 3 cell space space 1 end cell row straight x cell space space 1 end cell end table close vertical bar plus 1 space open vertical bar table row 3 cell space space 6 end cell row straight x cell space space space straight y end cell end table close vertical bar space equals space 0
therefore space space space space 1 left parenthesis 6 minus straight y right parenthesis minus 2 left parenthesis 3 minus straight x right parenthesis plus 1 left parenthesis 3 straight y minus 6 straight x right parenthesis equals space 0
therefore space space space space space 6 minus straight y minus 6 plus 2 straight x plus 3 straight y minus 6 straight x space equals 0
therefore space space space space space minus 4 straight x plus 2 straight y space equals space 0 space space space space space space space space or space space 2 straight x minus straight y space equals space 0
    which is required equation of line.

    Question 145
    CBSEENMA12034501

    Find equation of line joining (3, 1) and (9, 3) using determinants.

    Solution
    Let P(x, y) be any point on the line joining A(3, 1) and B(9, 3).
    therefore space space area space of space triangle space ABP space equals space 0
therefore space space space 1 half open vertical bar table row 3 cell space space space 1 end cell cell space space 1 end cell row 9 cell space space 3 end cell cell space space 1 end cell row straight x cell space space straight y end cell cell space space 1 end cell end table close vertical bar space equals space 0 space space space space space space space space space space space rightwards double arrow space space space space space open vertical bar table row 3 cell space space 1 end cell cell space space 1 end cell row 9 cell space space 3 end cell cell space space 1 end cell row straight x cell space space straight y end cell cell space space 1 end cell end table close vertical bar space equals 0 space
therefore space space space space space space space space 3 open vertical bar table row 3 cell space space 1 end cell row straight y cell space space 1 end cell end table close vertical bar minus 1 open vertical bar table row 9 cell space space space 1 end cell row straight x cell space space space 1 end cell end table close vertical bar plus 1 open vertical bar table row 9 cell space space 3 end cell row straight x cell space space space straight y end cell end table close vertical bar space equals space 0
therefore space space space space space space space space space 3 left parenthesis 3 minus straight y right parenthesis minus 1 left parenthesis 9 minus straight x right parenthesis plus 1 left parenthesis 9 straight y minus 3 straight x right parenthesis space equals space 0
therefore space space space space space space space space space 9 minus 3 straight y minus 9 plus straight x plus 9 straight y minus 3 straight x space equals space 0
therefore space space space space space space space space space minus 2 straight x plus 6 straight y space equals space 0 space space space space space space space space space space space space or space space space space straight x minus 3 straight y space equals space 0
    which is required equation of line.
    Question 147
    CBSEENMA12034505

    If area of triangle is 35 sq. units with vertices (2, – 6), (5, 4) and (k, 4). Then k is
    • 12

    • -2

    • -12, -2

    • 12, -2

    Solution

    D.

    12, -2

    Since area of triangle formed by the points (2, -6), (5, 4), (k, 4) is 35 sq. units.
    therefore space space space space 1 half open vertical bar table row 2 cell space space minus 6 end cell cell space space 1 end cell row 5 cell space space space space 4 end cell cell space space 1 end cell row straight k cell space space space 4 end cell cell space space 1 end cell end table close vertical bar space equals space plus-or-minus 35 space space space space space space space space space space space space space space space space rightwards double arrow space space space space open vertical bar table row 2 cell space minus 6 end cell cell space space 1 end cell row 5 cell space 4 end cell cell space space 1 end cell row straight k cell space 4 end cell cell space space 1 end cell end table close vertical bar space equals plus-or-minus 70
therefore space space space space 2 open vertical bar table row 4 cell space space 1 end cell row 4 cell space space space 1 end cell end table close vertical bar minus left parenthesis negative 6 right parenthesis space open vertical bar table row 5 cell space space 1 end cell row straight k cell space space 1 end cell end table close vertical bar plus space open vertical bar table row 5 cell space space space 4 end cell row straight k cell space space space 4 end cell end table close vertical bar equals space plus-or-minus 70
therefore space space space space 2 left parenthesis 4 minus 4 right parenthesis plus 6 left parenthesis 5 minus straight k right parenthesis plus 1 left parenthesis 20 minus 4 straight k right parenthesis space equals space plus-or-minus 70
therefore space space space space space 0 plus 30 minus 6 straight k plus 20 minus 4 straight k space equals 70 comma space space minus 70
therefore space space space space space space space space space space space minus 10 straight k space equals space 20 comma space minus 120
therefore space space space space space space space space space space space space space space space space space space straight k space equals negative 2 comma space space 12
therefore space space space space space space space space left parenthesis straight D right parenthesis space is space correct space answer

    Question 148
    CBSEENMA12034507

    Find the minor of element 6 in the determinant increment space equals space open vertical bar table row 1 cell space 2 end cell cell space 3 end cell row 4 cell space 5 end cell cell space 6 end cell row 7 cell space 8 end cell cell space 9 end cell end table close vertical bar

    Solution
    increment space equals space open vertical bar table row 1 cell space 2 end cell cell space 3 end cell row 4 cell space 5 end cell cell space 6 end cell row 7 cell space 8 end cell cell space 9 end cell end table close vertical bar
    Since 6 lies in the second row and third column minor of 6 is M23, which is obtained by deleting 2nd row and third column of A.
    therefore space space space straight M subscript 23 space equals space open vertical bar table row 1 cell space space space 2 end cell row 7 cell space space space 8 end cell end table close vertical bar space equals space 8 minus 14 space equals space minus 6
    Question 149
    CBSEENMA12034508

    Find the minors and co-factors of the elements a11, a21 in the determinant.

    Solution
    increment space equals space open vertical bar table row cell straight a subscript 11 end cell cell space straight a subscript 12 end cell cell space straight a subscript 13 end cell row cell straight a subscript 21 end cell cell space straight a subscript 22 end cell cell straight a subscript 23 end cell row cell straight a subscript 31 end cell cell space straight a subscript 32 end cell cell straight a subscript 33 end cell end table close vertical bar
    increment space equals space open vertical bar table row cell straight a subscript 11 end cell cell space straight a subscript 12 end cell cell space straight a subscript 13 end cell row cell straight a subscript 21 end cell cell space straight a subscript 22 end cell cell space straight a subscript 23 end cell row cell straight a subscript 31 end cell cell space straight a subscript 32 end cell cell space straight a subscript 33 end cell end table close vertical bar
    Minor of straight a subscript 11 space equals space straight M subscript 11 space equals space open vertical bar table row cell straight a subscript 22 end cell cell space space space space straight a subscript 23 end cell row cell straight a subscript 32 end cell cell space space space straight a subscript 33 end cell end table close vertical bar space equals space straight a subscript 22 straight a subscript 33 minus straight a subscript 23 straight a subscript 32

    Co-factor of straight a subscript 11 space equals space straight A subscript 11 space equals space left parenthesis negative 1 right parenthesis to the power of 1 plus 1 end exponent straight M subscript 11 space equals space straight M subscript 11 space equals space straight a subscript 22 straight a subscript 33 minus straight a subscript 23 straight a subscript 32
    Minor of straight a subscript 21 equals straight M subscript 21 space equals space open vertical bar table row cell straight a subscript 12 end cell cell space space straight a subscript 13 end cell row cell straight a subscript 13 end cell cell space space straight a subscript 33 end cell end table close vertical bar space equals space straight a subscript 12 straight a subscript 33 space minus space straight a subscript 13 straight a subscript 32
    Co-factor of straight a subscript 21 space equals space straight A subscript 21 space equals space left parenthesis negative 1 right parenthesis to the power of 2 plus 1 end exponent space space straight M subscript 21 space equals space minus straight M subscript 21 space equals space minus straight a subscript 12 straight a subscript 33 plus straight a subscript 13 straight a subscript 32
    Question 150
    CBSEENMA12034509

    Find minors and cofactors of all the elements of the determinant:
    open vertical bar table row 1 cell space space minus 2 end cell row 4 cell space space space 3 end cell end table close vertical bar.

    Solution

    Let  increment space equals space open vertical bar table row 1 cell space space space minus 2 end cell row 4 cell space space space space 3 end cell end table close vertical bar
                  straight M subscript 11 space equals space Minor space of space straight a subscript 11 space in space increment space equals space 3
straight A subscript 11 space equals space Cofactor space of space straight a subscript 11 space in space increment space equals space left parenthesis negative 1 right parenthesis to the power of 1 plus 1 end exponent straight M subscript 11 space equals space straight M subscript 11 space equals space 3
straight M subscript 12 space equals space Minor space of space straight a subscript 12 space in space increment space equals space 4
straight A subscript 12 space equals space Cofactor space of space straight a subscript 12 space equals space left parenthesis negative 1 right parenthesis to the power of 1 plus 2 end exponent straight M subscript 12 space equals space minus straight M subscript 12 space equals space minus 4
straight M subscript 21 space equals space Minor space of space straight a subscript 21 space in space increment space equals space minus 2
straight A subscript 21 space equals space Cofactor space of space straight a subscript 21 space in space increment space equals space left parenthesis negative 1 right parenthesis to the power of 2 plus 1 end exponent straight M subscript 21 space equals space minus straight M subscript 21 space equals space 2
straight M subscript 22 space equals space Minor space of space straight a subscript 22 space in space increment space equals 1
straight A subscript 22 space equals space Cofactor space of space straight a subscript 22 space in space increment space equals space left parenthesis negative 1 right parenthesis to the power of 2 plus 2 end exponent straight M subscript 22 space equals space straight M subscript 12 space equals space 1

    Question 151
    CBSEENMA12034511
    Question 154
    CBSEENMA12034524

    Using cofactors of elements of second row, evaluate:
    increment space equals space open vertical bar table row 5 cell space space 3 end cell cell space space 8 end cell row 2 cell space space 0 end cell cell space space 1 end cell row 1 cell space 2 end cell cell space space 3 end cell end table close vertical bar

    Solution
    increment space equals space open vertical bar table row 5 cell space space space space 3 end cell cell space space 8 end cell row 2 cell space space space 0 end cell cell space space space 1 space space end cell row 1 cell space space 2 end cell cell space space 3 end cell end table close vertical bar
space straight A subscript 21 space equals space left parenthesis negative 1 right parenthesis to the power of 2 plus 1 end exponent space open vertical bar table row 3 cell space space space 8 end cell row 2 cell space space space 3 end cell end table close vertical bar space equals space minus left parenthesis 9 minus 16 right parenthesis space equals space 7
straight A subscript 22 space equals space left parenthesis negative 1 right parenthesis to the power of 2 plus 2 end exponent space open vertical bar table row 5 cell space space space 8 end cell row 1 cell space space space 3 end cell end table close vertical bar space equals space 1 left parenthesis 15 minus 8 right parenthesis space equals space 7
straight A subscript 23 space equals space left parenthesis negative 1 right parenthesis to the power of 2 plus 3 end exponent space open vertical bar table row 5 cell space space space space 3 end cell row 1 cell space space space space 2 end cell end table close vertical bar space equals space minus left parenthesis 10 minus 3 right parenthesis space equals space minus 7
    Now  increment space equals space straight a subscript 21 straight A subscript 21 plus straight a subscript 22 straight A subscript 22 plus straight a subscript 23 straight A subscript 23
                   equals space left parenthesis 2 right parenthesis thin space left parenthesis 7 right parenthesis space plus space left parenthesis 0 right parenthesis thin space left parenthesis 7 right parenthesis space plus space left parenthesis 1 right parenthesis thin space left parenthesis negative 7 right parenthesis space equals space 14 plus 0 minus 7 space equals space 7
    Question 155
    CBSEENMA12034526
    Question 157
    CBSEENMA12034530

    If A, B, C are square matrices of the same order such that AB = BA = I and AC = CA = I then B = C.

    Solution

    We have
    AB = BA = I    ...(1)
    and AC = CA = I    ...(2)
    Now B = BI
    = B(AC)    [∵ of (2)]
    = (BA) C    [∵ of associative properties of multiplication]
    = IC    [∵ of (1)]
    = C
    ∴ B = C
    Hence the result.
    Note : AB = BA = I ⇒ B is inverse of A
    Again AC = CA = 1 ⇒ C is inverse of A
    Also B = C
    ∴   inverse of a matrix A, if it exists, is unique.

    Question 158
    CBSEENMA12034531

    Find adj A for straight A space equals space open square brackets table row 2 cell space space space 3 end cell row 1 cell space space space 4 end cell end table close square brackets.

    Solution
    straight A space equals space open square brackets table row 2 cell space space space 3 end cell row 1 cell space space 4 end cell end table close square brackets
straight A subscript 11 space equals space 4 comma space space space space straight A subscript 12 space equals space minus 1 comma space space straight A subscript 21 space equals space minus 3 comma space space straight A subscript 22 space equals space 2
therefore space space space space space adj space straight A space equals space open square brackets table row cell straight A subscript 11 end cell cell space space straight A subscript 12 end cell row cell straight A subscript 21 end cell cell space space straight A subscript 22 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row 4 cell negative 1 end cell row cell negative 3 end cell 2 end table close square brackets to the power of apostrophe space equals space open square brackets table row 4 cell space space space space minus 3 end cell row cell negative 1 end cell cell space space space space space space space space space 2 end cell end table close square brackets.
    Question 159
    CBSEENMA12034532

    Find the adjoint of the matrix  open square brackets table row 1 cell space space space space space 2 end cell row 3 cell space space space space 4 end cell end table close square brackets.

    Solution

    Let straight A space equals space open square brackets table row 1 cell space 2 end cell row 3 cell space 4 end cell end table close square brackets
          straight A subscript 11 space equals space 4 comma space space space straight A subscript 12 space equals space minus 3 comma space space space straight A subscript 21 space equals space minus 2 comma space space straight A subscript 22 space equals space 1
    therefore space space adj space straight A space equals space open square brackets table row cell straight A subscript 11 end cell cell space space space space straight A subscript 12 end cell row cell straight A subscript 21 end cell cell space space space straight A subscript 22 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row 4 cell space space space space minus 3 end cell row cell negative 2 end cell cell space space space space space space space 1 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row cell space space 4 end cell cell space space space minus 2 end cell row cell negative 3 end cell cell space space space space space 1 end cell end table close square brackets.

    Question 160
    CBSEENMA12034534

    Find the adjoint of the matrix
    open square brackets table row 1 cell space space space minus 1 end cell cell space space space space space space 2 end cell row 2 cell space space space space space 3 end cell cell space space space space space 5 end cell row cell negative 2 end cell cell space space space space space 0 end cell cell space space space space 1 end cell end table close square brackets.

    Solution
    Let space straight A space equals space open square brackets table row 1 cell negative 1 end cell cell space space 2 end cell row 2 cell space space 3 end cell cell space space 5 end cell row cell negative 2 end cell cell space space 0 end cell cell space 1 end cell end table close square brackets
therefore space space space open vertical bar straight A close vertical bar space equals space open vertical bar table row 1 cell space space space minus 1 end cell cell space space space space 2 space end cell row 2 cell space space space space space 3 end cell cell space space 5 end cell row cell negative 2 end cell cell space space space space space 0 end cell cell space space 1 end cell end table close vertical bar
    Co-factors of the elements of first row of | A | are
    open vertical bar table row 3 cell space space space 5 end cell row 0 cell space space space 1 end cell end table close vertical bar comma space space minus open vertical bar table row 2 cell space space space space 5 space end cell row cell negative 2 end cell cell space space space 1 end cell end table close vertical bar comma space space open vertical bar table row 2 cell space space space space 3 end cell row cell negative 2 end cell cell space space space space 0 end cell end table close vertical bar
    i.e. 3 – 0, – (2 + 10), 0 + 6 i.e. 3, – 12, 6 respectively.
    Co-factors of the elements of second row of | A | are
    negative open vertical bar table row cell negative 1 end cell cell space space 2 end cell row 0 cell space space space 1 space space end cell end table close vertical bar comma space space open vertical bar table row 1 cell space space space space 2 end cell row cell negative 2 end cell cell space space space 1 end cell end table close vertical bar comma space space minus open vertical bar table row 1 cell space space space space minus 1 end cell row cell negative 2 end cell cell space space space space space space space 0 end cell end table close vertical bar

    i.e. – (– 1 – 0), 1 + 4, – (0 – 2) i.e. 1, 5, 2 respectively.
    Cofactors of the elements of third row of | A | are
    open vertical bar table row cell negative 1 end cell cell space space space space 2 end cell row 3 cell space space space 5 end cell end table close vertical bar comma space space space space space minus open vertical bar table row 1 cell space space space space 2 end cell row 2 cell space space space space 5 end cell end table close vertical bar comma space space space open vertical bar table row 1 cell space space space space minus 1 end cell row 2 cell space space space space space space space 3 end cell end table close vertical bar
    i.e. – 5 – 6, – (5 – 4), 3 + 2
    ∴     –11,–1, 5 respectively.
    therefore space space space adj. space straight A space equals space open square brackets table row 3 cell space space minus 12 end cell cell space space space 6 space end cell row 1 cell space space space 5 end cell cell space space 2 end cell row cell negative 11 end cell cell negative 1 end cell cell space space 5 end cell end table close square brackets space equals space open square brackets table row 3 cell space space space space 1 end cell cell space space space space space minus 11 end cell row cell negative 12 end cell cell space space space space 5 end cell cell space space space space minus 1 end cell row 6 cell space space space space 2 end cell cell space space space space space space space 5 end cell end table close square brackets

    Question 161
    CBSEENMA12034536

    Compute the adjoint of the matrix straight A space equals space open square brackets table row 1 cell space space space space space space 2 end cell row 3 cell space space minus 5 end cell end table close square brackets
    and verify that A (Adj A) = | A | 1.

    Solution
    straight A space equals space open square brackets table row 1 cell space space space space space space space space 2 end cell row 3 cell space space space space minus 5 end cell end table close square brackets
    therefore space space space space space open vertical bar straight A close vertical bar space equals space open vertical bar table row 1 cell space space space space space space space 2 end cell row 3 cell space space minus 5 end cell end table close vertical bar space equals space minus 5 minus 6 space equals space minus 11
    Co-factor of first element of first row = (– 1)1 + 1 (– 5) = – 5
    Co-factor of second element of first row = (– 1)1 + 2 (3) = – 3
    Co-factor of first element of second row = (– 1)2 + 1 (2) = –2
    Co-factor of second element of second row = (– 1)2 + 2 (1) = 1
    therefore space space space space space adj. space straight A space equals space open square brackets table row cell negative 5 end cell cell space space space space minus 3 end cell row cell negative 2 end cell cell space space space space space space 1 end cell end table close square brackets space space space open square brackets table row cell negative 5 end cell cell space space space space space minus 2 end cell row cell negative 3 end cell cell space space space space space space 1 end cell end table close square brackets
space space space space space space straight A left parenthesis adj. space straight A right parenthesis space space equals space open square brackets table row 1 cell space space space space space space 2 end cell row 3 cell space space minus 5 end cell end table close square brackets space open square brackets table row cell negative 5 end cell cell space space space space minus 2 end cell row cell negative 3 end cell cell space space space space space space space 1 end cell end table close square brackets space space space space space space space space space space space space space space space space space space space space space space space
space space space space space space space space space space space space space space space space space space space space space space space equals space open square brackets table row cell negative 5 minus 6 end cell cell space space space space space space space minus 2 plus 2 end cell row cell negative 15 plus 15 end cell cell space space space space space space space space minus 6 minus 5 end cell end table close square brackets space equals space open square brackets table row cell negative 11 end cell cell space space space 0 end cell row 0 cell negative 11 end cell end table close square brackets space equals space minus 11 open square brackets table row 1 0 row 0 1 end table close square brackets
space space space space space space space space space space space space space space space space space space space space space space space equals space open vertical bar straight A close vertical bar space straight I
therefore space space space space straight A left parenthesis adj. space straight A right parenthesis space equals space open vertical bar straight A close vertical bar space straight I
    Question 162
    CBSEENMA12034538

    Verify that A (adj A) = (adj A) = | A | I
    where straight A space equals space open square brackets table row 2 cell space space space 1 end cell cell space space space space space 5 end cell row 3 cell space minus 2 end cell cell space space space minus 4 end cell row cell negative 3 end cell cell space 1 end cell cell space space minus 2 end cell end table close square brackets

    Solution
    straight A space equals space open square brackets table row 2 cell space space space 1 end cell cell space space space space space space space 5 end cell row 3 cell negative 2 end cell cell space space space minus 4 end cell row cell negative 3 end cell cell space 1 end cell cell space space space space minus 2 end cell end table close square brackets
    therefore space space space space space open vertical bar straight A close vertical bar space equals space open vertical bar table row cell space space space 2 end cell cell space space space space space 1 end cell cell space space space space space 5 end cell row cell space space space 3 end cell cell space minus 2 end cell cell space space space minus 4 space end cell row cell negative 3 end cell cell space space space 1 end cell cell space minus 2 end cell end table close vertical bar space equals space 2 space open vertical bar table row cell negative 2 end cell cell space space minus 4 end cell row 1 cell space space minus 2 end cell end table close vertical bar space minus space 1 open vertical bar table row cell space space space 3 end cell cell space space space minus 4 end cell row cell negative 3 end cell cell space space space space minus 2 end cell end table close vertical bar space plus space 5 space open vertical bar table row cell space space 3 end cell cell space minus 2 end cell row cell negative 3 end cell cell space space space space 1 end cell end table close vertical bar
space space space space space space space space space space space space space space space space equals space 2 left parenthesis 4 plus 4 right parenthesis space minus 1 left parenthesis negative 6 minus 12 right parenthesis space plus 5 space left parenthesis 3 minus 6 right parenthesis space equals space 16 plus 18 minus 15 space equals space 19
space space space space space straight A subscript 11 equals space open vertical bar table row cell negative 2 end cell cell space space space minus 4 end cell row 1 cell space space space minus 2 end cell end table close vertical bar space equals space 4 plus 4 space equals space 8
space space space space space straight A subscript 12 space equals space minus open vertical bar table row 3 cell space space space space minus 4 end cell row cell negative 3 end cell cell space space space minus 2 end cell end table close vertical bar space equals space minus left parenthesis negative 6 minus 12 right parenthesis space equals space 18
space space space space space straight A subscript 13 space equals space open vertical bar table row cell space space 3 end cell cell space space space space minus 2 end cell row cell negative 3 end cell cell space space space space space space 1 end cell end table close vertical bar space equals space 3 minus 6 space equals negative 3
space space space space straight A subscript 21 space equals space minus open vertical bar table row 1 cell space space space space space space space 5 end cell row 1 cell space space space minus 2 end cell end table close vertical bar space equals space minus left parenthesis negative 2 minus 5 right parenthesis space equals space 7
space space space space space straight A subscript 22 space equals space open vertical bar table row 2 cell space space space space space space space 5 end cell row 3 cell space space space space space minus 2 end cell end table close vertical bar space equals space minus 4 plus 15 space equals space 11
space space space space space straight A subscript 23 space equals space minus open vertical bar table row 2 cell space space space space space space 1 end cell row cell negative 3 end cell cell space space space space space 1 end cell end table close vertical bar space equals space minus left parenthesis 2 plus 3 right parenthesis space equals space minus 5
space space space space straight A subscript 31 space equals space open vertical bar table row 1 cell space space space 5 end cell row cell negative 2 end cell cell space space minus 4 end cell end table close vertical bar space equals space minus 4 plus 10 space equals space 6
        straight A subscript 32 space equals space minus open vertical bar table row 2 cell space space space space space space 5 end cell row 3 cell space space minus 4 end cell end table close vertical bar space equals space minus left parenthesis negative 8 minus 15 right parenthesis space equals space 23
straight A subscript 33 space equals space open vertical bar table row 2 cell space space space space space space space 1 end cell row 3 cell space space space minus 2 end cell end table close vertical bar space equals space minus 4 minus 3 space equals space minus 7

    therefore space space space space adj space straight A space equals space open square brackets table row 8 cell space space 18 end cell cell space minus 3 end cell row 7 cell space 11 end cell cell space minus 5 end cell row 6 cell space 23 end cell cell space minus 7 end cell end table close square brackets space equals space open square brackets table row 8 cell space 7 end cell cell space 6 end cell row 18 cell space 11 end cell cell space 23 end cell row cell negative 3 end cell cell space minus 5 end cell cell space minus 7 end cell end table close square brackets
straight A space left parenthesis adj space straight A right parenthesis space equals space open square brackets table row 2 cell space space 1 end cell cell space space space space space 5 end cell row 3 cell space minus 2 end cell cell space space minus 4 end cell row cell negative 3 end cell cell space space 1 end cell cell space space space space minus 2 end cell end table close square brackets space open square brackets table row 8 cell space 7 end cell cell space space 6 end cell row 18 cell space 11 end cell cell space space 23 end cell row cell negative 3 end cell cell space minus 5 end cell cell space space minus 7 end cell end table close square brackets
space space space space space space space space space space space space space space space space equals space open square brackets table row cell 16 plus 18 minus 15 end cell cell space space space space space space 14 plus 11 minus 25 end cell cell space space space 12 plus 23 minus 35 end cell row cell 24 minus 36 plus 12 end cell cell space space space 21 minus 22 plus 20 end cell cell space space space 18 minus 46 plus 28 end cell row cell negative 24 plus 18 plus 6 end cell cell space space space minus 21 plus 11 plus 10 end cell cell space space space minus 18 plus 23 plus 14 end cell end table close square brackets
space space space space space space space space space space space space space space space space equals space open square brackets table row 19 0 0 row 0 19 0 row 0 0 19 end table close square brackets space space equals 19 space open square brackets table row 1 0 0 row 0 1 0 row 0 0 1 end table close square brackets
therefore space space space space straight A left parenthesis adj space straight A right parenthesis space equals space open vertical bar straight A close vertical bar space straight I space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space.... left parenthesis 1 right parenthesis
Again space left parenthesis adj space straight A right parenthesis thin space straight A space equals space open square brackets table row 8 cell space 7 end cell cell space space 6 end cell row 18 cell space space 11 end cell cell space space 23 end cell row cell negative 3 end cell cell space minus 5 end cell cell negative 7 end cell end table close square brackets space space open square brackets table row 2 cell space space 1 end cell cell space space space 5 end cell row 3 cell space minus 2 end cell cell space space space minus 4 end cell row cell negative 3 end cell cell space 1 end cell cell space space minus 2 end cell end table close square brackets
space space space space space space space space space space space space space space space space space space space space space space space space space space equals space open square brackets table row cell 16 plus 21 minus 18 end cell cell space space space 8 minus 14 plus 6 end cell cell space space space 40 minus 28 minus 12 end cell row cell 36 plus 33 minus 69 end cell cell space 18 minus 22 plus 23 end cell cell space 90 minus 44 minus 46 end cell row cell negative 6 minus 15 plus 21 end cell cell space minus 3 plus 10 minus 7 end cell cell space minus 15 plus 20 plus 14 end cell end table close square brackets space space space
space space space space space space space space space space space space space space space space space space space space space space space space space space equals space open square brackets table row 19 cell space 0 end cell 0 row 0 19 0 row 0 0 19 end table close square brackets space equals space 19 open square brackets table row 1 cell space space 0 end cell cell space 0 end cell row 0 cell space 1 end cell cell space 0 end cell row 0 cell space 0 end cell cell space 1 end cell end table close square brackets
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space
    therefore space space space space left parenthesis adj space straight A right parenthesis thin space straight A space equals space open vertical bar straight A close vertical bar space straight I                                                     ...(2)
    From (1) and (2), we get,
    A (adj A) = (adj A) A = | A | I.

    Question 163
    CBSEENMA12034541

    Verify that A (adj A) = (adj A) = | A | I
    where 

    Solution
    straight A space equals space open square brackets table row 2 cell space space space 1 end cell cell space space space space space space space 5 end cell row 3 cell space minus 2 end cell cell space space space minus 4 end cell row cell negative 3 end cell 1 cell space space space minus 2 end cell end table close square brackets
    therefore space space space open vertical bar straight A close vertical bar space equals space open vertical bar table row 2 cell space space 1 end cell cell space space space space space space 5 end cell row 3 cell negative 2 end cell cell space minus 4 end cell row cell negative 3 end cell cell space space 1 end cell cell space minus 2 end cell end table close vertical bar space equals space 2 open vertical bar table row cell negative 2 end cell cell space space space minus 4 end cell row 1 cell space space space minus 2 end cell end table close vertical bar minus 1 open vertical bar table row cell space space space 3 end cell cell space space space minus 4 end cell row cell negative 3 end cell cell space space space space minus 2 end cell end table close vertical bar space plus space 5 space open vertical bar table row cell space space 3 end cell cell space space minus 2 end cell row cell negative 3 end cell cell space space space space space space 1 end cell end table close vertical bar
space space space space space space space space space space space space space equals 2 space left parenthesis 4 plus 4 right parenthesis minus 1 left parenthesis negative 6 minus 12 right parenthesis plus 5 left parenthesis 3 minus 6 right parenthesis space equals space 16 plus 18 minus 15 space equals space 19
space space space space space straight A subscript 11 space equals space open vertical bar table row cell negative 2 end cell cell space space space minus 4 end cell row 1 cell space space space minus 2 end cell end table close vertical bar space equals space 4 plus 4 space equals space 8
space space space space straight A subscript 12 space equals space minus open vertical bar table row cell space space space 3 end cell cell space space space space minus 4 end cell row cell negative 3 end cell cell space space space minus 2 end cell end table close vertical bar space equals space minus left parenthesis negative 6 minus 12 right parenthesis space equals space 18
space space space straight A subscript 13 space equals space open vertical bar table row 3 cell space space minus 2 end cell row cell negative 3 end cell cell space space space space 1 end cell end table close vertical bar space equals space 3 minus 6 space equals space minus 3
space space space straight A subscript 21 space equals space minus open vertical bar table row 1 cell space space space space 5 end cell row 1 cell space minus 2 end cell end table close vertical bar space equals space minus left parenthesis negative 2 minus 5 right parenthesis space equals space 7
space space straight A subscript 22 space equals space space open vertical bar table row cell space space space 2 end cell cell space space space space space 5 end cell row cell negative 3 end cell cell space space minus 2 end cell end table close vertical bar space equals space minus 4 plus 15 space equals space 11
straight A subscript 23 space equals space minus open vertical bar table row cell space space 2 end cell cell space space 1 end cell row cell negative 3 end cell cell space space 1 end cell end table close vertical bar space equals space minus left parenthesis 2 plus 3 right parenthesis space equals space minus 5
straight A subscript 31 space equals space open vertical bar table row 1 cell space space space space space 5 end cell row cell negative 2 end cell cell space space space minus 4 end cell end table close vertical bar space equals space minus 4 plus 10 space equals space 6
straight A subscript 32 space equals space minus open vertical bar table row 2 cell space space space 5 end cell row 3 cell space space minus 4 end cell end table close vertical bar space equals space minus left parenthesis negative 8 minus 15 right parenthesis space equals space 23
straight A subscript 33 space equals space open vertical bar table row 2 1 row 3 cell negative 2 end cell end table close vertical bar space equals space minus 4 minus 3 space equals space minus 7
    therefore space space space adj space straight A space equals space open square brackets table row 8 cell space space 18 end cell cell space space minus 3 end cell row 7 cell space space 11 end cell cell space minus 5 end cell row 6 cell space space 23 end cell cell space minus 7 end cell end table close square brackets space equals space open square brackets table row 8 cell space space 7 end cell cell space space space 6 end cell row 18 cell space space space 11 end cell cell space space space 23 end cell row cell negative 3 end cell cell space minus 5 end cell cell negative 7 end cell end table close square brackets
straight A left parenthesis adj space straight A right parenthesis space equals space open square brackets table row 2 cell space space 1 end cell cell space space space space space 5 end cell row 3 cell negative 2 end cell cell space space minus 4 end cell row cell negative 3 end cell cell space space 1 end cell cell space space minus 2 end cell end table close square brackets space open square brackets table row 8 cell space space 7 end cell cell space 6 end cell row 18 cell space space 11 end cell cell space space 23 end cell row cell negative 3 end cell cell space space minus 5 end cell cell space space minus 7 end cell end table close square brackets
space space space space space space space space space space space space space space equals space open square brackets table row cell 16 plus 18 minus 15 end cell cell space space space 14 plus 11 minus 25 end cell cell space space space space 12 plus 23 minus 35 end cell row cell 24 minus 36 plus 12 end cell cell space space 21 minus 22 plus 20 end cell cell space space space 18 minus 46 plus 28 end cell row cell negative 24 plus 18 plus 6 end cell cell space space space minus 21 plus 11 plus 10 end cell cell space space space minus 18 plus 23 plus 14 end cell end table close square brackets
space space space space space space space space space space space space space space equals open square brackets table row 19 0 0 row 0 19 0 row 0 0 19 end table close square brackets space equals space 19 space open square brackets table row 1 cell space space 0 end cell cell space 0 end cell row 0 cell space 1 end cell cell space 0 end cell row 0 cell space 0 end cell cell space 1 end cell end table close square brackets
therefore space space space space space space straight A left parenthesis adj space straight A right parenthesis space equals space open vertical bar straight A close vertical bar space straight I space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
    Again (adj A) A = open square brackets table row 8 cell space space space space 7 end cell cell space space space space 6 end cell row 18 cell space space space space 11 end cell cell space space 23 end cell row cell negative 3 end cell cell space minus 5 end cell cell space minus 7 end cell end table close square brackets space open square brackets table row 2 cell space space space space space 1 end cell cell space space space space space space 5 end cell row 3 cell space minus 2 end cell cell space space minus 4 end cell row cell negative 3 end cell cell space space space 1 end cell cell space minus 2 end cell end table close square brackets
                              equals space open square brackets table row cell 16 plus 21 minus 18 end cell cell space space space space space 8 minus 14 plus 6 end cell cell space space space space space 40 minus 28 minus 12 end cell row cell 36 plus 33 minus 69 end cell cell space space space 18 minus 22 plus 23 end cell cell space space space space space 90 minus 44 minus 46 end cell row cell negative 6 minus 15 plus 21 end cell cell space space minus 3 plus 10 minus 7 end cell cell space space space space minus 15 plus 20 plus 14 end cell end table close square brackets
equals space open square brackets table row 19 cell space space 0 end cell cell space space space 0 end cell row 0 cell space 19 end cell cell space space space 0 end cell row 0 cell space 0 end cell cell space space 19 end cell end table close square brackets space equals space 19 space open square brackets table row 1 cell space space 0 end cell cell space space 0 end cell row 0 cell space 1 end cell cell space space 0 end cell row 0 cell space 0 end cell cell space space 1 end cell end table close square brackets
therefore space space space space left parenthesis adj space straight A right parenthesis thin space straight A space equals space open vertical bar straight A close vertical bar space straight I space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis
              

    From (1) and (2), we get,
    A (adj A) = (adj A) A = | A | I.

    Question 164
    CBSEENMA12034546
    Question 166
    CBSEENMA12034553

    Verify that A(adj. A) = (adj. A) A = | A | I where
    straight A space equals space open square brackets table row 1 cell space space 2 end cell cell space space 3 end cell row 2 cell space space 3 end cell cell space space 2 end cell row 3 cell space 3 end cell cell space space 4 end cell end table close square brackets

    Solution
    Here space straight A space equals space open square brackets table row 1 cell space space space 2 end cell cell space space space 3 end cell row 2 cell space space space space 3 end cell cell space space space space 2 end cell row 3 cell space space space space 3 end cell cell space space space 4 end cell end table close square brackets
therefore space space open vertical bar straight A close vertical bar space equals space open vertical bar table row 1 cell space space space 2 end cell cell space space 3 end cell row 2 cell space space 3 end cell cell space 2 end cell row 3 cell space space 3 end cell cell space space 4 end cell end table close vertical bar space equals space 1 space open vertical bar table row 3 cell space space space space 2 end cell row 3 cell space space space space 4 end cell end table close vertical bar minus 2 space open vertical bar table row 2 cell space space space 2 end cell row 3 cell space space space 4 end cell end table close vertical bar space plus space 3 space open vertical bar table row 2 cell space space space space 3 end cell row 3 cell space space space space 3 end cell end table close vertical bar
space space space space space space space space space space space space space equals space 1 left parenthesis 12 minus 6 right parenthesis minus 2 left parenthesis 8 minus 6 right parenthesis plus 3 left parenthesis 6 minus 9 right parenthesis space equals space 6 minus 4 minus 9 space equals space minus 7
    Co-factors of the elements of the first row of | A | are
    open vertical bar table row 3 cell space space space space 2 end cell row 3 cell space space space 4 end cell end table close vertical bar comma space space minus open vertical bar table row 2 cell space space space 2 end cell row 3 cell space space space 4 end cell end table close vertical bar comma space space open vertical bar table row 2 cell space space 3 end cell row 3 cell space space space 3 end cell end table close vertical bar
    i.e.    6, – 2, – 3 respectively
    Co-factors of the elements of the second row of | A | are
    negative open vertical bar table row 2 cell space space space space 3 end cell row 3 cell space space space space 4 end cell end table close vertical bar comma space space open vertical bar table row 1 cell space space space 3 end cell row 3 cell space space 4 end cell end table close vertical bar comma space space space space space minus open vertical bar table row 1 cell space space space 2 end cell row 3 cell space space space 3 end cell end table close vertical bar
    i.e. 1, – 5, 3 respectively.
    Co-factors of the elements of the third row of | A | are
    open vertical bar table row 2 cell space space 3 end cell row 3 cell space space 2 end cell end table close vertical bar comma space space space minus open vertical bar table row 1 cell space space space 3 end cell row 2 cell space space 2 end cell end table close vertical bar comma space space open vertical bar table row 1 cell space space 2 end cell row 2 cell space space 3 end cell end table close vertical bar
    i.e.,   – 5, 4, – 1 respectively
    therefore space space space adj. space straight A space equals space open square brackets table row 6 cell space space space minus 2 end cell cell space space space minus 3 end cell row 1 cell space space minus 5 end cell cell space space space space space 3 end cell row cell negative 5 end cell cell space space space 4 end cell cell space space space space 1 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row 6 cell space space space space space 1 space end cell cell space space minus 5 end cell row cell negative 2 end cell cell space space minus 5 end cell cell space space space space space space 4 end cell row cell negative 3 end cell cell space space space 3 end cell cell space space minus 1 end cell end table close square brackets
straight A left parenthesis adj. space straight A right parenthesis space equals space open square brackets table row 1 cell space space 2 end cell cell space space 3 end cell row 2 cell space 3 end cell cell space space 2 end cell row 3 cell space 3 end cell cell space space 4 end cell end table close square brackets space open square brackets table row 6 cell space space space 1 end cell cell space space minus 5 end cell row cell negative 2 end cell cell space space minus 5 end cell cell space space space space space space 4 end cell row cell negative 3 end cell cell space space 3 end cell cell space space minus 1 end cell end table close square brackets
space space space space space space space space space space space space space space space space equals space open square brackets table row cell 6 minus 4 minus 9 end cell cell space space space 1 minus 10 plus 9 end cell cell space space space space space space minus 5 plus 8 minus 3 end cell row cell 12 minus 6 minus 6 end cell cell space space 2 minus 15 plus 6 end cell cell space space space space space minus 10 plus 12 minus 2 end cell row cell 18 minus 6 minus 12 end cell cell space space space 3 minus 5 plus 12 end cell cell space space space space space space space minus 15 plus 12 minus 4 end cell end table close square brackets space equals space open square brackets table row cell negative 7 end cell 0 0 row 0 cell negative 7 end cell 0 row 0 0 cell negative 7 end cell end table close square brackets
space space space space space space space space space space space space space space space space equals negative 7 open square brackets table row 1 cell space space 0 end cell cell space space 0 end cell row 0 cell space space 1 end cell cell space space 0 end cell row 0 cell space 0 end cell cell space space 1 end cell end table close square brackets space equals space minus 7 space straight I
therefore space space space space space straight A left parenthesis adj. space straight A right parenthesis space equals space open vertical bar straight A close vertical bar space straight I space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
Again space left parenthesis adj. space straight A right parenthesis thin space straight A space equals space open square brackets table row 6 cell space space 1 end cell cell space space minus 5 end cell row cell negative 2 end cell cell space space minus 5 end cell cell space space space 4 end cell row cell negative 3 end cell cell space space 3 end cell cell space minus 1 end cell end table close square brackets space open square brackets table row 1 cell space space space 2 end cell cell space space 3 end cell row 2 cell space 3 end cell cell space space space 2 end cell row 3 cell space space 3 end cell cell space 4 end cell end table close square brackets
space space space space space equals space open square brackets table row cell 6 plus 2 minus 15 end cell cell space space space 12 plus 3 minus 15 end cell cell space space space space space 18 plus 2 minus 20 end cell row cell negative 2 minus 10 plus 12 end cell cell space space space minus 4 minus 15 plus 12 end cell cell space space space space space minus 6 minus 10 plus 16 end cell row cell negative 3 plus 6 minus 3 end cell cell negative 6 plus 9 minus 3 end cell cell negative 9 plus 6 minus 4 end cell end table close square brackets space equals space open square brackets table row cell negative 7 end cell cell space space 0 end cell cell space space space 0 end cell row 0 cell negative 7 end cell cell space space space 0 end cell row 0 0 cell negative 7 end cell end table close square brackets
space space space equals space minus 7 open square brackets table row 1 cell space space 0 end cell cell space space 0 end cell row 0 cell space space 1 end cell cell space space 0 end cell row 0 cell space space 0 end cell cell space space space 1 end cell end table close square brackets space equals space minus 7 straight I
therefore space space space left parenthesis adj. space straight A right parenthesis thin space straight A space equals space open vertical bar straight A close vertical bar space straight I space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis
    From (1) and (2), A (adj. A) = (adj. A) A = | A | I
    Question 167
    CBSEENMA12034555

    If straight A space equals space open square brackets table row 1 cell space minus 1 end cell cell space space 1 end cell row 2 cell space 3 end cell cell space space 0 end cell row 18 cell space 2 end cell cell space space 10 end cell end table close square brackets comma
    then verify that A (adj. A) = O.

    Solution
    straight A space equals space open square brackets table row 1 cell space minus 1 end cell cell space 1 end cell row 2 cell space 3 end cell cell space 0 end cell row 18 cell space 2 end cell 10 end table close square brackets space space space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space space space space space space open vertical bar straight A close vertical bar space equals space open vertical bar table row 1 cell negative 1 end cell 1 row 2 3 0 row 18 2 10 end table close vertical bar
    Co-factors of the elements of the first row of | A | are
    open vertical bar table row 3 cell space space space space 0 end cell row 2 cell space space 10 end cell end table close vertical bar comma space space minus open vertical bar table row 2 cell space space 0 end cell row 18 cell space space 10 end cell end table close vertical bar comma space space open vertical bar table row 2 cell space space 3 end cell row 18 cell space space 2 end cell end table close vertical bar
    i.e.    30 – 0, – (20 – 0), 4 – 54, i.e., 30, – 20, – 50 respectively
    Co-factors of the elements of the second row of | A | are
    negative space open vertical bar table row cell negative 1 end cell cell space space space space space 1 end cell row 2 cell space space space space 10 end cell end table close vertical bar comma space space space open vertical bar table row 1 cell space space space 1 end cell row 18 cell space space 10 end cell end table close vertical bar comma space space minus open vertical bar table row 1 cell space space minus 1 end cell row 18 cell space space space space space 2 end cell end table close vertical bar
    i.e. 12, – 8, – 20 respectively
    Co-factors of the elements of the third row of | A | are
                     open vertical bar table row cell negative 1 end cell cell space space space 1 end cell row 3 cell space space 0 end cell end table close vertical bar comma space space minus open vertical bar table row 1 cell space space space space space space 1 end cell row 2 cell space space space space space 0 end cell end table close vertical bar comma space space open vertical bar table row 1 cell space space space space space minus 1 end cell row 2 cell space space space space space space space space 3 end cell end table close vertical bar comma space space straight i. straight e. comma space space minus 3 comma space space 2 comma space space space 5 space respectively
    therefore space space space adj. space straight A space equals space open square brackets table row 30 cell space space minus 20 end cell cell space minus 50 end cell row 12 cell space minus 8 end cell cell space minus 20 end cell row cell negative 3 end cell cell space space 2 end cell cell space space space 5 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row 30 cell space space space 12 end cell cell space space minus 3 end cell row cell negative 20 end cell cell space minus 8 end cell cell space space space space space 2 end cell row cell negative 50 end cell cell space space minus 20 end cell cell space space space space space 5 end cell end table close square brackets
straight A left parenthesis adj. space straight A right parenthesis space equals space open square brackets table row 1 cell space space minus 1 end cell cell space space 1 end cell row 2 cell space space 3 end cell cell space space space 0 end cell row 18 cell space space 2 end cell cell space 10 end cell end table close square brackets space open square brackets table row cell space 30 end cell cell space space space space 12 end cell cell space space space minus 3 end cell row cell negative 20 end cell cell space space minus 8 end cell cell space space space space space space 2 end cell row cell negative 50 end cell cell space space minus 20 end cell cell space space space space space 5 end cell end table close square brackets
space space space space space space space space space space space space space space space space space equals space open square brackets table row cell 30 plus 20 minus 50 end cell cell 12 plus 8 minus 20 end cell cell space space minus 3 minus 2 plus 5 end cell row cell 60 minus 60 plus 0 end cell cell 24 minus 24 plus 0 end cell cell space minus 6 plus 6 plus 0 end cell row cell 540 minus 40 minus 500 end cell cell space space space space space space 216 minus 16 minus 200 end cell cell space space space space minus 54 plus 4 plus 50 end cell end table close square brackets space equals open square brackets table row 0 cell space space 0 end cell cell space 0 end cell row 0 cell space 0 end cell cell space 0 end cell row 0 cell space 0 end cell cell space 0 end cell end table close square brackets
therefore space space straight A left parenthesis Adj. space straight A right parenthesis space equals space straight O space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
    Question 168
    CBSEENMA12034556

    Find the inverse of open square brackets table row 2 cell space space space minus 2 end cell row 4 cell space space space space space space 3 end cell end table close square brackets

    Solution
    straight A space equals space open square brackets table row 2 cell negative 2 end cell row 4 cell space space space 3 end cell end table close square brackets
    therefore space space space space space open vertical bar straight A close vertical bar space equals open square brackets table row 2 cell space space space minus 2 end cell row 4 cell space space space space space space 3 end cell end table close square brackets space equals space 6 plus 8 space equals space 14 space not equal to 0
therefore space space space space space straight A to the power of negative 1 end exponent space exists.
space space space space space space space space space space straight A subscript 11 space equals space 3 comma space space space straight A subscript 12 space equals space minus 4 comma space space straight A subscript 21 space equals space 2 comma space space straight A subscript 22 space equals space 2
space space space space space space space space space adj. space straight A space equals space open square brackets table row cell straight A subscript 11 space end subscript end cell cell space straight A subscript 12 end cell row cell straight A subscript 13 end cell cell space straight A subscript 14 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row 3 cell space space space space minus 4 end cell row 2 cell space space space space space space space 2 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row cell space space 3 end cell cell space space 2 end cell row cell negative 4 end cell cell space space 2 end cell end table close square brackets
space space space space space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj. space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space 1 over 14 open square brackets table row cell space space space 3 end cell cell space space 2 end cell row cell negative 4 end cell cell space space 2 end cell end table close square brackets
    Question 169
    CBSEENMA12034557

    Find the inverse of open square brackets table row cell negative 1 end cell cell space space space space 5 end cell row cell negative 3 end cell cell space space space space 2 end cell end table close square brackets

    Solution

    Let A = open square brackets table row cell negative 1 end cell cell space space space 5 end cell row cell negative 3 end cell cell space space space 2 end cell end table close square brackets
    therefore space space open vertical bar straight A close vertical bar space space equals open square brackets table row cell negative 1 end cell cell space space space space 5 end cell row cell negative 3 end cell cell space space space 2 end cell end table close square brackets space equals space minus 2 plus 15 space equals space 13 space not equal to space 0
therefore space space space space space straight A to the power of negative 1 end exponent space exits. space
space space space space space space space space straight A subscript 11 space equals space 2 comma space space space straight A subscript 12 space equals space 3 comma space space space straight A subscript 21 space equals space minus 5 comma space space straight A subscript 22 space equals space minus 1
adj space. straight A space equals space open square brackets table row cell straight A subscript 11 end cell cell straight A subscript 12 end cell row cell straight A subscript 21 end cell cell straight A subscript 22 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row cell space 2 end cell cell space space space 3 end cell row cell negative 5 end cell cell space space minus 1 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row 2 cell space minus 5 end cell row 3 cell negative 1 end cell end table close square brackets
straight A to the power of negative 1 end exponent space equals space fraction numerator adj. space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space 1 over 13 open square brackets table row 2 cell space minus 5 end cell row 3 cell negative 1 end cell end table close square brackets.

    Question 170
    CBSEENMA12034558

    Find the sum of open square brackets table row 2 cell space space space space minus 3 end cell row 5 cell space space space minus 7 end cell end table close square brackets and its multiplication inverse. 

    Solution

    Let straight A space equals space open square brackets table row 2 cell space space space space minus 3 end cell row 5 cell space space space minus 7 end cell end table close square brackets
    therefore space space space space open vertical bar straight A close vertical bar space equals space open vertical bar table row 2 cell space space space minus 3 end cell row 5 cell space space space space minus 7 end cell end table close vertical bar space equals space minus 14 plus 15 space equals space 1 space not equal to 0
therefore space space space space straight A to the power of negative 1 end exponent space exists. space

    Co-factors of the elements of first row of | A | are – 7, – 5 respectively.
    Co-factors of the elements of second row of | A | are 3, 2 respectively.
    space therefore space space space space adj. space straight A space equals space open square brackets table row cell negative 7 end cell cell space space space minus 5 end cell row 3 cell space space space space space space 2 end cell end table close square brackets space equals space open square brackets table row cell negative 7 end cell cell space space space space space 3 end cell row cell negative 5 end cell cell space space space space space 2 end cell end table close square brackets
space space space space space space space space space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj. space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space 1 over 1 open square brackets table row cell negative 7 end cell cell space space space space 3 end cell row cell negative 5 end cell cell space space space space 2 end cell end table close square brackets space equals space open square brackets table row cell negative 7 end cell cell space space space space space 3 end cell row cell negative 5 end cell cell space space space space space 2 end cell end table close square brackets
space therefore space space space space straight A plus straight A to the power of negative 1 end exponent space equals space open square brackets table row 2 cell space space space space space space minus 3 end cell row 5 cell space space space space space space space minus 7 end cell end table close square brackets plus space open square brackets table row cell negative 7 end cell cell space space space space 3 end cell row cell negative 5 end cell cell space space space 2 end cell end table close square brackets space equals space open square brackets table row cell 2 minus 7 end cell cell space space minus 3 plus 3 end cell row cell 5 minus 5 end cell cell space space minus 7 plus 2 end cell end table close square brackets
space space space space space space space space space space space space space space space space space space space space space space space equals space open square brackets table row cell negative 5 end cell cell space space space space space space space space 0 end cell row 0 cell space space space space minus 5 end cell end table close square brackets

    Question 171
    CBSEENMA12034560

    If straight A space equals open square brackets table row 2 cell space space space space space space space 3 end cell row 5 cell space space space minus 2 end cell end table close square brackets, show that straight A to the power of negative 1 end exponent space equals space 1 over 19 straight A.

    Solution
    straight A space equals space open square brackets table row 2 cell space space space space space space space 3 end cell row 5 cell space space space minus 2 end cell end table close square brackets.
therefore space space space open vertical bar straight A close vertical bar space equals space open vertical bar table row 2 cell space space space space space space 3 end cell row 5 cell space space space space minus 2 end cell end table close vertical bar space equals negative 4 minus 15 space equals space minus 19 space not equal to 0 space space space space space space space rightwards double arrow space space space space straight A to the power of negative 1 end exponent space exists
    Co-factors of the elements of first row of | A | are  – 2, – 5 respectively
    Co-factors of the elements of second row of | A | are -3, 2 respectively
    therefore space space space adj. space straight A space equals space open square brackets table row cell negative 2 end cell cell space space space space minus 5 end cell row cell negative 3 end cell cell space space space space space space 2 end cell end table close square brackets space equals space open square brackets table row cell negative 2 end cell cell space space space space space minus 3 end cell row cell negative 5 end cell cell space space space space space space space 2 end cell end table close square brackets
therefore space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj. space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space 1 over 19 open square brackets table row cell negative 2 end cell cell space space space space space minus 3 end cell row cell negative 5 end cell cell space space space space 2 end cell end table close square brackets space equals space 1 over 19 open square brackets table row 2 cell space space space space space space space 3 end cell row 5 cell space space space minus 2 end cell end table close square brackets space equals space 1 over 19 straight A
therefore space space space straight A to the power of negative 1 end exponent space equals space 1 over 19 straight A.
    Question 172
    CBSEENMA12034561

    Let A be the matrix open square brackets table row 3 cell space space 8 end cell row 2 cell space space 1 end cell end table close square brackets. Find –1 and verify that straight A to the power of negative 1 end exponent space equals space 1 over 13 straight A space minus space 4 over 13 straight I
    where I is 2 × 2 unit matrix.

    Solution
    Here space straight A space equals space open square brackets table row 3 cell space space space 8 end cell row 2 cell space space 1 end cell end table close square brackets
therefore space space space open vertical bar straight A close vertical bar space equals space open vertical bar table row 3 cell space space space space space 8 end cell row 2 cell space space space space space 1 end cell end table close vertical bar space equals space 3 minus 16 space equals space minus 13 space not equal to space 0 space space space space space rightwards double arrow space space space straight A to the power of negative 1 end exponent space exists

    Co-factors of the elements of first row of | A | are 1, – 2 respectively
    Co-factors of the elements of second row of | A | are – 8, 3 respectively
    therefore space space space space adj. space straight A space equals space open square brackets table row 1 cell space space space minus 2 end cell row cell negative 8 end cell cell space space space space space 3 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row 1 cell space space space space space minus 8 end cell row cell negative 2 end cell cell space space space space space space space 3 end cell end table close square brackets
therefore space space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj. space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals negative 1 over 13 open square brackets table row cell space space space 1 end cell cell space space space space space minus 8 end cell row cell negative 2 end cell cell space space space space space space space space 3 end cell end table close square brackets
Now space 1 over 13 straight A minus 4 over 13 straight I space equals space 1 over 13 open square brackets table row 3 cell space space space 8 end cell row 2 cell space space space 1 end cell end table close square brackets minus 4 over 13 open square brackets table row 1 cell space space 0 end cell row 0 cell space space 1 end cell end table close square brackets space equals space 1 over 13 open square brackets table row 3 cell space 8 end cell row 2 cell space 1 end cell end table close square brackets minus 1 over 13 open square brackets table row 4 cell space 0 end cell row 0 cell space 4 end cell end table close square brackets
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals 1 over 13 open square brackets table row cell 3 minus 4 end cell cell space space space space 8 minus 0 end cell row cell 2 minus 0 end cell cell space space space space 1 minus 4 end cell end table close square brackets space equals space 1 over 13 open square brackets table row cell negative 1 end cell cell space space space 8 end cell row 2 cell space space minus 3 end cell end table close square brackets equals negative 1 over 13 open square brackets table row 1 cell space space minus 8 end cell row cell negative 2 end cell cell space space space space space 3 end cell end table close square brackets
therefore space space space space space space straight A to the power of negative 1 end exponent space equals space 1 over 13 straight A minus 4 over 13 straight I.

    Question 173
    CBSEENMA12034562

    If A = open square brackets table row 2 cell space space space 5 end cell row 1 cell space space space 6 end cell end table close square brackets comma   find straight A to the power of negative 1 end exponent and verify that straight A to the power of negative 1 end exponent space equals space minus 1 over 7 straight A plus 8 over 7 straight I

    Solution

    Here straight A space equals space open square brackets table row 2 cell space space space 5 end cell row 1 cell space space space 6 end cell end table close square brackets
     therefore space space space space open vertical bar straight A close vertical bar space equals space open vertical bar table row 2 cell space space space space space 5 end cell row 1 cell space space space space space space 6 end cell end table close vertical bar space equals space 12 minus 5 space equals space 7 space not equal to space 0 space space space space space space rightwards double arrow space space space space straight A to the power of negative 1 end exponent space exists
    Co-factors of the elements of first row of | A | are 6, – 1 respectively
    Co-factors of the elements of second row of | A | are – 5, 2 respectively
    therefore space space space adj. space straight A space equals space open square brackets table row 6 cell space space space space space minus 1 end cell row cell negative 5 end cell cell space space space space space space space space 2 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row 6 cell space space space space space space minus 5 end cell row cell negative 1 end cell cell space space space space space space space space space 2 end cell end table close square brackets
therefore space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj. space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space 1 over 7 open square brackets table row 6 cell space space space space minus 5 end cell row cell negative 1 end cell cell space space space space space space 2 end cell end table close square brackets
Now comma space minus 1 over 7 straight A plus 8 over 7 straight I space equals space minus 1 over 7 open square brackets table row 2 cell space space space 5 end cell row 1 cell space space space space 6 end cell end table close square brackets plus space 8 over 7 open square brackets table row 1 cell space space space 0 end cell row 0 cell space space space 1 end cell end table close square brackets space equals space 1 over 7 open square brackets table row cell negative 2 end cell cell space space minus 5 end cell row cell negative 1 end cell cell negative 6 end cell end table close square brackets plus 1 over 7 open square brackets table row 8 cell space 0 end cell row 0 cell space space space 8 space end cell end table close square brackets
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space 1 over 7 open square brackets table row cell negative 2 plus 8 end cell cell space space space space space space space space space minus 5 plus 0 end cell row cell negative 1 plus 0 end cell cell space space space space space space space space minus 6 plus 8 end cell end table close square brackets space equals space 1 over 7 open square brackets table row cell space space space 6 end cell cell space space space space minus 5 end cell row cell negative 1 end cell cell space space space space space space 2 end cell end table close square brackets
therefore space space space straight A to the power of negative 1 end exponent space equals space minus 1 over 7 straight A plus 8 over 7 straight I.

    Question 174
    CBSEENMA12034566

    Given straight A space equals space open square brackets table row 2 cell space space space space space minus 3 end cell row cell negative 4 end cell cell space space space space space space space 7 end cell end table close square brackets comma compute A–1 and show that 2A–1 = 9 I – A.

    Solution

    Here,  straight A space equals space open square brackets table row cell space space space space 2 end cell cell space space space space minus 3 end cell row cell negative 4 end cell cell space space space space space space space space 7 end cell end table close square brackets
    therefore space space space space space open vertical bar straight A close vertical bar space equals open vertical bar table row cell space space space 2 end cell cell space space space space minus 3 end cell row cell negative 4 end cell cell space space space space space space 7 end cell end table close vertical bar space equals space 14 minus 12 space equals space 2 space not equal to space 0 space space space space space rightwards double arrow space space straight A to the power of negative 1 end exponent space exists
    Co-factors of the elements of first row of | A | are 7, 4 respectively
    Co-factors of the elements of second row of | A | are 3, 2 respectively
    therefore space space space space adj. space space straight A space equals space open square brackets table row 7 cell space space space space 4 end cell row 3 cell space space space space 2 end cell end table close square brackets to the power of apostrophe space space equals space open square brackets table row 7 cell space space space 3 space end cell row 4 cell space space space 2 end cell end table close square brackets
therefore space space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj. space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space 1 half open square brackets table row 7 cell space space space space 3 end cell row 4 cell space space space space 2 end cell end table close square brackets space space space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space space space 2 straight A to the power of negative 1 end exponent open square brackets table row 7 cell space space space space 3 end cell row 4 cell space space space space space 2 end cell end table close square brackets
Also space 9 straight I space minus space straight A space equals space 9 open square brackets table row 1 cell space space space 0 end cell row 0 cell space space space space 1 end cell end table close square brackets space minus space open square brackets table row cell space space space 2 end cell cell space space space space space minus 3 end cell row cell negative 4 end cell cell space space space space space space space 7 end cell end table close square brackets
space space space space space space space space space space space space space space space space space space space space space space equals open square brackets table row 9 cell space space space 0 end cell row 0 cell space space space 9 end cell end table close square brackets space minus space open square brackets table row 2 cell space space space space space space space space minus 3 end cell row cell negative 4 end cell cell space space space space space space space space space space space 7 end cell end table close square brackets space equals space open square brackets table row 7 cell space space space space 3 end cell row 4 cell space space space space 2 end cell end table close square brackets
therefore space space space space 2 straight A to the power of negative 1 end exponent space equals space 9 straight I space minus straight A.

    Question 175
    CBSEENMA12034569

    Find the inverse of  straight A space equals space open square brackets table row 3 cell space space space space space space space 5 end cell row 7 cell space space minus 11 end cell end table close square brackets and verify that AA–1 = I.

    Solution
    straight A space equals space open square brackets table row 3 cell space space space space space space space 5 end cell row 7 cell space space space minus 11 end cell end table close square brackets
therefore space space space space space space open vertical bar straight A close vertical bar space equals space open vertical bar table row 3 cell space space space space space space space space 5 end cell row 7 cell space space space minus 11 end cell end table close vertical bar space equals space minus 33 minus 35 space equals space minus 68 space not equal to 0
rightwards double arrow space space space space straight A to the power of negative 1 end exponent space exists.
    Co-factors of the elements of first row | A | are – 11, – 7 respectively.
    Co-factors of the elements of second row of | A | are – 5, 3 respectively.
    therefore space space space space space adj. space straight A space equals space open square brackets table row cell negative 11 end cell cell space space space space minus 7 end cell row cell negative 5 end cell cell space space space space space space 3 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row cell negative 11 end cell cell space space space space minus 5 end cell row cell negative 7 end cell cell space space space space space space 3 end cell end table close square brackets
therefore space space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space minus 1 over 68 open square brackets table row cell negative 11 end cell cell space space space space minus 5 end cell row cell negative 7 end cell cell space space space space space space space 3 end cell end table close square brackets
Now comma space space space space AA to the power of negative 1 end exponent space equals space minus 1 over 68 open square brackets table row 3 cell space space space space space space space space 5 end cell row 7 cell space space space minus 11 end cell end table close square brackets space open square brackets table row cell negative 11 end cell cell space space space minus 5 end cell row cell negative 7 end cell cell space space space space space 3 end cell end table close square brackets
space space space space space space space space space space space space space space space space space space space space space space space space equals space minus 1 over 68 open square brackets table row cell negative 33 minus 35 end cell cell space space space space space minus 15 plus 15 end cell row cell negative 77 plus 77 end cell cell space space space space space space space minus 35 minus 33 end cell end table close square brackets space equals space minus 1 over 68 open square brackets table row cell negative 68 end cell cell space space space space 0 end cell row 0 cell space space minus 68 end cell end table close square brackets
space space space space space space space space space space space space space space space space space space space space space space space space equals open square brackets table row 1 cell space space space 0 end cell row 0 cell space space space 1 end cell end table close square brackets space space equals space straight I
therefore space space space space space AA to the power of negative 1 end exponent space space equals space space straight I space is space verified.
     
    Question 176
    CBSEENMA12034570
    Question 177
    CBSEENMA12034571
    Question 178
    CBSEENMA12034573

    If straight A space equals space open square brackets table row 3 cell space space space space space 1 end cell row 7 cell space space space space space 5 end cell end table close square brackets comma find x and y find that A2 + xI = y A. Hence find A–1

    Solution

     Here space straight A space equals space open square brackets table row 3 cell space space space space space 1 end cell row 7 cell space space space space space 5 end cell end table close square brackets
therefore space space space straight A squared space equals space open square brackets table row 3 cell space space space space space 1 end cell row 7 cell space space space space 5 end cell end table close square brackets space open square brackets table row 3 cell space space space space 1 end cell row 7 cell space space space space 5 end cell end table close square brackets space equals space open square brackets table row cell 9 plus 7 end cell cell space space space space space 3 plus 5 end cell row cell 21 plus 35 end cell cell space space space space space 7 plus 25 end cell end table close square brackets space equals space open square brackets table row 16 cell space space 8 end cell row 56 cell space space 32 end cell end table close square brackets
Now space straight A squared plus straight x space straight I space equals space straight y space straight A
rightwards double arrow space space space space space open square brackets table row 16 cell space space space space 8 end cell row 56 cell space space space 32 end cell end table close square brackets space plus space straight x space open square brackets table row 1 cell space space space 0 end cell row 0 cell space space space 1 end cell end table close square brackets space equals space straight y open square brackets table row 3 cell space space space space 1 end cell row 7 cell space space space space 5 end cell end table close square brackets
rightwards double arrow space space space space space open square brackets table row 16 cell space space space space space 8 end cell row 56 cell space space space space 32 end cell end table close square brackets space plus space open square brackets table row straight x cell space space space 0 end cell row 0 cell space space space straight x end cell end table close square brackets space equals space open square brackets table row cell 3 straight y end cell cell space space space straight y end cell row cell 7 straight y end cell cell space 5 straight y end cell end table close square brackets
rightwards double arrow space space space space space open square brackets table row cell 16 plus straight x end cell cell space space space space space 8 end cell row 56 cell space space space 32 plus straight x end cell end table close square brackets space equals space open square brackets table row cell 3 straight y end cell cell space space space space straight y end cell row cell 7 straight y end cell cell space space space 5 straight y end cell end table close square brackets
     From the definition of equality of matrices,
                                   space space space space space space space straight y space equals 8 space space space space space space space space space space space space space space space space space space 16 plus straight x space equals space 3 straight y
therefore space space space space straight y space equals space 8 comma space space space space space space space space space space space space space space space space 16 plus straight x space equals 24
therefore space space space space straight y space equals space 8 comma space space space space space space space space space space space space space space space space space space space space space space space space space straight x space equals space 8
therefore space space space space straight A squared plus 8 thin space straight I space equals space 8 space straight A
Post space multiplying space both space sides space by space straight A to the power of negative 1 end exponent comma
space space space space space space space space space space space space space space straight A squared space straight A to the power of negative 1 end exponent plus space 8 space straight I thin space straight A to the power of negative 1 end exponent space equals space 8 space straight A thin space straight A to the power of negative 1 end exponent
therefore space space space space space space space space space space space space space space space straight A plus space 8 space straight A to the power of negative 1 end exponent space space equals space 8 space straight I
therefore space space space space space space space space space space space space space space space 8 space straight A to the power of negative 1 end exponent space space equals space 8 thin space straight I space minus space straight A
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space 8 open square brackets table row 1 cell space space 0 end cell row cell space 0 end cell cell space space 1 end cell end table close square brackets minus space open square brackets table row 3 cell space space space 1 end cell row 7 cell space space space space 5 end cell end table close square brackets space equals space open square brackets table row 8 cell space space space 0 end cell row 0 cell space space space 8 end cell end table close square brackets plus open square brackets table row cell negative 3 end cell cell space space minus 1 end cell row cell negative 7 end cell cell space space space minus 5 end cell end table close square brackets
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space open square brackets table row cell 8 minus 3 end cell cell space space space 0 minus 1 end cell row cell 0 minus 7 end cell cell space space space 8 minus 5 end cell end table close square brackets
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space
space space space space space space space space space space space space space space
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space
space space space space space space space space space space space space space space space space space space space space space space space space space space


                    8 thin space straight A to the power of negative 1 end exponent space equals space open square brackets table row 5 cell space space space space space minus 1 end cell row cell negative 7 end cell cell space space space space space space 3 end cell end table close square brackets
therefore space space space space space straight A to the power of negative 1 end exponent space equals space 1 over 8 open square brackets table row 5 cell space space space minus 1 end cell row cell negative 7 end cell cell space space space space space 3 end cell end table close square brackets.
    Question 179
    CBSEENMA12034575

    If straight A space equals space open square brackets table row 6 cell space space space space 5 end cell row 7 cell space space space space 6 end cell end table close square brackets comma show that A2 – 12A + I = O. Hence find A –1.

    Solution
    straight A space equals open square brackets table row 6 cell space space space 5 end cell row 7 cell space space space 6 end cell end table close square brackets
therefore space space space space straight A squared space equals space open square brackets table row 6 cell space space space 5 end cell row 7 cell space space space 6 end cell end table close square brackets space open square brackets table row 6 cell space space space 5 end cell row 7 cell space space space 6 end cell end table close square brackets space equals space open square brackets table row cell 36 plus 35 end cell cell space space space space 30 plus 30 end cell row cell 42 plus 42 end cell cell space space space space 35 plus 36 end cell end table close square brackets space equals space open square brackets table row 71 cell space space space 60 end cell row 84 cell space space 71 end cell end table close square brackets
therefore space space space space space straight A squared minus 12 straight A space plus space straight I space equals space open square brackets table row 71 cell space space space 60 end cell row 84 cell space space space 71 end cell end table close square brackets space minus 12 space open square brackets table row 6 cell space space space 5 end cell row 7 cell space space space 6 end cell end table close square brackets plus open square brackets table row 1 cell space space space 0 end cell row 0 cell space space space 1 end cell end table close square brackets
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space open square brackets table row 71 cell space space 60 end cell row 84 cell space space 71 end cell end table close square brackets space plus space open square brackets table row cell negative 72 end cell cell space space space minus 60 end cell row cell negative 84 end cell cell space space minus 72 end cell end table close square brackets plus space open square brackets table row 1 cell space space space 0 end cell row 0 cell space space 1 end cell end table close square brackets
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space open square brackets table row cell 71 minus 72 plus 1 end cell cell space space space 60 minus 60 plus 0 end cell row cell 84 minus 84 plus 0 end cell cell space space space 71 minus 72 plus 1 end cell end table close square brackets space equals space open square brackets table row 0 cell space space 0 end cell row 0 cell space space 0 end cell end table close square brackets
therefore space space space straight A squared minus 12 space straight A space plus space straight I space equals space straight O
Post space multiplying space both space sides space by space straight A to the power of negative 1 end exponent comma space we space get
space space space space space space space space space space space space space space space space space straight A squared straight A to the power of negative 1 end exponent space minus 12 AA to the power of negative 1 end exponent plus space IA to the power of negative 1 end exponent space equals space straight O
or space space space space space space space space straight A minus 12 straight I plus straight A to the power of negative 1 end exponent space equals space straight O
therefore space space space space space space space space space space space space space space space space space space space space space space space space straight A to the power of negative 1 end exponent space equals space minus straight A plus 12 space straight I space equals space minus open square brackets table row 6 cell space space 5 end cell row 7 cell space space 6 end cell end table close square brackets space plus 12 space open square brackets table row 1 cell space space space 0 end cell row 0 cell space space 1 end cell end table close square brackets space space space space space space space space
                                       equals space open square brackets table row cell negative 6 end cell cell space space space space space minus 5 end cell row cell negative 7 end cell cell space space space minus 6 end cell end table close square brackets space plus space open square brackets table row 12 cell space space space 0 end cell row 0 cell space space space 12 end cell end table close square brackets
equals space open square brackets table row cell negative 6 plus 12 end cell cell space space space space minus 5 plus 0 end cell row cell negative 7 plus 0 end cell cell space minus 6 plus 12 end cell end table close square brackets space equals space open square brackets table row 6 cell space space space minus 5 end cell row cell negative 7 end cell cell space space space space space 6 end cell end table close square brackets
    Question 180
    CBSEENMA12034576

    If straight A space equals space open square brackets table row 2 cell space space space 7 end cell row 1 cell space space space 4 end cell end table close square brackets comma space space show that straight A squared minus 6 straight A space plus space straight I space equals space straight O comma space hence space find space straight A to the power of negative 1 end exponent.

    Solution
    straight A space equals open square brackets table row 2 cell space space space space 7 end cell row 1 cell space space space 4 end cell end table close square brackets
    therefore space space space straight A squared space equals space open square brackets table row 2 cell space space space space 7 end cell row 1 cell space space space 4 end cell end table close square brackets space open square brackets table row 2 cell space space space 7 end cell row 1 cell space space space 4 end cell end table close square brackets space equals space open square brackets table row cell 4 plus 7 end cell cell space space space 14 plus 28 end cell row cell 2 plus 4 end cell cell space space 7 plus 16 end cell end table close square brackets space equals space open square brackets table row 11 cell space space 42 end cell row 6 cell space space 23 end cell end table close square brackets
therefore space space space space straight A squared minus 6 straight A plus straight I space equals open square brackets table row 11 cell space space space space 42 end cell row 6 cell space space 23 end cell end table close square brackets space minus space open square brackets table row 2 cell space space space space 7 end cell row 1 cell space space space 4 end cell end table close square brackets space plus space open square brackets table row 1 cell space space space 0 end cell row 0 cell space space space 1 end cell end table close square brackets
space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space open square brackets table row 11 cell space space 42 end cell row 6 cell space 23 end cell end table close square brackets space plus space open square brackets table row cell negative 12 end cell cell space space space minus 42 end cell row cell negative 6 end cell cell space space minus 24 end cell end table close square brackets space plus space open square brackets table row 1 cell space space space 0 end cell row 0 cell space space space 1 end cell end table close square brackets
                             equals space open square brackets table row cell 11 minus 12 plus 1 end cell cell space space space 42 minus 42 plus 0 end cell row cell 6 minus 6 plus 0 end cell cell space space space 23 minus 24 plus 1 end cell end table close square brackets space equals space open square brackets table row 0 cell space space 0 end cell row 0 cell space space 0 end cell end table close square brackets

    therefore space space space space space straight A squared minus 6 straight A plus straight I space equals space straight O space space space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space space space straight I space equals space minus straight A squared plus 6 straight A
rightwards double arrow space space space space space straight I thin space straight A to the power of negative 1 end exponent space equals space minus straight A squared straight A to the power of negative 1 end exponent space plus space 6 AA to the power of negative 1 end exponent space space space space space space rightwards double arrow space space straight A to the power of negative 1 end exponent space equals space minus straight A space plus space 6 thin space straight I
therefore space space space space space space space straight A to the power of negative 1 end exponent space equals space minus open square brackets table row 2 cell space space space 7 end cell row 1 cell space space 4 end cell end table close square brackets plus 6 space open square brackets table row 1 cell space space space 0 end cell row 0 cell space space space 1 end cell end table close square brackets space equals space open square brackets table row cell negative 2 end cell cell space space space minus 7 end cell row cell negative 1 end cell cell space space minus 4 end cell end table close square brackets space plus space open square brackets table row 6 cell space space 0 end cell row 0 cell space space 6 end cell end table close square brackets
space space space space space space space space space space space space space space space space space space space equals space open square brackets table row cell negative 2 plus 6 end cell cell space space space space space space minus 7 plus 0 end cell row cell negative 1 plus 0 end cell cell space space space space space minus 4 plus 6 end cell end table close square brackets space equals space open square brackets table row cell space space 4 end cell cell space space space minus 7 end cell row cell negative 1 end cell cell space space space space space 2 end cell end table close square brackets
    Question 181
    CBSEENMA12034578

    If straight A space equals open square brackets table row 2 cell space space space minus 3 end cell row 3 cell space space space space space space 4 end cell end table close square brackets comma space show that straight A squared minus 6 straight A plus 17 space straight I space equals space straight O. Hence find straight A to the power of negative 1 end exponent.

    Solution
    straight A space equals space open square brackets table row 2 cell space space space minus 3 end cell row 3 cell space space space space space 4 end cell end table close square brackets
therefore space space space straight A squared space equals space open square brackets table row 2 cell space space minus 3 end cell row 3 cell space space space space space 4 end cell end table close square brackets space open square brackets table row 2 cell space space minus 3 end cell row 3 cell space space space space space space 4 end cell end table close square brackets space equals space open square brackets table row cell 4 minus 9 end cell cell space space space minus 6 minus 12 end cell row cell 6 plus 12 end cell cell negative 9 plus 16 end cell end table close square brackets space space equals space open square brackets table row cell negative 5 end cell cell space space minus 18 end cell row 18 cell space space space space space space 7 end cell end table close square brackets
therefore space space space straight A squared minus 6 straight A plus 17 space straight I space equals space open square brackets table row cell negative 5 end cell cell space space space minus 18 end cell row 18 cell space space space space space space space 7 end cell end table close square brackets space minus space 6 open square brackets table row 2 cell space space minus 3 end cell row 3 cell space space space space 4 end cell end table close square brackets space plus space 17 open square brackets table row 1 cell space space 0 end cell row 0 cell space space 1 end cell end table close square brackets
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space
                                      equals space open square brackets table row cell negative 5 end cell cell space space space space minus 18 end cell row 18 cell space space space space space space space 7 end cell end table close square brackets space plus space open square brackets table row cell negative 12 end cell cell space space space space space space 18 end cell row cell negative 18 end cell cell space space space minus 24 end cell end table close square brackets space plus space open square brackets table row 17 cell space space space 0 end cell row 0 cell space space space 17 end cell end table close square brackets
equals space open square brackets table row cell negative 5 minus 12 plus 17 end cell cell space space space space space minus 18 plus 18 plus 0 end cell row cell 18 minus 18 plus 0 end cell cell space space space space space space space space 7 minus 24 plus 17 end cell end table close square brackets space equals space open square brackets table row 0 cell space space space 0 end cell row 0 cell space space space space 0 end cell end table close square brackets

    therefore space space space straight A squared minus 6 straight A space plus space 17 space straight I space equals space straight O space space space space space space rightwards double arrow space space space space 17 space straight I space equals space minus straight A squared plus 6 straight A
rightwards double arrow space space space space space 17 space straight I thin space straight A to the power of negative 1 end exponent space equals space minus straight A squared straight A to the power of negative 1 end exponent space plus space 6 straight A thin space straight A to the power of negative 1 end exponent space space space space space space rightwards double arrow space space space space space 17 space straight A to the power of negative 1 end exponent space equals space minus straight A space plus space 6 straight I
rightwards double arrow space space space space space 17 space straight A to the power of negative 1 end exponent space equals space minus open square brackets table row 2 cell space space space minus 3 end cell row 3 cell space space space space space 4 end cell end table close square brackets space plus space open square brackets table row 1 cell space space space 0 end cell row 0 cell space space space 1 end cell end table close square brackets space space space rightwards double arrow space space space 17 space straight A to the power of negative 1 end exponent space equals space open square brackets table row cell negative 2 end cell cell space space space space space space space space 3 end cell row cell negative 3 end cell cell space space space minus 4 end cell end table close square brackets space plus space open square brackets table row 6 cell space space space 0 end cell row 0 cell space space space 6 end cell end table close square brackets
rightwards double arrow space space space space space space 17 space straight A to the power of negative 1 end exponent space equals space open square brackets table row cell negative 2 plus 6 end cell cell space space space space space space 3 plus 0 end cell row cell negative 3 plus 0 end cell cell space space space minus 4 plus 6 end cell end table close square brackets space space space space space space rightwards double arrow space space space 17 space straight A to the power of negative 1 end exponent space equals space open square brackets table row 4 cell space space space space 3 end cell row cell negative 3 end cell cell space space space space 2 end cell end table close square brackets
rightwards double arrow space space space space space space space space straight A to the power of negative 1 end exponent space equals space 1 over 17 open square brackets table row 4 cell space space space space 3 end cell row cell negative 3 end cell cell space space space space 2 end cell end table close square brackets
    Question 183
    CBSEENMA12034581

    Show that the matrix straight A space equals space open square brackets table row 2 cell space space space space space 3 end cell row 1 cell space space space space 2 end cell end table close square brackets satisfies the equation A2 – 4A + I = O and hence find A–1.

    Solution
    straight A space equals space open square brackets table row 2 cell space space space space space space 3 end cell row 1 cell space space space space space space 2 end cell end table close square brackets
    therefore space space space space space straight A squared space equals space open square brackets table row 2 cell space space space space space 3 end cell row 1 cell space space space space space 2 end cell end table close square brackets space open square brackets table row 2 cell space space space 3 end cell row 1 cell space space space 2 end cell end table close square brackets space equals space open square brackets table row cell 4 plus 3 end cell cell space space space 6 plus 6 end cell row cell 2 plus 2 end cell cell space space space 3 plus 4 end cell end table close square brackets space equals open square brackets table row 7 cell space space space space 12 end cell row 4 cell space space space space 7 end cell end table close square brackets
    therefore space space space space straight A squared minus 4 straight A space plus space straight I space equals space open square brackets table row 7 cell space space space 12 end cell row 4 cell space space space 7 end cell end table close square brackets minus space 4 space open square brackets table row 2 cell space space space space 3 end cell row 1 cell space space space 2 end cell end table close square brackets space plus space open square brackets table row 1 cell space space 0 end cell row 0 cell space space space 1 end cell end table close square brackets
space space space space space space space space space space space space space space space space space space space space space space space space space space equals space open square brackets table row 7 cell space space space space space 12 end cell row 4 cell space space space space 7 end cell end table close square brackets space plus space open square brackets table row cell negative 8 end cell cell space space space minus 12 end cell row cell negative 4 end cell cell space space space minus 8 end cell end table close square brackets space plus space open square brackets table row 1 cell space space space 0 end cell row 0 cell space space space 1 end cell end table close square brackets
space space space space space space space space space space space space space space space space space space space space space space space space space space equals open square brackets table row cell 7 minus 8 plus 1 end cell cell space space space space space space space 12 minus 12 plus 0 end cell row cell 4 minus 4 plus 0 end cell cell space space space space space space space space space space space space 7 minus 8 plus 1 end cell end table close square brackets space equals space open square brackets table row 0 cell space space space 0 end cell row 0 cell space space space 0 end cell end table close square brackets space equals space straight O
therefore space space space space straight A squared minus 4 straight A plus straight I space equals space straight O space space space space space rightwards double arrow space space space straight A space equals open square brackets table row 2 cell space space space 3 end cell row 1 cell space space 2 end cell end table close square brackets space satisfies space straight A squared minus 4 straight A plus straight I space equals space straight O
Now comma space straight A squared minus 4 straight A plus straight I space equals space straight O space space space space space space space rightwards double arrow space space space straight I space equals space minus straight A squared plus 4 straight A
rightwards double arrow space space space space space space space space space space space straight A to the power of negative 1 end exponent space equals space minus straight A space plus space 4 straight I space equals space minus open square brackets table row 2 cell space space space space space 3 end cell row 1 cell space space space space space space 2 end cell end table close square brackets space plus space 4 space open square brackets table row 1 cell space space space 0 end cell row 0 cell space space 1 end cell end table close square brackets
space space space space space space space
                                   equals space open square brackets table row cell negative 2 end cell cell space space space space minus 3 end cell row cell negative 1 end cell cell space space space space minus 2 end cell end table close square brackets plus space open square brackets table row 4 cell space space space space 0 end cell row 0 cell space space space space 4 end cell end table close square brackets space equals space open square brackets table row cell negative 2 plus 4 end cell cell space space space space space minus 3 plus 0 end cell row cell negative 1 plus 0 end cell cell space space space space minus 2 plus 4 end cell end table close square brackets
    therefore space space space space space straight A to the power of negative 1 end exponent space equals space open square brackets table row cell negative 2 end cell cell space space space space space minus 3 end cell row cell negative 1 end cell cell space space space space space space space 2 end cell end table close square brackets
    Question 184
    CBSEENMA12034583

    If straight A space equals space open square brackets table row cell space space 3 end cell cell space space space space 1 end cell row cell negative 1 end cell cell space space space space 2 end cell end table close square brackets comma  show that A2 – 5A + 7 I = O. Hence find A –1.

    Solution
    straight A space equals space open square brackets table row 3 cell space space space space space 1 end cell row cell negative 1 end cell cell space space space space space 2 end cell end table close square brackets
therefore space space space space straight A squared space equals space space open square brackets table row 3 cell space space space space 1 end cell row cell negative 1 end cell cell space space space space 2 end cell end table close square brackets space space open square brackets table row 3 cell space space space 1 end cell row cell negative 1 end cell cell space space space 2 end cell end table close square brackets space equals space open square brackets table row cell 9 minus 1 end cell cell space space space space space 3 plus 2 end cell row cell negative 3 minus 2 end cell cell space space minus 1 plus 4 end cell end table close square brackets space equals space open square brackets table row 8 cell space space 5 end cell row cell negative 5 end cell cell space space 3 end cell end table close square brackets
therefore space space space space straight A squared minus 5 straight A plus 7 straight I space equals open square brackets table row 8 cell space space space 5 end cell row cell negative 5 end cell cell space space 3 end cell end table close square brackets minus 5 open square brackets table row 3 cell space space space 1 end cell row cell negative 1 end cell cell space space space 2 end cell end table close square brackets plus 7 space open square brackets table row 1 cell space space space space 0 end cell row 0 cell space space space 1 end cell end table close square brackets
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals open square brackets table row cell space space 8 end cell cell space space space 5 end cell row cell negative 5 end cell cell space space space space 3 end cell end table close square brackets plus space open square brackets table row cell negative 15 end cell cell space space minus 5 end cell row 5 cell space space minus 10 end cell end table close square brackets space plus space open square brackets table row 7 cell space space space 0 end cell row 0 cell space space space 7 end cell end table close square brackets
                              equals space open square brackets table row cell 8 minus 15 plus 7 end cell cell space space space space space space space 5 minus 5 plus 0 end cell row cell negative 5 plus 5 plus 0 end cell cell space space space space space space space 3 minus 10 plus 7 end cell end table close square brackets space equals space open square brackets table row 0 cell space space 0 end cell row 0 cell space space 0 end cell end table close square brackets space equals space straight O
therefore space space space space straight A squared minus 5 straight A space plus space 7 straight I space equals space straight O
rightwards double arrow space space space space space space 7 straight I space equals space minus straight A squared plus 5 straight A space space space space space space rightwards double arrow space space space space space 7 straight A to the power of negative 1 end exponent space equals space minus straight A plus 5 thin space straight I
rightwards double arrow space space space space space space space 7 straight A to the power of negative 1 end exponent space equals space minus open square brackets table row cell space space space 3 end cell cell space space space 1 end cell row cell negative 1 end cell cell space space space 2 end cell end table close square brackets space space plus space 5 space open square brackets table row 1 cell space space space 0 end cell row 0 cell space space 1 end cell end table close square brackets
space rightwards double arrow space space space space space space space 7 straight A to the power of negative 1 end exponent space equals space open square brackets table row cell negative 3 end cell cell space space space minus 1 end cell row 1 cell space space space minus 2 end cell end table close square brackets space plus space open square brackets table row 5 cell space space 0 end cell row 0 cell space space 5 end cell end table close square brackets
rightwards double arrow space space space space space space space space 7 straight A to the power of negative 1 end exponent space equals space open square brackets table row cell negative 3 plus 5 end cell cell space space space space space space minus 1 plus 0 end cell row cell 1 plus 0 end cell cell space space space space minus 2 plus 5 end cell end table close square brackets space space space space space space space rightwards double arrow space space space 7 straight A to the power of negative 1 end exponent space equals space open square brackets table row 2 cell space space space minus 1 end cell row 1 cell space space space space space space space space 3 end cell end table close square brackets
therefore space space space space straight A to the power of negative 1 end exponent space equals space 1 over 7 open square brackets table row 2 cell space space space space space minus 1 end cell row 1 cell space space space space space space space space 3 end cell end table close square brackets
                                
    Question 187
    CBSEENMA12034588
    Question 188
    CBSEENMA12034591

    If straight A space equals space open square brackets table row 1 cell space space space space space tanx end cell row cell negative tanx end cell cell space space space 1 end cell end table close square brackets comma space space space space then space straight A apostrophe straight A to the power of negative 1 end exponent space equals space open square brackets table row cell cos space 2 straight x end cell cell space space space space space minus sin space 2 straight x end cell row cell sin space 2 straight x end cell cell space space space space space space space space cos space 2 straight x end cell end table close square brackets

    Solution

    Here,   straight A space equals space open square brackets table row 1 cell space space space space tanx end cell row cell negative tanx end cell cell space space space 1 end cell end table close square brackets
    therefore space space space open vertical bar straight A close vertical bar space equals space open vertical bar table row 1 cell space space space space tanx end cell row cell negative tanx end cell cell space space space 1 end cell end table close vertical bar space equals space 1 plus tan squared straight x space equals space sec squared straight x
therefore space space space straight A to the power of negative 1 end exponent space exists. space

    Co-factors of the elements of first row are 1, tan x respectively.
    Co-factors of the elements of second row are – tan x, 1 respectively.
    therefore space space space adj. space straight A space equals space open square brackets table row 1 cell space space space space tanx end cell row cell negative tanx end cell cell space space space 1 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row 1 cell negative tanx end cell row tanx cell space space space 1 end cell end table close square brackets
therefore space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj. space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space fraction numerator 1 over denominator sec squared straight x end fraction open square brackets table row 1 cell space space space space space minus tanx end cell row tanx cell space space space space space 1 end cell end table close square brackets
Also comma space space space straight A apostrophe space equals space open square brackets table row 1 cell space space space space minus tanx end cell row tanx cell space space space space space space 1 end cell end table close square brackets
therefore space space space straight A apostrophe straight A to the power of negative 1 end exponent space equals space open square brackets table row 1 cell space space space space minus tanx end cell row tanx cell space space space space 1 end cell end table close square brackets space fraction numerator 1 over denominator sec squared straight x end fraction open square brackets table row 1 cell space space space minus tanx end cell row tanx cell space space space space 1 end cell end table close square brackets
space space space space space space space space space space space space space space space space space space equals space fraction numerator 1 over denominator sec squared straight x end fraction open square brackets table row 1 cell space space space space minus tanx end cell row tanx cell space space space space space space space 1 end cell end table close square brackets space space open square brackets table row 1 cell space space space minus tanx end cell row tanx cell space space space space 1 end cell end table close square brackets
space space space space space space space space space space space space space space space space space space equals fraction numerator 1 over denominator sec squared straight x end fraction open square brackets table row cell 1 minus tanx end cell cell space space space space space 1 minus 2 space tanx end cell row cell 2 space tanx end cell cell space space 1 minus tan squared straight x end cell end table close square brackets
space space space space space space space space space space space space space space space space space equals space cos squared straight x open square brackets table row cell fraction numerator cos squared straight x minus sin squared straight x over denominator cos space straight x end fraction end cell cell negative fraction numerator 2 space sinx space over denominator cos space straight x end fraction end cell row cell fraction numerator 2 space sinx space over denominator cos space straight x end fraction end cell cell fraction numerator cos squared straight x minus sin squared straight x over denominator cosx end fraction end cell end table close square brackets
space space space space space space space space space space space space space space space space space equals space open square brackets table row cell cos squared straight x minus sin squared straight x end cell cell space space space space space minus 2 space sin space straight x space cos space straight x end cell row cell 2 space sinx space cosx end cell cell space space space space space space cos squared straight x minus sin squared straight x end cell end table close square brackets
therefore space space space space straight A apostrophe straight A to the power of negative 1 end exponent space equals space open square brackets table row cell cos space 2 straight x end cell cell space space space space space minus sin space 2 straight x end cell row cell sin space 2 straight x end cell cell space space space space space space space cos space 2 straight x end cell end table close square brackets

    Question 189
    CBSEENMA12034593

    Find the inverse of the matrix straight A space equals space open square brackets table row straight a cell space space straight b end cell row straight c cell space space fraction numerator 1 plus bc over denominator straight a end fraction end cell end table close square brackets and show that a A -1 = (a2 + b c + 1) I – a A.

    Solution

    Here straight A space equals open square brackets table row straight a cell space space space space straight b end cell row straight c cell space space space space space fraction numerator 1 plus bc over denominator straight a end fraction end cell end table close square brackets
    therefore space space space open vertical bar straight A close vertical bar space equals space open vertical bar table row straight a cell space space space space space space straight b end cell row straight c cell space space space space space fraction numerator 1 plus bc over denominator straight a end fraction end cell end table close vertical bar space equals space straight a open parentheses fraction numerator 1 plus bc over denominator straight a end fraction close parentheses minus bc space equals space left parenthesis 1 plus bc right parenthesis space minus bc space equals space 1 space not equal to space 0
therefore space space space straight A space is space non minus singular space and space straight A to the power of negative 1 end exponent space exists. space
    Co-factors of the elements of the first row of | A | are fraction numerator 1 plus bc over denominator straight a end fraction comma space -c respectively.
    Co-factors of the elements of the second row of | A | are b , a respectively.
    therefore space space space space space adj. space straight A space equals space open square brackets table row cell fraction numerator 1 plus bc over denominator straight a end fraction end cell cell space space space minus straight c end cell row cell negative straight b end cell cell space space space space straight a end cell end table close square brackets space space equals space open square brackets table row cell fraction numerator 1 plus bc over denominator straight a end fraction end cell cell space space space minus straight b end cell row cell negative straight c end cell cell space space space space straight a end cell end table close square brackets
    Now, straight A to the power of negative 1 end exponent space equals space fraction numerator adj. space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space open square brackets table row cell fraction numerator 1 plus bc over denominator straight a end fraction end cell cell negative straight b end cell row cell negative straight c end cell straight a end table close square brackets comma space space as space space open vertical bar straight A close vertical bar space equals space 1
     straight L. straight H. straight S. space equals space aA to the power of negative 1 end exponent space equals space straight a open square brackets table row cell fraction numerator 1 plus bc over denominator straight a end fraction end cell cell space space space minus straight b end cell row cell negative straight c end cell cell space space space space space space straight a end cell end table close square brackets space equals space open square brackets table row cell 1 plus bc end cell cell space space space minus ab end cell row cell negative ca end cell cell space space space space space space straight a squared end cell end table close square brackets
    straight R. straight H. straight S. space equals space left parenthesis straight a squared plus bc plus 1 right parenthesis thin space straight I space minus space straight a space equals space left parenthesis straight a squared plus bc plus 1 right parenthesis space open square brackets table row 1 cell space space 0 end cell row 0 cell space space 1 end cell end table close square brackets minus straight a space open square brackets table row straight a cell space space straight b end cell row straight c cell space space fraction numerator 1 plus bc over denominator straight a end fraction end cell end table close square brackets
space space space space space space space space space space space space space space equals space open square brackets table row cell straight a squared plus bc plus 1 end cell cell space space space space space 0 end cell row 0 cell space space space straight a squared plus bc plus 1 end cell end table close square brackets space minus space open square brackets table row cell straight a squared end cell cell space space space space space ab end cell row ac cell space space space space 1 plus bc end cell end table close square brackets
space space space space space space space space space space space space space space space equals space open square brackets table row cell straight a squared plus bc plus 1 minus straight a squared end cell cell space space space space 0 minus ab end cell row cell 0 minus ac end cell cell straight a squared plus bc plus 1 minus 1 minus bc end cell end table close square brackets space equals open square brackets table row cell 1 plus bc end cell cell space space space space minus ab end cell row cell negative ca end cell cell space space space space space straight a squared end cell end table close square brackets
therefore space space space straight L. straight H. straight S. space equals space straight R. straight H. straight S.

    Question 190
    CBSEENMA12034596

    If straight A space equals space open square brackets table row 1 cell space space space space 3 end cell row 2 cell space space space space 7 end cell end table close square brackets space space and space straight B space equals space open square brackets table row 3 cell space space space space 4 end cell row 6 cell space space space space 2 end cell end table close square brackets comma
    verify (AB)–1 = B –1 A–1

    Solution
    straight A space equals space open square brackets table row 1 cell space space 3 end cell row 2 cell space space 7 end cell end table close square brackets comma space space straight B space equals space open square brackets table row 3 cell space space space 4 end cell row 6 cell space space space 2 end cell end table close square brackets
open vertical bar straight A close vertical bar space equals space open vertical bar table row 1 cell space space space 3 end cell row 2 cell space space 7 end cell end table close vertical bar space equals space 7 minus 6 space equals space 1

    Co-factors of elements of first row of |A| are 7 and – 2 respectively
    Co-factors of elements of second row of |A| are – 3 and 1 respectively
    therefore space space adj. space straight A space equals space open square brackets table row 7 cell space space space minus 2 end cell row cell negative 3 end cell cell space space space space space 1 end cell end table close square brackets to the power of apostrophe space space equals space open square brackets table row cell space 7 end cell cell space space space minus 3 end cell row cell negative 2 end cell cell space space space space space 1 end cell end table close square brackets
space space space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj space straight A over denominator open vertical bar straight A close vertical bar end fraction equals space open square brackets table row cell space space space space 7 end cell cell space space space space minus 3 end cell row cell negative 2 end cell cell space space space space space 1 end cell end table close square brackets
space space space space space space space space open vertical bar straight B close vertical bar space equals space open vertical bar table row 3 cell space space space space 4 end cell row 6 cell space space space space 2 end cell end table close vertical bar space equals space 6 minus 24 space equals space minus 18
    Co-factors of elements of first row of | B | are 2 and – 6 respectively.
    Co-factors of elements of second row of | B | are – 4 and 3 respectively.
    therefore space space space space space space adj. space straight B space equals space open square brackets table row cell space space space 2 end cell cell space space space space minus 6 end cell row cell negative 4 end cell cell space space space space space 3 end cell end table close square brackets to the power of apostrophe space space equals space open square brackets table row 2 cell space space space minus 4 end cell row cell negative 6 end cell cell space space space space space 3 end cell end table close square brackets
space space space space space space space space space space space space space straight B to the power of negative 1 end exponent space equals space fraction numerator adj space straight B over denominator open vertical bar straight B close vertical bar end fraction space equals negative 1 over 18 open square brackets table row 2 cell space space space minus 4 end cell row cell negative 6 end cell cell space space space space space 3 end cell end table close square brackets
therefore space space space thin space straight B to the power of negative 1 end exponent straight A to the power of negative 1 end exponent space equals space minus 1 over 18 open square brackets table row cell space space 2 end cell cell space space space space space minus 4 end cell row cell negative 6 end cell cell space space space space space space space 3 end cell end table close square brackets space space open square brackets table row 7 cell space space space space space minus 3 end cell row cell negative 2 end cell cell space space space space space 1 end cell end table close square brackets
space space space space space space space space space space space space space space space space space space space space space space space equals negative 1 over 18 space open square brackets table row cell 14 plus 8 end cell cell space space space space minus 6 minus 4 end cell row cell negative 42 minus 6 end cell cell space space space space space space 18 plus 3 end cell end table close square brackets space equals space minus 1 over 18 space open square brackets table row 22 cell space space space minus 10 end cell row cell negative 48 end cell cell space space space space space 21 end cell end table close square brackets
therefore space space space space space straight B to the power of negative 1 end exponent straight A to the power of negative 1 end exponent space space equals space minus 1 over 18 open square brackets table row 22 cell space space minus 10 end cell row cell negative 48 end cell cell space space space space space 21 end cell end table close square brackets space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
space space space space space space space space space space space AB equals space open square brackets table row 1 cell space space space 3 end cell row 2 cell space space space 7 end cell end table close square brackets space space open square brackets table row 3 cell space space space 4 end cell row 6 cell space space space 2 end cell end table close square brackets space equals space open square brackets table row cell 3 plus 18 end cell cell space space space space space space 4 plus 6 end cell row cell 6 plus 42 end cell cell space space space space space space 8 plus 14 end cell end table close square brackets space equals space open square brackets table row 21 cell space space space 10 end cell row 48 cell space space space 22 end cell end table close square brackets
open vertical bar AB close vertical bar space equals space space open vertical bar table row 21 cell space space space space space space 10 end cell row 48 cell space space space space space 22 end cell end table close vertical bar space equals space 462 minus 480 space equals negative 18

    Co-factors of elements of first row of | AB | are 22 and – 48 respectively.
    Co-factors of elements of second row of | AB | are – 10 and 21 respectively.
    therefore space space adj. space left parenthesis AB right parenthesis space equals space open square brackets table row 22 cell space space space minus 48 end cell row cell negative 10 end cell cell space space space space space 21 end cell end table close square brackets to the power of comma space equals space open square brackets table row 22 cell space space space minus 10 end cell row cell negative 48 end cell cell space space space space space space space 21 end cell end table close square brackets
space space space space space space thin space left parenthesis AB right parenthesis to the power of negative 1 end exponent space equals space fraction numerator adj. space left parenthesis AB right parenthesis over denominator open vertical bar AB close vertical bar end fraction space equals space minus 1 over 18 open square brackets table row 22 cell space space space space minus 10 end cell row cell negative 48 end cell cell space space space space space space 21 end cell end table close square brackets space space space space space space space space space space space space... left parenthesis 2 right parenthesis
    From (1) and (2), we get, (AB) –1 = B –1 A–1

    Question 191
    CBSEENMA12034598

    If straight A space equals open square brackets table row 2 cell space space space space space space space 3 end cell row 1 cell space space minus 4 end cell end table close square brackets comma space straight B space equals space open square brackets table row cell space space space 1 end cell cell space space space space minus 2 end cell row cell negative 1 end cell cell space space space space space space 3 end cell end table close square brackets comma
    verify that (AB)–1 = B–1 A–1

    Solution
    straight A space equals space open square brackets table row 2 cell space space space space space space space 3 end cell row 1 cell space space minus 4 end cell end table close square brackets comma space space space straight B space equals space open square brackets table row cell space space 1 end cell cell space space minus 2 end cell row cell negative 1 end cell cell space space space space space 3 end cell end table close square brackets
open vertical bar straight A close vertical bar space equals space open vertical bar table row 2 cell space space space 3 end cell row 1 cell space space minus 4 end cell end table close vertical bar space equals space minus 8 minus 3 space equals space minus 11 space not equal to space 0
straight A subscript 11 space equals space minus 4 comma space space straight A subscript 12 equals negative 1 comma space space straight A subscript 21 space equals space minus 3 comma space space straight A subscript 22 space equals space 2
adj. space straight A space equals space open square brackets table row cell straight A subscript 11 end cell cell space space space straight A subscript 12 end cell row cell straight A subscript 21 end cell cell space space space straight A subscript 22 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row cell negative 4 end cell cell space space space space minus 1 end cell row cell negative 3 end cell cell space space space space space space 2 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row cell negative 4 end cell cell space space space space minus 3 end cell row cell negative 1 end cell cell space space space space space space space 2 end cell end table close square brackets
space space space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj. space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space minus 1 over 11 open square brackets table row cell negative 4 end cell cell space space space space minus 3 end cell row cell negative 1 end cell cell space space space space space space space 2 end cell end table close square brackets
open vertical bar straight B close vertical bar space equals space open vertical bar table row 1 cell space space space minus 2 end cell row cell negative 1 end cell cell space space space space space 3 end cell end table close vertical bar space equals space 3 minus 2 space equals space 1 space not equal to space space 0
space space space space straight B subscript 11 space equals space 3 comma space space straight B subscript 12 space equals space 1 comma space space space space space straight B subscript 21 space equals space 2 comma space space space straight B subscript 22 space equals space 1
adj. space straight B space equals space open square brackets table row cell straight B subscript 11 end cell cell space space straight B subscript 12 end cell row cell straight B subscript 21 end cell cell straight B subscript 22 end cell end table close square brackets to the power of apostrophe space space equals space open square brackets table row 3 cell space space 1 end cell row 2 cell space space space 1 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row 3 cell space space space 2 end cell row 1 cell space space space 1 end cell end table close square brackets
space space space space space space straight B to the power of negative 1 end exponent space equals space fraction numerator adj. space straight B over denominator open vertical bar straight B close vertical bar end fraction space equals space open square brackets table row 3 cell space space space 2 end cell row 1 cell space space 1 end cell end table close square brackets
therefore space space space space straight B to the power of negative 1 end exponent straight A to the power of negative 1 end exponent space equals space minus 1 over 11 open square brackets table row 3 cell space space space space 2 end cell row 1 cell space space space space 1 end cell end table close square brackets space space space space open square brackets table row cell negative 4 end cell cell space space space space minus 3 end cell row cell negative 1 end cell cell space space space space space space 2 end cell end table close square brackets space equals space minus 1 over 11 open square brackets table row cell negative 12 minus 2 end cell cell space space space minus 9 plus 4 end cell row cell negative 4 minus 1 end cell cell negative 3 plus 2 end cell end table close square brackets
    therefore space space space straight B to the power of negative 1 end exponent straight A to the power of negative 1 end exponent space equals space minus 1 over 11 open square brackets table row cell negative 14 end cell cell space space space minus 5 end cell row cell negative 5 end cell cell space space space minus 1 end cell end table close square brackets space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
space space space space space space space space space space space space space space space space space space AB space equals space open square brackets table row 2 cell space space space space space space 3 end cell row 1 cell space space minus 4 end cell end table close square brackets space space open square brackets table row 1 cell space space space minus 2 end cell row cell negative 1 end cell cell space space space space space 3 end cell end table close square brackets space equals space open square brackets table row cell 2 minus 3 end cell cell space space space space minus 4 plus 9 end cell row cell 1 plus 4 end cell cell space space space minus 2 minus 12 end cell end table close square brackets space equals space open square brackets table row cell negative 1 end cell cell space space 5 end cell row 5 cell space space minus 14 end cell end table close square brackets
space space space space space space space space space space space space space space space open vertical bar AB close vertical bar space equals space open vertical bar table row cell negative 1 end cell cell space space space space 5 end cell row 5 cell negative 14 end cell end table close vertical bar space equals space 14 minus 25 space equals space minus 11 space not equal to space 0

    Co-factors of elements of first row of | AB | and –14, –5 respectively.
    Co-factors of elements ofrsecond row of | AB | and –5, –1 respectively.
    space space therefore space space space space adj. space left parenthesis AB right parenthesis space equals space open square brackets table row cell negative 14 end cell cell space space space space minus 5 end cell row cell negative 5 end cell cell space space space space minus 1 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row cell negative 14 end cell cell space space space minus 5 end cell row cell negative 5 end cell cell space space minus 1 end cell end table close square brackets
space space space space space space space space space space left parenthesis AB right parenthesis to the power of negative 1 end exponent space equals fraction numerator adj. space left parenthesis AB right parenthesis over denominator open vertical bar AB close vertical bar end fraction space equals space minus 1 over 11 open square brackets table row cell negative 14 end cell cell space space minus 5 end cell row cell negative 5 end cell cell negative 1 end cell end table close square brackets space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis
    From (1) and (2), we get, (AB)–1 = B–1 A–1

    Question 192
    CBSEENMA12034602

    Let straight A space equals space open square brackets table row 3 cell space space space 7 end cell row 2 cell space space 5 end cell end table close square brackets space and space straight B space equals space open square brackets table row 6 cell space space 8 end cell row 7 cell space space 9 end cell end table close square brackets comma verify that (AB)–1 = B–1 A–1.

    Solution
    straight A space equals space open square brackets table row 3 cell space space 7 end cell row 2 cell space space 5 end cell end table close square brackets comma space space space straight B equals space open square brackets table row 6 cell space space space 8 end cell row 7 cell space space space 9 end cell end table close square brackets
space space space space space open vertical bar straight A close vertical bar space equals space open vertical bar table row 3 cell space space 7 end cell row 2 cell space space 5 end cell end table close vertical bar space equals space 15 minus 14 space equals space 1 space not equal to space 0
space space space space space space straight A subscript 11 space equals space 5 comma space space straight A subscript 12 space equals space minus 2 comma space space space straight A subscript 21 equals space minus 7 comma space space straight A subscript 22 space equals space 3
adj. space straight A space equals space open square brackets table row cell straight A subscript 11 end cell cell space space straight A subscript 12 end cell row cell straight A subscript 21 end cell cell straight A subscript 22 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row 5 cell space space space minus 2 end cell row cell negative 7 end cell cell space space space space space space 3 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row 5 cell space space minus 7 end cell row cell negative 2 end cell cell space space space space 3 end cell end table close square brackets
straight A to the power of negative 1 end exponent space equals space fraction numerator adj. space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals open square brackets table row cell space space space 5 end cell cell space space space minus 7 end cell row cell negative 2 end cell cell space space space space space 3 end cell end table close square brackets
space space space space space space straight B space equals space open square brackets table row 6 cell space space space space 8 end cell row 7 cell space space space 9 end cell end table close square brackets
open vertical bar straight B close vertical bar space equals space open vertical bar table row 6 cell space space space 8 end cell row 7 cell space space 9 end cell end table close vertical bar space equals space 54 minus 56 space equals space minus 2 space not equal to 0
space space space straight B subscript 11 space equals 9 comma space space straight B subscript 12 space equals space minus 7 comma space space straight B subscript 21 space equals space minus 8 comma space space space straight B subscript 22 space equals space 6
space space adj. space straight B space equals space open square brackets table row cell straight B subscript 11 end cell cell space straight B subscript 12 end cell row cell straight B subscript 21 end cell cell straight B subscript 22 end cell end table close square brackets to the power of apostrophe space equals open square brackets table row 9 cell space space space space minus 7 end cell row cell negative 8 end cell cell space space space space space space 6 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row 9 cell space space space space minus 8 end cell row cell negative 7 end cell cell space space space space space space 6 end cell end table close square brackets
space space space space straight B to the power of negative 1 end exponent space equals space fraction numerator adj. space straight B over denominator open vertical bar straight B close vertical bar end fraction space equals space minus 1 half open square brackets table row 9 cell space space space minus 8 end cell row cell negative 7 end cell cell space space space space space 6 end cell end table close square brackets
therefore space space straight B to the power of negative 1 end exponent straight A to the power of negative 1 end exponent space equals space minus 1 half open square brackets table row 9 cell space space space space minus 8 end cell row cell negative 7 end cell cell space space space space space space 6 end cell end table close square brackets space open square brackets table row 5 cell space space minus 7 end cell row cell negative 2 end cell cell space space space space 3 end cell end table close square brackets space equals space minus 1 half open square brackets table row cell 45 plus 16 end cell cell space space minus 63 minus 24 end cell row cell negative 35 minus 12 end cell cell space space 49 plus 18 end cell end table close square brackets
      therefore space space space space straight B to the power of negative 1 end exponent straight A to the power of negative 1 end exponent space equals space minus 1 half open square brackets table row 61 cell space space space space minus 87 end cell row cell negative 47 end cell cell space space space space 67 end cell end table close square brackets space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
space space space space space space space space space space AB space equals space open square brackets table row 3 cell space 7 end cell row 2 cell space 5 end cell end table close square brackets space open square brackets table row 6 cell space 8 end cell row 7 cell space 9 end cell end table close square brackets space equals space open square brackets table row cell 18 plus 49 end cell cell space space 24 plus 63 end cell row cell 12 plus 35 end cell cell space space 16 plus 45 end cell end table close square brackets space equals space open square brackets table row 67 cell space space space 87 end cell row 47 cell space space 61 end cell end table close square brackets
open vertical bar AB close vertical bar space equals space open vertical bar table row 67 cell space space 87 end cell row 47 cell space 61 end cell end table close vertical bar space equals space 4087 minus 4089 space equals space minus 2 not equal to 0

    Co-factors of the elements of first row of | AB j and 61, –47 respectively.
    Co-factors of the elements of second row of | AB | and –87, 67 respectively.
    therefore space space adj. space left parenthesis AB right parenthesis space equals space open square brackets table row 61 cell space space space minus 47 end cell row cell negative 87 end cell cell space space space space 67 end cell end table close square brackets to the power of apostrophe space open square brackets table row 61 cell space space minus 87 end cell row cell negative 47 end cell cell space space space space space 67 end cell end table close square brackets
therefore space space space space left parenthesis AB right parenthesis to the power of negative 1 end exponent space equals space fraction numerator adj. space left parenthesis AB right parenthesis over denominator open vertical bar AB close vertical bar end fraction equals negative 1 half open square brackets table row 61 cell space space minus 87 end cell row cell negative 47 end cell cell space space space space space 67 end cell end table close square brackets space space space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis
    From (1) and (2), we get,
    (AB)–1 = B–1 A–1.

    Question 193
    CBSEENMA12034604

    Verify that (AB)–1 = B–1 A–1 for the matrices A and B where straight A space equals space open square brackets table row 3 cell space space 2 end cell row 7 cell space space 5 end cell end table close square brackets comma space space straight B space equals space open square brackets table row 4 cell space space 6 end cell row 3 cell space space 2 end cell end table close square brackets

    Solution
    straight A space equals space open square brackets table row 3 cell space space space 2 end cell row 7 cell space space 5 end cell end table close square brackets comma space straight B space equals space open square brackets table row 4 cell space space space space 6 end cell row 3 cell space space space space 2 end cell end table close square brackets
    open vertical bar straight A close vertical bar space equals open vertical bar table row 3 cell space space space 2 end cell row 7 cell space space space 5 end cell end table close vertical bar space equals space 15 minus 14 space equals space 1
    Co-factors of the elements of first row of | A | are 5, – 7 respectively
    Co-factors of the elements of second row of | A | are – 2, 3 respectively
    therefore space space space space adj. space straight A space equals space open square brackets table row 5 cell space space minus 7 end cell row cell negative 2 end cell cell space space space space 3 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row 5 cell space space space minus 2 end cell row cell negative 7 end cell cell space space space space space 3 end cell end table close square brackets
space space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj. space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space open square brackets table row 5 cell space space space minus 2 end cell row cell negative 7 end cell cell space space space space space space 3 end cell end table close square brackets
open vertical bar straight B close vertical bar space equals space open vertical bar table row 4 cell space space space space 6 end cell row 3 cell space space space space 2 end cell end table close vertical bar space equals space 8 minus 18 space equals space minus 10

    Co-factors of the elements of first row of | B | are 2, – 3 respectively
    Co-factors of the elements of second row of | B | are – 6, 4 respectively
    therefore space space space space adj. space straight B space equals space open square brackets table row 2 cell space space space minus 3 end cell row cell negative 6 end cell cell space space space space space 4 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row 2 cell space space space space minus 6 end cell row cell negative 3 end cell cell space space space space space space 4 end cell end table close square brackets
therefore space space space space space straight B to the power of negative 1 end exponent space equals space fraction numerator adj. space straight B over denominator open vertical bar straight B close vertical bar end fraction space equals space minus 1 over 10 open square brackets table row cell space space 2 end cell cell space space space space minus 6 end cell row cell negative 3 end cell cell space space space space space 4 end cell end table close square brackets
therefore space space space space straight B to the power of negative 1 end exponent straight A to the power of negative 1 end exponent space equals space minus 1 over 10 open square brackets table row 2 cell space space space minus 6 end cell row cell negative 3 end cell cell space space space space space 4 end cell end table close square brackets space open square brackets table row 5 cell space space space minus 2 end cell row cell negative 7 end cell cell space space space space space 3 end cell end table close square brackets space equals space minus 1 over 10 open square brackets table row cell 10 plus 42 end cell cell space minus 4 minus 18 end cell row cell negative 15 minus 28 end cell cell 6 plus 12 end cell end table close square brackets
therefore space space space straight B to the power of negative 1 end exponent straight A to the power of negative 1 end exponent space equals space minus 1 over 10 open square brackets table row 52 cell space space space minus 22 end cell row cell negative 43 end cell cell space space space space 18 end cell end table close square brackets space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
space space space space space space space space space space AB space equals space open square brackets table row 3 cell space space space 2 end cell row 7 cell space space space 5 end cell end table close square brackets space open square brackets table row 4 cell space space 6 end cell row 3 cell space 2 end cell end table close square brackets space equals open square brackets table row cell 12 plus 6 end cell cell space space space 18 plus 4 end cell row cell 28 plus 15 end cell cell space space space 42 plus 10 end cell end table close square brackets space equals space open square brackets table row 18 cell space 22 end cell row 43 cell space 52 end cell end table close square brackets
open vertical bar AB close vertical bar space equals space open vertical bar table row 18 cell space space space 22 end cell row 43 cell space space space 52 end cell end table close vertical bar space equals space 936 minus 946 space equals space minus 10
    Co-factors of the elements of first row of | AB | are 52, – 43 respectively.
    Co-factors of the elements of second row of | AB | are – 22, 18 respectively.
    therefore space space adj. space left parenthesis AB right parenthesis space equals space open square brackets table row 52 cell space space space minus 43 end cell row cell negative 22 end cell cell space space space space space 18 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row 52 cell space space minus 22 end cell row cell negative 43 end cell cell space space space 18 end cell end table close square brackets
therefore space space space left parenthesis AB right parenthesis to the power of negative 1 end exponent space equals space fraction numerator adj. space left parenthesis AB right parenthesis over denominator open vertical bar AB close vertical bar end fraction space equals space minus 1 over 10 open square brackets table row 52 cell space space minus 22 end cell row cell negative 43 end cell cell space space space space 18 end cell end table close square brackets space space space space space space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis
    From (1) and (2), (AB)–1 B–1 A–1.

    Question 194
    CBSEENMA12034605

    Verify that (AB)–1 = B–1 A–1 for the matrices A and B where straight A space equals open square brackets table row 3 cell space space 2 end cell row 7 cell space space 5 end cell end table close square brackets comma space space straight B space equals space open square brackets table row 6 cell space space space space 7 end cell row 8 cell space space space space 9 end cell end table close square brackets.

    Solution
    straight A space equals space open square brackets table row 3 cell space space 2 end cell row 7 cell space space 5 end cell end table close square brackets space space straight B space equals space open square brackets table row 6 cell space space 7 end cell row 8 cell space space 9 end cell end table close square brackets
       open vertical bar straight A close vertical bar space equals space open vertical bar table row 3 cell space space space 2 end cell row 7 cell space space space space 5 space end cell end table close vertical bar space equals space 15 minus 14 space equals space 1
    Co-factors of the elements of first row | A | are 5, – 7 respectively.
    Co-factors of the elements of second row of | A | are – 2, 3 respectively.
    therefore space space adj. space straight A space equals space open square brackets table row 5 cell space space minus 7 end cell row cell negative 2 end cell cell space space space 3 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row 5 cell space space space minus 2 end cell row cell negative 7 end cell cell space space space space 3 end cell end table close square brackets
space space space space space space space space space space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj. space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space open square brackets table row cell space space space 5 end cell cell space space space space minus 2 end cell row cell negative 7 end cell cell space space space space space space 3 end cell end table close square brackets
space space space space space space space space space space space space space open vertical bar straight B close vertical bar space equals space open vertical bar table row 6 cell space space space 7 end cell row 8 cell space space 9 end cell end table close vertical bar space equals space 54 minus 56 space equals space minus 2

    Co-factors of the elements of first row of | B | are 9,  – 8 respectively
    Co-factors of the-elements of second row of | B | are – 7,   6 respectively
    therefore space space space adj. space straight B space equals space open square brackets table row 9 cell space space space space minus 8 end cell row cell negative 7 end cell cell space space space space space space 6 end cell end table close square brackets to the power of apostrophe space space equals space open square brackets table row 9 cell space space space minus 7 end cell row cell negative 8 end cell cell space space space space space 6 end cell end table close square brackets
therefore space space space space space space straight B to the power of negative 1 end exponent space equals space fraction numerator adj. space straight B over denominator open vertical bar straight B close vertical bar end fraction space equals space minus 1 half open square brackets table row 9 cell space space space space minus 7 end cell row cell negative 8 end cell cell space space space space space space space 6 end cell end table close square brackets
therefore space space space space space straight B to the power of negative 1 end exponent straight A to the power of negative 1 end exponent space equals negative 1 half open square brackets table row 9 cell space space space minus 7 end cell row cell negative 8 end cell cell space space space space space space 6 end cell end table close square brackets space space space open square brackets table row 5 cell space space space minus 2 end cell row cell negative 7 end cell cell space space space 3 end cell end table close square brackets space equals space minus 1 half open square brackets table row cell 45 plus 49 end cell cell space space space space minus 18 minus 21 end cell row cell negative 40 minus 42 end cell cell space space space space space space space 16 plus 18 end cell end table close square brackets
space space space space space space space space straight B to the power of negative 1 end exponent straight A to the power of negative 1 end exponent space equals space minus 1 half open square brackets table row 94 cell space space space space minus 39 end cell row cell negative 82 end cell cell space space space space space 34 end cell end table close square brackets space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
space space space space AB space equals space open square brackets table row 3 cell space space space 2 end cell row 7 cell space space space 5 end cell end table close square brackets space open square brackets table row 6 cell space space 7 end cell row 8 cell space space 9 end cell end table close square brackets space equals open square brackets table row cell 18 plus 16 end cell cell space space space 21 plus 18 end cell row cell 42 plus 40 end cell cell space space 49 plus 45 end cell end table close square brackets space equals space open square brackets table row 34 cell space space 39 space end cell row 82 cell space 94 end cell end table close square brackets
space space space open vertical bar AB close vertical bar space equals space open vertical bar table row 34 cell space space 39 end cell row 82 cell space space 94 end cell end table close vertical bar space equals space 3196 minus 3198 space equals space minus 2

    Co-factors of the elements of first row of | AB | are 94, – 82 respectively.
    Co-factors of the elements of second row of | AB | are – 39, 34 respectively.
    therefore space space adj. space left parenthesis AB right parenthesis space equals space open square brackets table row cell space space 94 end cell cell space space space minus 82 end cell row cell negative 39 end cell cell space space space space space space space 34 end cell end table close square brackets to the power of apostrophe space equals open square brackets table row cell space 94 end cell cell space space minus 39 end cell row cell negative 82 end cell cell space space space space 34 end cell end table close square brackets
therefore space space left parenthesis AB right parenthesis to the power of negative 1 end exponent space equals space fraction numerator adj. space left parenthesis AB right parenthesis over denominator open vertical bar AB close vertical bar end fraction equals space minus 1 half open square brackets table row cell space space 94 end cell cell space space space minus 39 end cell row cell negative 82 end cell cell space space space space space 34 end cell end table close square brackets space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis
space space space space space From space left parenthesis 1 right parenthesis space and space left parenthesis 2 right parenthesis comma space we space get space left parenthesis AB right parenthesis to the power of negative 1 end exponent space equals space straight B to the power of negative 1 end exponent straight A to the power of negative 1 end exponent.

    Question 195
    CBSEENMA12034606

    Verify that (AB)–1 = B–1 A–1 for the matrices A and B where straight A space equals space open square brackets table row 2 cell space space space 1 end cell row 5 cell space space space 3 end cell end table close square brackets comma space space space straight B space equals space open square brackets table row 4 cell space space space 5 end cell row 3 cell space space 4 end cell end table close square brackets.

    Solution
    straight A space equals space open square brackets table row 2 cell space space space 1 end cell row 5 cell space space space 3 end cell end table close square brackets comma space space space straight B space equals space open square brackets table row 4 cell space space space 5 end cell row 3 cell space space 4 end cell end table close square brackets
open vertical bar straight A close vertical bar space equals space open vertical bar table row 2 cell space space space 1 end cell row 5 cell space space space 3 end cell end table close vertical bar space equals space 6 minus 5 space equals space 1
    Co-factors of elements of first row | A | are 3 and – 5 respectively.
    Co-factors of elements of second row of | A | are – 1 and 2 respectively.
    adj. space straight A space equals space open square brackets table row 3 cell space space space minus 5 end cell row cell negative 1 end cell cell space space space space space space space 2 end cell end table close square brackets to the power of comma space space equals space open square brackets table row cell space space space 3 end cell cell space space space minus 1 end cell row cell negative 5 end cell cell space space space space space 2 end cell end table close square brackets
straight A to the power of negative 1 end exponent space equals space fraction numerator adj. space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space open square brackets table row cell space space 3 end cell cell space space space space minus 1 end cell row cell negative 5 end cell cell space space space space space space 2 end cell end table close square brackets
open vertical bar straight B close vertical bar space equals space open vertical bar table row 4 cell space space space 5 end cell row 3 cell space space space 4 end cell end table close vertical bar space equals space 16 minus 15 space equals space 1
    Co-factors of elements of first row of | B | are 4 and – 3 respectively.
    Co-factors of element of second row of | B | are – 5 and 4 respectively.
    adj. space straight B space equals space open square brackets table row cell space space 4 end cell cell space space space minus 3 end cell row cell negative 5 end cell cell space space space space space 4 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row cell space space 4 end cell cell space space space space minus 5 end cell row cell negative 3 end cell cell space space space space space space 4 end cell end table close square brackets
space space space space space space space straight B to the power of negative 1 end exponent space equals space fraction numerator adj. space straight B over denominator open vertical bar straight B close vertical bar end fraction space equals space open square brackets table row cell space space 4 end cell cell space space space minus 5 end cell row cell negative 3 end cell cell space space space space space space 4 end cell end table close square brackets
therefore space space space straight B to the power of negative 1 end exponent straight A to the power of negative 1 end exponent space equals space open square brackets table row cell space space 4 end cell cell space space space space minus 5 end cell row cell negative 3 end cell cell space space space space space space space 4 end cell end table close square brackets space space open square brackets table row 3 cell space space minus 1 end cell row cell negative 5 end cell cell space space space space 2 end cell end table close square brackets space equals space open square brackets table row cell 12 plus 25 end cell cell space space space minus 4 minus 10 end cell row cell negative 9 minus 20 end cell cell space space space space space space space 3 plus 8 end cell end table close square brackets
therefore space space space space space space straight B to the power of negative 1 end exponent straight A to the power of negative 1 end exponent space space equals space open square brackets table row cell space space 37 end cell cell space space space space minus 14 end cell row cell negative 29 end cell cell space space space space space space space space 11 end cell end table close square brackets space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
space space space space space space space space space space space space space space space AB space equals space open square brackets table row 2 cell space space space space 1 end cell row 5 cell space space space space 3 end cell end table close square brackets space open square brackets table row 4 cell space space space space space 5 end cell row 3 cell space space space space 4 end cell end table close square brackets space equals space open square brackets table row 11 cell space space space 14 end cell row 29 cell space space space 37 end cell end table close square brackets
space space space space space space open vertical bar AB close vertical bar space equals space open square brackets table row 11 cell space space space space space 14 end cell row 29 cell space space space space space 37 end cell end table close square brackets space equals space 407 minus 406 space equals space 1

    Co-factors of the first row of | AB | are 37, – 29 respectively.
    Co-factors of the second row of | AB | are – 14, 11 respectively.
        adj. space left parenthesis AB right parenthesis space equals space open square brackets table row cell space space space space 37 end cell cell negative 29 end cell row cell negative 14 end cell cell space space space 11 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row 37 cell space space minus 14 end cell row cell negative 29 end cell cell space space space space space space space 11 end cell end table close square brackets
therefore space space left parenthesis AB right parenthesis to the power of negative 1 end exponent space equals space fraction numerator adj. space left parenthesis AB right parenthesis over denominator open vertical bar AB close vertical bar end fraction
space space space space space space space space left parenthesis AB right parenthesis to the power of negative 1 end exponent space equals space open square brackets table row cell space space 37 end cell cell space space space minus 14 end cell row cell negative 29 end cell cell space space space space space space 11 end cell end table close square brackets space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis
    From (1) and (2), we have,

    (AB)–1 = B–1 A–1.

    Question 196
    CBSEENMA12034609

    Find (AB)–1 if straight A space equals space open square brackets table row 3 cell space 4 end cell row 1 cell space 1 end cell end table close square brackets comma space space straight B to the power of negative 1 end exponent space equals space open square brackets table row 4 cell space space 3 end cell row 2 cell space space 1 end cell end table close square brackets

    Solution
    Here space straight A space equals open square brackets table row 3 cell space space 4 end cell row 1 cell space space 1 end cell end table close square brackets comma space space straight B to the power of negative 1 end exponent space equals space open square brackets table row 4 cell space space space 3 end cell row 2 cell space space 1 end cell end table close square brackets
space space space space space space space space open vertical bar straight A close vertical bar space equals space open vertical bar table row 3 cell space space space 4 end cell row 1 cell space space space 1 end cell end table close vertical bar space equals space 3 minus 4 space space space space space minus 1 space not equal to space 0
rightwards double arrow space space space space space straight A to the power of negative 1 end exponent space exists. space
    Co-factors of elements of first row of | A | are 1, – 1 respectively.
    Co-factors of elements of second row of | A | are –4, 3 respectively.
    therefore space space space space adj. space straight A space equals space open square brackets table row 1 cell space space minus 1 end cell row cell negative 4 end cell cell space space space 3 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row cell space space 1 end cell cell space space space space minus 4 end cell row cell negative 1 end cell cell space space space space space space 3 end cell end table close square brackets
space space space space space space space space space straight A to the power of negative 1 end exponent space space space equals space fraction numerator adj space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space minus open square brackets table row cell space space space 1 end cell cell space space space minus 4 end cell row cell negative 1 end cell cell space space space space space space 3 end cell end table close square brackets
therefore space space space space left parenthesis AB right parenthesis to the power of negative 1 end exponent space equals space straight B to the power of negative 1 end exponent straight A to the power of negative 1 end exponent space equals space minus open square brackets table row 1 cell space space space 2 end cell row 1 cell space space space 4 end cell end table close square brackets space open square brackets table row cell space space 1 end cell cell space space space minus 4 end cell row cell negative 1 end cell cell space space space space space 3 end cell end table close square brackets space equals space minus open square brackets table row cell 1 minus 2 end cell cell space space space space minus 4 plus 6 end cell row cell 1 minus 4 end cell cell space space space space minus 4 plus 12 end cell end table close square brackets
space space space space space space space space space space space space space space space space space space space space space equals negative open square brackets table row cell negative 1 end cell cell space space space 2 end cell row cell negative 3 end cell cell space space space 8 end cell end table close square brackets space equals space open square brackets table row 1 cell space space minus 2 end cell row 3 cell space space minus 8 end cell end table close square brackets
    Question 197
    CBSEENMA12034610

    Find (AB)–1 if straight A space equals space open square brackets table row 5 cell space space 0 end cell row 2 cell space space space 3 end cell end table close square brackets comma space space space straight B to the power of negative 1 end exponent space equals space open square brackets table row 1 cell space space space 2 end cell row 1 cell space space 4 end cell end table close square brackets

    Solution

    Here straight A space equals open square brackets table row 5 cell space 0 end cell row 2 cell space 3 end cell end table close square brackets comma space space straight B to the power of negative 1 end exponent space equals space open square brackets table row 1 cell space space 2 end cell row 1 cell space space 4 end cell end table close square brackets space space
        open vertical bar straight A close vertical bar space equals space open vertical bar table row 5 cell space space 0 end cell row 2 cell space space 3 end cell end table close vertical bar space equals space 15 minus 0 space equals space 15
rightwards double arrow space space space space straight A to the power of negative 1 end exponent space exists. space
    Co-factors of elements of first row of | A | are 3, – 2 respectively.
    Co-factors of elements of second row of | A | are 0, 5 respectively.
    therefore space space space space adj. space straight A space equals space open square brackets table row 3 cell space space minus 2 end cell row 0 cell space space space space 5 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row cell space space 3 end cell cell space space space 0 end cell row cell negative 2 end cell cell space space space 5 end cell end table close square brackets
therefore space space space space space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space 1 over 15 open square brackets table row cell space space 3 end cell cell space space space 0 end cell row cell negative 2 end cell cell space space space 5 end cell end table close square brackets
space space space space space left parenthesis AB right parenthesis to the power of negative 1 end exponent space equals space straight B to the power of negative 1 end exponent straight A to the power of negative 1 end exponent space equals space 1 over 15 open square brackets table row 1 cell space space 2 end cell row 1 cell space space 4 end cell end table close square brackets space open square brackets table row cell space space space 3 end cell cell space space space 0 end cell row cell negative 2 end cell cell space space space 5 end cell end table close square brackets space equals space 1 over 15 open square brackets table row cell 3 minus 4 end cell cell space space space 0 plus 10 end cell row cell 3 minus 8 end cell cell space space space space 0 plus 20 end cell end table close square brackets
space space space space space space space space space space space space space space space space space space space equals space 1 over 15 open square brackets table row cell negative 1 end cell cell space space space 10 end cell row cell negative 5 end cell cell space space 20 end cell end table close square brackets

    Question 198
    CBSEENMA12034611
    Question 199
    CBSEENMA12034615

    Find the inverse of the matrix:
    open square brackets table row 1 cell space space space minus 1 end cell cell space space space space space space 2 end cell row 0 cell space space space space space space 2 end cell cell space space space minus 3 end cell row 3 cell space space space minus 2 end cell cell space space space space space space 4 end cell end table close square brackets.

    Solution

    Let straight A space equals space open square brackets table row 1 cell space space minus 1 end cell cell space space space space space space 2 end cell row 0 cell space space space space space 2 end cell cell space space minus 3 end cell row 3 cell space space minus 2 end cell cell space space space space 4 end cell end table close square brackets
    therefore space space space open vertical bar straight A close vertical bar space equals space open vertical bar table row 1 cell space space minus 1 end cell cell space space space space space space 2 end cell row 0 cell space space space space space 2 end cell cell space space minus 3 end cell row 3 cell space space space minus 2 end cell cell space space space space space 4 end cell end table close vertical bar space equals space 1 space open vertical bar table row cell space space 2 end cell cell space space minus 3 end cell row cell negative 2 end cell cell space space space space space 4 end cell end table close vertical bar minus left parenthesis negative 1 right parenthesis space open vertical bar table row 0 cell space space minus 3 end cell row 3 cell space space space space space 4 end cell end table close vertical bar space plus 2 space open vertical bar table row 0 cell space space space space space space 2 end cell row 3 cell space space minus 2 end cell end table close vertical bar
space space space space space space space space space space space space space space equals space 1 left parenthesis 8 minus 6 right parenthesis plus 1 left parenthesis 0 plus 9 right parenthesis plus 2 left parenthesis 0 minus 6 right parenthesis space equals space 2 plus 9 plus 12 space equals space minus 1 space not equal to space 0.
therefore space space space straight A to the power of negative 1 end exponent space exists.
    Co-factors of the elements of first row of | A | are
    open vertical bar table row cell space space 2 end cell cell space space space minus 3 end cell row cell negative 2 end cell cell space space space space space space 4 end cell end table close vertical bar comma space space space space space minus open vertical bar table row 0 cell space space space minus 3 end cell row 3 cell space space space space space space 4 end cell end table close vertical bar comma space space open vertical bar table row 0 cell space space space space space space space 2 end cell row 3 cell space space space minus 2 end cell end table close vertical bar
    i.e. 2, –9, — 6 respectively.
    Co-factors of the elements of second row of | A | are
    negative open vertical bar table row cell negative 1 end cell cell space space space 2 end cell row cell negative 2 end cell cell space space 4 end cell end table close vertical bar comma space space space open vertical bar table row 1 cell space space space space space space space 2 end cell row 3 cell space space space space space space space 4 end cell end table close vertical bar comma space space space space minus open vertical bar table row 1 cell space space space space minus 1 end cell row 3 cell space space space space space minus space 2 end cell end table close vertical bar
    i.e. 0, – 2, – 1 respectively.
    Co-factors of the elements of third row of | A | are
    open vertical bar table row cell negative 1 end cell cell space space space space space space space space 2 end cell row cell space 2 end cell cell space space space minus 3 end cell end table close vertical bar comma space space space space space minus open vertical bar table row 1 cell space space space space space space space 2 end cell row 0 cell space space space minus 3 end cell end table close vertical bar comma space space space space space open vertical bar table row 1 cell space space space minus 1 end cell row 0 cell space space space space space 2 end cell end table close vertical bar
    i.e.   – 1, 3, 2 respectively.
    therefore space space space adj. space straight A space equals space open square brackets table row 2 cell space space space minus 9 end cell cell space space space space minus 6 end cell row 0 cell space space minus 2 end cell cell space space space minus 1 end cell row cell negative 1 end cell cell space space space 3 end cell cell space space space space space space 2 end cell end table close square brackets space equals space open square brackets table row cell space space 2 end cell cell space space space space space space 0 end cell cell space space space minus 1 end cell row cell negative 9 end cell cell space space space minus 2 end cell cell space space space space 3 end cell row cell negative 6 end cell cell space space space minus 1 end cell cell space space space space 2 end cell end table close square brackets
therefore space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj. space straight A over denominator open vertical bar straight A close vertical bar end fraction equals space fraction numerator 1 over denominator negative 1 end fraction space open square brackets table row cell space space space 2 end cell cell space space space space space space 0 end cell cell space space minus 1 end cell row cell negative 9 end cell cell space space space minus 2 end cell cell space space space space 3 end cell row cell negative 6 end cell cell space space space minus 1 end cell cell space space space space space 2 end cell end table close square brackets space equals space open square brackets table row cell negative 2 end cell cell space space space 0 end cell cell space space space space space 1 end cell row 9 cell space space 2 end cell cell space space minus 3 end cell row 6 cell space space space 1 end cell cell space space space minus 2 end cell end table close square brackets

    Question 200
    CBSEENMA12034622

    If straight A space equals space open square brackets table row 0 cell space space space 0 end cell cell space space 1 end cell row 0 cell space space 1 end cell cell space space 0 end cell row 1 cell space space 0 end cell cell space space 0 end cell end table close square brackets comma show that  A–1 = A.

    Solution
    straight A space equals space open square brackets table row 0 cell space space space 0 end cell cell space space space 1 end cell row 0 cell space space space 1 end cell cell space space space space 0 end cell row 0 cell space space space space 0 end cell cell space space space space 1 end cell end table close square brackets
therefore space space space open vertical bar straight A close vertical bar space equals space open vertical bar table row 0 cell space space space 0 end cell cell space space space space 1 end cell row 0 cell space space 1 end cell cell space space space 0 end cell row 1 cell space space space 0 end cell cell space space space 0 end cell end table close vertical bar space equals 1 open vertical bar table row 0 cell space space space 1 end cell row 1 cell space space space 0 end cell end table close vertical bar space equals space 1 left parenthesis 0 minus 1 right parenthesis space equals space minus 1 not equal to space space 0 space space space space rightwards double arrow space space straight A to the power of negative 1 end exponent space exists. space
    Co-factors of the elements of the first row of | A | are
     open vertical bar table row 1 cell space space 0 end cell row 0 cell space 0 end cell end table close vertical bar comma space space minus open vertical bar table row 0 cell space space space space 0 end cell row 1 cell space space space space 0 end cell end table close vertical bar comma space space open vertical bar table row 0 cell space space space 1 end cell row 1 cell space space 0 end cell end table close vertical bar
    i.e. 0, 0, – 1 respectively
    Co-factors of the elements of the second row of | A | are
    negative open vertical bar table row 0 cell space space 1 end cell row 0 cell space space 0 end cell end table close vertical bar comma space space open vertical bar table row 0 cell space space space 1 end cell row 1 cell space space space 0 end cell end table close vertical bar comma space space minus open vertical bar table row 0 cell space space 0 end cell row 1 cell space space 0 end cell end table close vertical bar
    i.e. 0,–1, 0, respectively.
    Co-factors of the elements of the third row of | A | are
    open vertical bar table row 0 cell space space 1 end cell row 1 cell space 0 end cell end table close vertical bar comma space space minus open vertical bar table row 0 cell space space space space 1 end cell row 0 cell space space space space 0 end cell end table close vertical bar comma space space open vertical bar table row 0 cell space space space 0 end cell row 0 cell space space 1 end cell end table close vertical bar
    i.e., – 1, 0, 0 respectively.
    therefore space space space adj. space straight A space equals space open square brackets table row 0 cell space space 0 end cell cell space space space minus 1 end cell row 0 cell space minus 1 end cell cell space space space space space space 0 end cell row cell negative 1 end cell cell space space 0 end cell cell space space space space space space 0 end cell end table close square brackets to the power of apostrophe space equals space space open square brackets table row cell space 0 end cell cell space space space space 0 end cell cell space space space minus 1 end cell row cell space space 0 end cell cell space space minus 1 end cell cell space space space space space 0 end cell row cell negative 1 end cell cell space space space space 0 end cell cell space space space space 0 end cell end table close square brackets
Now space straight A to the power of negative 1 end exponent space equals space fraction numerator adj. space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space fraction numerator 1 over denominator negative 1 end fraction open square brackets table row 0 cell space space space space 0 end cell cell space space space minus 1 end cell row 0 cell space space minus 1 end cell cell space space space space space 0 end cell row cell negative 1 end cell cell space space space space 0 end cell cell space space space space 0 end cell end table close square brackets space equals space open square brackets table row 0 cell space space 0 end cell cell space space 1 end cell row 0 cell space space 1 end cell cell space space 0 end cell row 1 cell space space 0 end cell cell space space 0 end cell end table close square brackets space equals space straight A
therefore space space space straight A to the power of negative 1 end exponent space equals space straight A.


    Question 201
    CBSEENMA12034625

    Find straight A to the power of negative 1 end exponent if straight A space equals space open square brackets table row 0 cell space space space space 1 end cell cell space space space space 1 end cell row 1 cell space space space space 0 end cell cell space space space 1 end cell row 1 cell space space space space 1 end cell cell space space space 0 end cell end table close square brackets Also show that straight A to the power of negative 1 end exponent space space equals fraction numerator straight A squared minus 3 straight I over denominator 2 end fraction.

    Solution
    straight A space equals space open square brackets table row 0 cell space space 1 end cell cell space 1 space end cell row 1 cell space space 0 end cell 1 row 1 cell space 1 end cell 0 end table close square brackets
    therefore space space space space open vertical bar straight A close vertical bar space equals space open vertical bar table row 0 cell space space space space 1 end cell cell space space space 1 end cell row 1 cell space space space 0 end cell cell space space space space 1 end cell row 1 cell space space space 1 end cell cell space space space 0 end cell end table close vertical bar space equals space 0 space open vertical bar table row 0 cell space space 1 end cell row 1 cell space space 0 end cell end table close vertical bar space minus space 1 space open vertical bar table row 1 cell space space 1 end cell row 1 cell space space 0 end cell end table close vertical bar space plus space 1 space open vertical bar table row 1 cell space space 0 end cell row 1 cell space space 1 end cell end table close vertical bar
space space space space space space space space space space space space space space space equals space 0 left parenthesis 0 minus 1 right parenthesis space minus 1 space left parenthesis 0 minus 1 right parenthesis space plus space 1 left parenthesis 1 minus 0 right parenthesis space equals space 0 plus 1 plus 1 space equals space 2 space not equal to 0
therefore space space space straight A to the power of negative 1 end exponent space exists.
    Co-factors of the elements of first row of | A | are
    open vertical bar table row 0 cell space space space 1 end cell row 1 cell space space space 0 end cell end table close vertical bar comma space space space minus open vertical bar table row 1 cell space space 1 end cell row 1 cell space space 1 end cell end table close vertical bar comma space space open vertical bar table row 1 cell space space space 0 end cell row 1 cell space space space 1 end cell end table close vertical bar
    i.e. –1,   1,   1 respectively
    Co-factors of the elements of second row of | A | are
    negative open vertical bar table row 1 cell space space 1 end cell row 1 cell space space 0 end cell end table close vertical bar comma space space open vertical bar table row 0 cell space space space 1 end cell row 1 cell space space space space 0 end cell end table close vertical bar comma space space minus open vertical bar table row 0 cell space space 1 end cell row 1 cell space space 1 end cell end table close vertical bar
    i.e., 1. – 1, 1 respectively
    Co-factors of the elements of third row of | A | are
    open vertical bar table row 1 cell space space 1 end cell row 0 cell space space 1 end cell end table close vertical bar comma space space minus open vertical bar table row 0 cell space space space 1 end cell row 1 cell space space 1 end cell end table close vertical bar comma space space open vertical bar table row 0 cell space space 1 end cell row 1 cell space space 0 end cell end table close vertical bar space space space straight i. straight e. space space space space space 1 comma space 1 comma space minus 1 space respectively.
    therefore space space space space adj space straight A space equals space open square brackets table row cell negative 1 end cell 1 cell space space 1 end cell row cell space space 1 end cell cell negative 1 end cell cell space space 1 end cell row cell space space 1 end cell 1 cell negative 1 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row cell negative 1 end cell cell space space space space 1 end cell cell space space space space space 1 end cell row 1 cell negative 1 end cell cell space space space space space space 1 end cell row 1 cell space space 1 end cell cell space space minus 1 end cell end table close square brackets
    space space space space space space space space space space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space 1 half open square brackets table row cell negative 1 end cell cell space space space 1 end cell cell space space space 1 end cell row 1 cell negative 1 end cell cell space space space space 1 space end cell row 1 cell space 1 end cell cell negative 1 end cell end table close square brackets
space space space space space space space space space space space space straight A squared space equals space open square brackets table row 0 cell space space 1 end cell cell space space space 1 end cell row 1 cell space space 0 end cell cell space space space 1 end cell row 1 cell space space 1 end cell cell space space space 0 end cell end table close square brackets space space open square brackets table row 0 cell space space 1 end cell cell space space 1 end cell row 1 cell space space 0 end cell cell space space 1 end cell row 1 cell space 1 end cell cell space space 0 end cell end table close square brackets space equals space open square brackets table row 2 cell space space 1 end cell cell space space space 1 end cell row 1 cell space space 2 end cell cell space space 1 end cell row 1 cell space space 1 end cell cell space space 2 end cell end table close square brackets
therefore space space space straight A squared minus 3 straight I space equals space open square brackets table row 2 cell space space space 1 end cell cell space space 1 end cell row 1 cell space space 2 end cell cell space space 1 end cell row 1 cell space space 1 end cell cell space space 2 end cell end table close square brackets space minus space space 3 open square brackets table row 1 cell space 0 end cell cell space 0 end cell row 0 cell space 1 space end cell cell space 0 end cell row 0 cell space 0 end cell cell space 1 end cell end table close square brackets space equals space open square brackets table row cell negative 1 end cell cell space 1 end cell cell space space space space 1 end cell row 1 cell negative 1 end cell cell space space space space 1 end cell row 1 cell space space 1 end cell cell space space minus 1 end cell end table close square brackets
therefore space space space space fraction numerator straight A squared minus 3 straight I over denominator 2 end fraction space equals space 1 half open square brackets table row cell negative 1 end cell cell space space space 1 end cell cell space space space space 1 end cell row cell space space 1 end cell cell space minus 1 end cell cell space space space space 1 end cell row cell space space 1 end cell cell space space 1 end cell cell space space space space 1 end cell end table close square brackets
therefore space space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator straight A squared space minus space 3 straight I over denominator 2 end fraction
             
                        
    Question 202
    CBSEENMA12034627

    If straight A space equals space open square brackets table row 1 cell space space 3 end cell cell space space space 3 end cell row 1 cell space space 4 end cell cell space space 3 end cell row 1 cell space 3 end cell cell space space space 4 end cell end table close square brackets comma then verify that A adj A = | A | I. Also find A .

    Solution
    straight A space equals space open square brackets table row 1 cell space 3 end cell cell space space 3 end cell row 1 cell space 4 end cell cell space 3 end cell row 1 cell space 3 end cell cell space 4 end cell end table close square brackets
    open vertical bar straight A close vertical bar space equals space open vertical bar table row 1 cell space 3 end cell cell space 3 end cell row 1 cell space 4 end cell cell space 3 end cell row 1 cell space 3 end cell cell space 4 end cell end table close vertical bar space equals space open vertical bar table row 4 cell space space 3 end cell row 3 cell space space 4 end cell end table close vertical bar minus 3 space open vertical bar table row 1 cell space 3 end cell row 1 cell space 4 end cell end table close vertical bar space plus space 3 space open vertical bar table row 1 cell space space 4 end cell row 1 cell space space 3 end cell end table close vertical bar
space space space space space space space equals space 1 left parenthesis 16 minus 9 right parenthesis space minus 3 space left parenthesis 4 minus 3 right parenthesis space plus space 3 left parenthesis 3 minus 4 right parenthesis space equals space 7 minus 3 minus 3 space equals space 1 not equal to 0
therefore space space space straight A to the power of negative 1 end exponent space exists.
space space space space space space straight A subscript 11 space equals space open vertical bar table row 4 cell space space 3 end cell row 3 cell space space 4 end cell end table close vertical bar space equals space 16 minus 9 space equals space 7 comma space space space space space straight A subscript 12 space equals space minus open vertical bar table row 1 cell space space space 3 end cell row 1 cell space space 4 end cell end table close vertical bar space equals space minus left parenthesis 4 minus 3 right parenthesis space equals space minus 1
space space space space space space straight A subscript 13 space equals space open vertical bar table row 1 cell space space space 4 end cell row 1 cell space space space 3 end cell end table close vertical bar space equals space 3 minus 4 space equals space minus 1 comma space space space straight A subscript 21 space equals space minus open vertical bar table row 3 cell space space space 3 end cell row 3 cell space space space 4 end cell end table close vertical bar space equals space minus left parenthesis 12 minus 9 right parenthesis space equals space minus 3
space space space space space space straight A subscript 22 space equals space open vertical bar table row 1 cell space space 3 end cell row 1 cell space space 4 end cell end table close vertical bar space equals space 4 minus 3 space equals space 1 comma space space space space straight A subscript 23 space equals space minus open vertical bar table row 1 cell space space space 3 end cell row 1 cell space space space 3 end cell end table close vertical bar space equals space minus left parenthesis 3 minus 3 right parenthesis space equals space 0
space space space space space space straight A subscript 31 space equals space open vertical bar table row 3 cell space space space 3 end cell row 4 cell space space space 3 end cell end table close vertical bar space equals space 9 minus 12 space equals space minus 3 comma space space space straight A subscript 32 space equals space minus open vertical bar table row 1 cell space space space 3 end cell row 1 cell space space space 3 end cell end table close vertical bar space equals space minus left parenthesis 3 minus 3 right parenthesis space equals space 0
space space space space space straight A subscript 33 space equals space open vertical bar table row 1 cell space space space 3 end cell row 1 cell space space space 4 end cell end table close vertical bar space equals space 4 minus 3 space equals space 1
space space space space space space adj. space straight A space equals space open square brackets table row cell straight A subscript 11 end cell cell space space straight A subscript 12 end cell cell space space space space straight A subscript 13 end cell row cell straight A subscript 12 end cell cell straight A subscript 22 end cell cell space space straight A subscript 23 end cell row cell straight A subscript 31 end cell cell straight A subscript 32 end cell cell space space straight A subscript 33 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row 7 cell space space space minus 1 end cell cell space space space minus 1 end cell row cell negative 3 end cell cell space space space space space 1 end cell cell space space space space space space 0 end cell row cell negative 3 end cell cell space space space space 0 end cell cell space space space space space 1 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row 7 cell space space minus 3 end cell cell space space minus 3 end cell row cell negative 1 end cell 1 cell space space space 0 end cell row cell negative 1 end cell 0 cell space space space 1 end cell end table close square brackets

Now space space space space straight A left parenthesis adj space straight A right parenthesis space equals space open square brackets table row 1 cell space space 3 end cell cell space space space 3 end cell row 1 cell space space 4 end cell cell space space 3 end cell row 1 cell space space 3 end cell cell space space space 4 end cell end table close square brackets space space open square brackets table row cell space space space 7 end cell cell space space minus 3 end cell cell space space space minus 3 end cell row cell negative 1 end cell cell space space space space space 1 end cell cell space space space space space space 0 end cell row cell negative 1 end cell cell space space space space 0 end cell cell space space space space space 1 end cell end table close square brackets
                              equals space open square brackets table row cell 7 minus 3 minus 3 end cell cell space space space minus 3 plus 3 plus 0 end cell cell space space minus 3 plus 0 plus 3 end cell row cell 7 minus 4 minus 3 end cell cell space space minus 3 plus 4 plus 0 end cell cell space space minus 3 plus 0 plus 3 end cell row cell 7 minus 3 minus 4 end cell cell space minus 3 plus 3 plus 0 end cell cell space space space minus 3 plus 0 plus 4 end cell end table close square brackets

space equals space open square brackets table row 1 cell space space 0 end cell cell space space space 0 end cell row 0 cell space space 1 end cell cell space space space 0 end cell row 0 cell space space 0 end cell cell space space space 1 end cell end table close square brackets space equals space left parenthesis 1 right parenthesis space open square brackets table row 1 cell space space 0 end cell cell space space 0 end cell row 0 cell space space 1 end cell cell space space 0 end cell row 0 cell space space 0 end cell cell space space 1 end cell end table close square brackets space equals space open vertical bar straight A close vertical bar space straight I

therefore space space space space space straight A left parenthesis adj space straight A right parenthesis space space equals open vertical bar straight A close vertical bar space space straight I
Now space space space space space space space space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator 1 over denominator open vertical bar straight A close vertical bar end fraction space adj space straight A space equals space 1 over 1 open square brackets table row 7 cell space space space minus 3 end cell cell space space minus 3 end cell row cell negative 1 end cell cell space space space space space 1 end cell cell space space space space space 0 end cell row cell negative 1 end cell cell space space space space space space space 0 space end cell cell space space space space 1 end cell end table close square brackets space equals space open square brackets table row cell space space 7 end cell cell space space space minus 3 end cell cell space space minus 3 end cell row cell negative 1 end cell cell space space space space space space 1 end cell cell space space space space space 0 end cell row cell negative 1 end cell cell space space space space space space 0 end cell cell space space space space space 1 end cell end table close square brackets
    Question 203
    CBSEENMA12034631

    Find the inverse of the matrix open square brackets table row 1 cell space space 2 end cell cell space space 3 end cell row 0 cell space space 2 end cell cell space space 4 end cell row 0 cell space space 0 end cell cell space space 5 end cell end table close square brackets.

    Solution
    straight A space equals space open square brackets table row 1 cell space space space 2 end cell cell space space space 3 end cell row 0 cell space space 2 end cell cell space space 4 end cell row 0 cell space 0 end cell cell space space 5 end cell end table close square brackets
    therefore space space space space open vertical bar straight A close vertical bar space equals space open vertical bar table row 1 cell space space 2 end cell cell space space 3 end cell row 0 cell space space 2 end cell cell space space 4 end cell row 0 0 cell space space 5 end cell end table close vertical bar space equals space open vertical bar table row 2 cell space space space 4 end cell row 0 cell space space space 5 end cell end table close vertical bar space equals space 10 minus 0 space equals space 10 space not equal to space 0 space space space space rightwards double arrow space space space straight A to the power of negative 1 end exponent space exists.
    Co-factors of the elements of the first row of | A | are
    open vertical bar table row 2 cell space space 4 end cell row 0 cell space space 5 end cell end table close vertical bar comma space space space space minus open vertical bar table row 0 cell space space 4 end cell row 0 cell space space 5 end cell end table close vertical bar comma space space space space open vertical bar table row 0 cell space space space 2 end cell row 0 cell space space space 0 end cell end table close vertical bar
    i.e. 10, 0, 0 respectively.
    Co-factors of the elements of the second row of | A | are
    negative open vertical bar table row 2 cell space space space space space 3 end cell row 0 cell space space space space 5 end cell end table close vertical bar comma space space space space open vertical bar table row 1 cell space space space space space 3 end cell row 0 cell space space space space space 5 end cell end table close vertical bar comma space space minus open vertical bar table row 1 cell space space space space 2 end cell row 0 cell space space space space 0 end cell end table close vertical bar space
    i.e. – 10, 5, 0 respectively.
    Co-factors of the elements of the third row of | A | are
    open vertical bar table row 2 cell space space space 3 end cell row 2 cell space space space 4 end cell end table close vertical bar comma space space space space minus open vertical bar table row 1 cell space space space space 3 end cell row 0 cell space space space space 4 end cell end table close vertical bar comma space space space open vertical bar table row 1 cell space space space space 2 end cell row 0 cell space space space space 2 end cell end table close vertical bar
    i.e.,   2, – 4, 2 respectively.
    therefore space space space adj. space straight A space equals space open square brackets table row 10 cell space space space space space 0 end cell cell space space space space space 0 end cell row cell negative 10 end cell cell space space space space space 5 end cell cell space space space space space 0 end cell row 2 cell space space minus 4 end cell cell space space space space space 2 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row 10 cell space space minus 10 end cell cell space space space 2 end cell row 0 cell space space space 5 end cell cell negative 4 end cell row 0 cell space 0 end cell cell space 2 end cell end table close square brackets.
Now space space straight A to the power of negative 1 end exponent space space equals space fraction numerator adj. space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space 1 over 10 open square brackets table row 10 cell space space minus 10 end cell cell space space space space space space 2 end cell row 0 cell space space space space 5 end cell cell space space minus 4 end cell row 0 cell space space space 0 end cell cell space space space 2 end cell end table close square brackets
    Question 204
    CBSEENMA12034632

    Find the inverse of the matrix open square brackets table row 1 cell space space space space 0 end cell cell space space space space 0 end cell row 3 cell space space space 3 end cell cell space space space space space 0 end cell row 5 cell space space space space 2 end cell cell space space minus 1 end cell end table close square brackets

    Solution
    straight A space equals space open square brackets table row 1 cell space space space space 0 end cell cell space space space space 0 end cell row 3 cell space space space 3 end cell cell space space space space space 0 end cell row 5 cell space space space 2 end cell cell space space minus 1 end cell end table close square brackets
therefore space space space space open vertical bar straight A close vertical bar space equals space open vertical bar table row 1 cell space space space space space 0 end cell cell space space space 0 end cell row 3 cell space space space space 3 end cell cell space space space space 0 end cell row 5 cell space space space space 2 end cell cell space minus 1 end cell end table close vertical bar space equals space left parenthesis 1 right parenthesis thin space left parenthesis 3 right parenthesis thin space left parenthesis negative 1 right parenthesis space equals space minus 3 space not equal to space 0
rightwards double arrow space space space space space straight A to the power of negative 1 end exponent space exists. space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space left square bracket Product space of space diagonal space elements right square bracket
    Co-factors of the elements of the first row of | A | are
    open vertical bar table row 3 cell space space space 0 end cell row 2 cell space space minus 1 end cell end table close vertical bar comma space space space minus open vertical bar table row 3 cell space space space space space space 0 end cell row 5 cell space space minus 1 end cell end table close vertical bar comma space space space open vertical bar table row 3 cell space space space space space 3 end cell row 5 cell space space space 2 end cell end table close vertical bar
    i.e.   – 3,  3, – 9 respectively
    Co-factors of the elements of the second row of | A | are
    negative open vertical bar table row 0 cell space space space 0 end cell row 2 cell space space space 1 end cell end table close vertical bar comma space space open vertical bar table row 1 cell space space space space space space 0 end cell row 5 cell space space minus 1 end cell end table close vertical bar comma space space minus open vertical bar table row 1 cell space space 0 end cell row 5 cell space space 2 end cell end table close vertical bar
    i.e. 0, – 1, – 2 respectively
    Co-factors of the elements of the third row of | A | are
    open vertical bar table row 0 cell space space space 0 end cell row 3 cell space space space 0 end cell end table close vertical bar comma space space space minus open vertical bar table row 1 cell space space 0 end cell row 3 cell space space 0 end cell end table close vertical bar comma space space open vertical bar table row 1 cell space space space 0 end cell row 3 cell space space 3 end cell end table close vertical bar
    i.e. 0, 0, 3 respectively
    therefore space space space space adj space straight A space equals space open square brackets table row cell negative 3 end cell cell space space 3 end cell cell space space space minus 9 end cell row cell space 0 end cell cell space minus 1 end cell cell space space minus 2 end cell row cell space 0 end cell cell space 0 end cell cell space space space space 3 space end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row cell negative 3 end cell cell space space space 0 end cell cell space space space 0 end cell row cell space space space 3 end cell cell space minus 1 end cell cell space space space 0 end cell row cell negative 9 end cell cell space minus 2 end cell cell space space space 3 end cell end table close square brackets
Now space straight A to the power of negative 1 end exponent space equals space fraction numerator adj. space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals negative 1 third open square brackets table row cell negative 3 end cell cell space space 0 end cell cell space space space 0 end cell row 3 cell negative 1 end cell cell space space 0 end cell row cell negative 9 end cell cell negative 2 end cell cell space space 3 end cell end table close square brackets.
    Question 205
    CBSEENMA12034635

    Find the inverse of the matrix:
    open square brackets table row 2 cell space space space space space 1 end cell cell space space space space space 3 end cell row 4 cell space minus 1 end cell cell space space space space space 0 end cell row cell negative 7 end cell cell space space space space space 2 end cell cell space space space space 1 end cell end table close square brackets
     

    Solution
    straight A space equals space open square brackets table row cell space space 2 end cell cell space space space 1 end cell cell space space space space space 3 end cell row cell space space 4 end cell cell space space minus 1 end cell cell space space space space space 0 end cell row cell negative 7 end cell cell space space space space 2 end cell cell space space space space space 1 end cell end table close square brackets
    therefore space space space open vertical bar straight A close vertical bar space equals space open vertical bar table row cell space space 2 end cell cell space space 1 end cell cell space space space space 3 end cell row cell space space space 4 end cell cell space minus 1 end cell cell space space space space 0 end cell row cell negative 7 end cell cell space space space space 2 end cell cell space space space space 1 end cell end table close vertical bar space equals space 2 open vertical bar table row cell negative 1 end cell cell space space space 0 end cell row 2 cell space space space 1 end cell end table close vertical bar minus 1 open vertical bar table row 4 cell space space 0 end cell row cell negative 7 end cell cell space space 1 end cell end table close vertical bar plus 3 open vertical bar table row 4 cell space space space minus 1 end cell row cell negative 7 end cell cell space space space space space 2 end cell end table close vertical bar
space space space space space space space space space space space space space space equals 2 left parenthesis negative 1 minus 0 right parenthesis space minus 1 left parenthesis 4 minus 0 right parenthesis plus 3 left parenthesis 8 minus 7 right parenthesis space equals negative 2 minus 4 plus 3 space equals space minus 3 not equal to 0.
    ∴   A–1 exists
    Co-factors of the elements of the first row of | A | are
    open vertical bar table row cell negative 1 end cell cell space space space 0 end cell row 2 cell space space space 1 end cell end table close vertical bar comma space space minus open vertical bar table row 4 cell space space space space 0 end cell row cell negative 7 end cell cell space space space 1 end cell end table close vertical bar comma space space space open vertical bar table row cell negative 4 end cell cell space space space minus 1 end cell row cell negative 7 end cell cell space space space space space space 2 end cell end table close vertical bar
    i.e. – 1, – 4, 1 respectively.
    Co-factors of the elements of the second row of | A | are
    negative open vertical bar table row 1 cell space space space 3 end cell row 2 cell space space space 1 end cell end table close vertical bar comma space space space open vertical bar table row 2 cell space space space space space 3 end cell row cell negative 7 end cell cell space space space space 1 end cell end table close vertical bar comma space space minus open vertical bar table row 2 cell space space space space space 1 end cell row cell negative 7 end cell cell space space space space space 2 end cell end table close vertical bar
straight i. straight e. space space space 5 comma space space 23 comma space space minus 11 space respectively.
Co minus factors space of space the space elements space of space the space third space row space of space vertical line space straight A space vertical line space are
open vertical bar table row 1 cell space space space 3 end cell row cell negative 1 end cell cell space space space 0 end cell end table close vertical bar comma space space space space open vertical bar table row 2 cell space space space 3 end cell row 4 cell space space 0 end cell end table close vertical bar space open vertical bar table row 2 cell space space space space space space 1 end cell row 4 cell space space minus 1 end cell end table close vertical bar
straight i. straight e. space 3 comma space space space 12 comma space – space 6 space space space respectively
adj. space straight A space equals space open square brackets table row cell negative 1 end cell cell space space space minus 4 end cell cell space space space space space space space space 1 end cell row 5 cell space space space 23 end cell cell space space minus 11 end cell row 3 cell space space 12 end cell cell space space space space minus 6 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row cell negative 1 end cell cell space space 5 end cell cell space space space space 3 end cell row cell negative 4 end cell cell space space 23 end cell cell space space space space 12 end cell row 1 cell space minus 11 end cell cell space space minus 6 end cell end table close square brackets
Now space straight A to the power of negative 1 end exponent space equals space fraction numerator adj. space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space minus 1 third open square brackets table row cell negative 1 end cell cell space space space space 5 end cell cell space space space space 3 end cell row cell negative 4 end cell cell space space space space 23 end cell cell space space space 12 end cell row 1 cell space space minus 11 end cell cell space space minus 6 end cell end table close square brackets.
    Question 206
    CBSEENMA12034638

    Find the inverse of the matrix:
    open square brackets table row cell space space space 2 end cell cell space space space space minus 1 end cell cell space space space space space 1 end cell row cell negative 1 end cell cell space space space space space space space 2 end cell cell space space minus 1 end cell row cell space space 1 end cell cell space space space space minus 1 end cell cell space space space space space 2 end cell end table close square brackets

     

    Solution
    straight A space equals space open square brackets table row cell space 2 end cell cell space space space minus 1 end cell cell space space space space space space 1 end cell row cell negative 1 end cell cell space space space space space space space 2 end cell cell space space minus 1 end cell row cell space 1 end cell cell space space minus 1 end cell cell space space space space space space 2 end cell end table close square brackets
    therefore space space space space open vertical bar straight A close vertical bar space equals space open vertical bar table row 2 cell space space space minus 1 end cell cell space space space space space space 1 end cell row cell negative 1 end cell cell space space space space space 2 end cell cell space space minus 1 end cell row 1 cell space minus 1 end cell cell space space space space 2 end cell end table close vertical bar space equals space 2 open vertical bar table row 2 cell space space space minus 1 end cell row cell negative 1 end cell cell space space space space space 2 end cell end table close vertical bar minus left parenthesis negative 1 right parenthesis open vertical bar table row cell negative 1 end cell cell space space minus 1 end cell row cell space space 1 end cell cell space space space space 2 end cell end table close vertical bar plus 1 open vertical bar table row cell negative 1 end cell cell space space space space space 2 end cell row cell space 1 end cell cell space space minus 1 end cell end table close vertical bar
space space space space space space space space space space space space space space space equals 2 left parenthesis 4 minus 1 right parenthesis space plus 1 left parenthesis negative 2 plus 1 right parenthesis plus 1 left parenthesis 1 minus 2 right parenthesis space equals space 6 minus 1 minus 1 space equals space 4 space not equal to 0.
therefore space space space space straight A to the power of negative 1 end exponent space exists. space
    Co-factors of the elements of the first row of | A | are
    open vertical bar table row 2 cell space space space minus 1 end cell row cell negative 1 end cell cell space space space space space 2 end cell end table close vertical bar comma space space minus open vertical bar table row cell negative 1 end cell cell space space space minus 1 end cell row 1 cell space space space space space space 2 end cell end table close vertical bar comma space space space space open vertical bar table row cell negative 1 end cell cell space space space space space 2 end cell row 1 cell space space minus 1 end cell end table close vertical bar

    i.e. 3,  1, – 1 respectively
    Co-factors of the elements of the second row of | A | are
    negative open vertical bar table row cell negative 1 end cell cell space space 1 end cell row cell negative 1 end cell cell space space 2 end cell end table close vertical bar comma space space space open vertical bar table row 2 cell space space space 1 end cell row 1 cell space space space 2 end cell end table close vertical bar comma space space minus open vertical bar table row 2 cell space space minus 1 end cell row 1 cell space space space minus 1 end cell end table close vertical bar
    i.e.   I,  3,  I respectively
    Co-factors of the elements of the third row of | A | are
    open vertical bar table row cell negative 1 end cell cell space space space space space space 1 end cell row 2 cell space space minus 1 end cell end table close vertical bar comma space space minus open vertical bar table row 2 cell space space space space space space space space 1 end cell row cell negative 1 end cell cell space space space minus 1 end cell end table close vertical bar comma space space open vertical bar table row 2 cell space space space minus 1 end cell row cell negative 1 end cell cell space space space space space space space 2 end cell end table close vertical bar
    i.e. 1, 1, 3 respectively
    therefore space space space adj. space straight A space equals space open square brackets table row 3 cell space space space space 1 end cell cell space space space minus 1 end cell row 1 cell space space space space 3 end cell cell space space space space space 1 end cell row cell negative 1 end cell cell space space space space 1 end cell cell space space space space space 3 end cell end table close square brackets to the power of apostrophe space equals space space open square brackets table row 3 cell space space 1 end cell cell space space minus 1 end cell row 1 cell space space 3 end cell cell space space space space 1 end cell row cell negative 1 end cell cell space space 1 end cell cell space space space space 3 end cell end table close square brackets
Now space straight A to the power of negative 1 end exponent space equals space fraction numerator adj. space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space 1 fourth open square brackets table row cell space space 3 end cell cell space space 1 end cell cell space space minus 1 end cell row cell space space 1 end cell cell space space 3 end cell cell space space space space 1 end cell row cell negative 1 end cell cell space space space 1 end cell cell space space space 3 end cell end table close square brackets.

    Question 207
    CBSEENMA12034640

    Find the inverse of the matrix:
    open square brackets table row 2 cell space space minus 3 end cell cell space space space space 3 end cell row 3 cell space space space space space 2 end cell cell space space space space space 3 end cell row 3 cell space space minus 2 end cell cell space space space space 2 end cell end table close square brackets

     

    Solution
    straight A space equals open square brackets table row 2 cell space space minus 3 end cell cell space space space space 3 end cell row 3 cell space space space space space space 2 end cell cell space space space space 3 end cell row 3 cell space space minus 2 end cell cell space space space 2 end cell end table close square brackets
    therefore space space space open vertical bar straight A close vertical bar space equals space open vertical bar table row 2 cell space space minus 3 end cell cell space space space 3 end cell row 3 cell space space space space 2 end cell cell space space 3 end cell row 3 cell negative 2 end cell cell space space 2 end cell end table close vertical bar space equals space 2 open vertical bar table row cell space space 2 end cell cell space space space 3 end cell row cell negative 2 end cell cell space space space 2 end cell end table close vertical bar minus left parenthesis negative 3 right parenthesis space open vertical bar table row 2 cell space space space 3 end cell row 3 cell space space space 2 end cell end table close vertical bar space plus space 3 open vertical bar table row 2 cell space space space space space 2 end cell row 3 cell space space minus 2 end cell end table close vertical bar
space space space space space space space space space space space space space space space equals space 2 left parenthesis 4 plus 6 right parenthesis plus 3 left parenthesis 4 minus 9 right parenthesis plus 3 left parenthesis negative 4 minus 6 right parenthesis space equals space 20 minus 15 minus 30 space equals space minus 25 not equal to 0.
therefore space space space straight A to the power of negative 1 end exponent space exists.
    Co-factors of the elements of the first row of | A | are
    open vertical bar table row cell space space 2 end cell cell space space 3 end cell row cell negative 2 end cell cell space space 2 end cell end table close vertical bar comma space space space minus open vertical bar table row 2 cell space space space 3 end cell row 3 cell space space space space 2 end cell end table close vertical bar comma space space space open vertical bar table row 2 cell space space space space space space 2 end cell row 3 cell space space minus 2 end cell end table close vertical bar
    i.e. 10, 5,  – 10 respectively
    Co-factors of the elements of the second row of | A | are
    negative open vertical bar table row cell negative 3 end cell cell space space space 3 end cell row cell negative 2 end cell cell space space 2 end cell end table close vertical bar comma space space space open vertical bar table row 2 cell space space 3 end cell row 3 cell space space 2 end cell end table close vertical bar comma space space minus open vertical bar table row 2 cell space space minus 3 end cell row 3 cell space space minus 2 end cell end table close vertical bar
    i.e., 0, – 5, – 5 respectively
    Co-factors of the elements of the third row of | A | are
    open vertical bar table row cell negative 3 end cell cell space space space 3 end cell row 2 cell space space space 3 end cell end table close vertical bar comma space space minus open vertical bar table row 2 cell space space 3 end cell row 2 cell space space 3 end cell end table close vertical bar comma space space open vertical bar table row 2 cell space space minus 3 end cell row 2 cell space space space space 2 end cell end table close vertical bar
    i.e. – 15, 0, 10 respectively.
    therefore space space space adj. space straight A space equals space open square brackets table row 10 cell space space 5 end cell cell space space space minus 10 end cell row 5 cell negative 5 end cell cell space space minus 5 end cell row cell negative 15 end cell cell space space 0 end cell cell space space space space space 10 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row 10 cell space space 0 end cell cell space space minus 15 end cell row 5 cell space minus 5 end cell cell space space space space space space 0 end cell row cell negative 10 end cell cell space minus 5 end cell cell space space space space 10 end cell end table close square brackets
Now comma space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj. space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals negative 1 over 25 open square brackets table row 10 cell space space 0 end cell cell space space space minus 15 end cell row 5 cell negative 5 end cell cell space space space space space 0 end cell row cell negative 10 end cell cell space minus 5 end cell cell space space space space space 10 end cell end table close square brackets space equals 1 fifth open square brackets table row cell negative 2 end cell cell space space 0 end cell cell space space space space space space 3 end cell row cell negative 1 end cell cell space space 1 end cell cell space space space space space 0 end cell row 2 cell space space 1 end cell cell space space minus 2 end cell end table close square brackets
    Question 208
    CBSEENMA12034645

    Find the inverse of the matrix:
    open square brackets table row 1 cell space space 2 end cell cell space space 2 end cell row 2 cell space 1 end cell cell space 2 end cell row 2 cell space 2 end cell cell space 1 end cell end table close square brackets


     

    Solution
    straight A space equals space open square brackets table row 1 cell space space 2 end cell cell space space 2 end cell row 2 cell space space 1 end cell cell space space 2 end cell row 2 cell space space 2 end cell cell space space 1 end cell end table close square brackets
therefore space space space open vertical bar straight A close vertical bar space equals space open vertical bar table row 1 cell space space 2 end cell cell space space space 2 end cell row 2 cell space space 1 end cell cell space space space 2 space end cell row 2 cell space space 2 end cell cell space space 1 end cell end table close vertical bar space equals space 1 open vertical bar table row 1 cell space space 2 end cell row 2 cell space space space 1 end cell end table close vertical bar minus 2 open vertical bar table row 2 cell space space 2 end cell row 2 cell space space 1 end cell end table close vertical bar plus 2 space open vertical bar table row 2 cell space space 1 end cell row 2 cell space space 2 end cell end table close vertical bar
space space space space space space space space space space space space space space equals 1 left parenthesis 1 minus 4 right parenthesis minus 2 left parenthesis 2 minus 4 right parenthesis plus 2 left parenthesis 4 minus 2 right parenthesis space equals negative 3 plus 4 plus 4 space equals space 5
therefore space space space straight A to the power of negative 1 end exponent space exists
    Co-factors of the elements of the first row of | A | are
    open vertical bar table row 1 cell space space 2 end cell row 2 cell space space 1 end cell end table close vertical bar comma space space minus open vertical bar table row 2 cell space space space 2 end cell row 2 cell space space space 1 end cell end table close vertical bar comma space space space open vertical bar table row 2 cell space space space space 1 end cell row 2 cell space space space space 2 end cell end table close vertical bar
    i.e.   – 3, 2,  2 respectively
    Co-factors of the elements of the second row of | A | are
    negative open vertical bar table row 2 cell space space space 2 end cell row 2 cell space space space 1 end cell end table close vertical bar comma space space open vertical bar table row 1 cell space space space 2 end cell row 2 cell space space space 1 end cell end table close vertical bar comma space space minus open vertical bar table row 1 cell space space 2 end cell row 2 cell space space 2 end cell end table close vertical bar
    i.e.  2,  – 3,   2 respectively.
    Co-factors of the elements of the third row of | A | are
    open vertical bar table row 2 cell space space space 2 end cell row 1 cell space space space 2 end cell end table close vertical bar comma space space space minus open vertical bar table row 1 cell space space space 2 end cell row 2 cell space space 2 end cell end table close vertical bar comma space space space open vertical bar table row 1 cell space space 2 end cell row 2 cell space space 1 end cell end table close vertical bar
    i.e.,  2,  2,  – 3 respectively
    therefore space space space adj. space straight A space equals space open square brackets table row cell negative 3 end cell cell space space 2 end cell cell space space space space 2 end cell row 2 cell space minus 3 end cell cell space space space space 2 end cell row 2 2 cell space minus 3 end cell end table close square brackets to the power of apostrophe space equals open square brackets table row cell negative 3 end cell cell space space space space space 2 end cell cell space space space space space 2 end cell row cell space space 2 end cell cell space minus 3 end cell cell space space space space space 2 end cell row cell space 2 end cell cell space space space 2 end cell cell space minus 3 end cell end table close square brackets
Now comma space straight A to the power of negative 1 end exponent space equals space fraction numerator adj. space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space 1 fifth open square brackets table row cell negative 3 end cell cell space space space space 2 end cell cell space space space space space 2 end cell row cell space 2 end cell cell space minus 3 end cell cell space space space space space space 2 end cell row 2 cell space space space 2 end cell cell space space minus 3 end cell end table close square brackets
    Question 209
    CBSEENMA12034649

    Find the inverse of the matrix:
    open square brackets table row 1 cell space 0 end cell cell space 0 end cell row 0 cell space space cos space straight alpha end cell cell space space sin space straight alpha end cell row 0 cell space sin space straight alpha end cell cell space space minus cos space straight alpha end cell end table close square brackets



     

    Solution
    Let space straight A space equals space open square brackets table row 1 cell space space space 0 end cell cell space space space 0 end cell row 0 cell space space cos space straight alpha end cell cell space sin space straight alpha end cell row 0 cell space sin space straight alpha end cell cell space space minus cos space straight alpha end cell end table close square brackets
space space space space space space space open vertical bar straight A close vertical bar space equals space open vertical bar table row 1 cell space 0 end cell cell space 0 end cell row 0 cell cos space straight alpha end cell cell sin space straight alpha end cell row 0 cell sin space straight alpha end cell cell negative cos space straight alpha end cell end table close vertical bar space equals space 1 open vertical bar table row cell cos space straight alpha end cell cell space space space sin space straight alpha end cell row cell sin space straight alpha end cell cell negative cos space straight alpha end cell end table close vertical bar
space space space space space space space space space space space space space space equals negative cos squared straight alpha minus sin squared straight alpha space equals space minus left parenthesis cos squared straight alpha space plus space sin space squared straight alpha right parenthesis space equals space minus 1 space not equal to 0
therefore space space straight A to the power of negative 1 end exponent space exists.
    Co-factors of the elements of first row of | A | are 
    open vertical bar table row cell cos space straight alpha end cell cell space space space sin space straight alpha end cell row cell sin space straight alpha end cell cell negative cos space straight alpha end cell end table close vertical bar comma space space space minus open vertical bar table row 0 cell space space space sin space straight alpha end cell row 0 cell negative cos space straight alpha end cell end table close vertical bar comma space space open vertical bar table row 0 cell space space space space space cos space straight alpha end cell row 0 cell space space space minus space sin space straight alpha end cell end table close vertical bar

    i.e. α cos2 α sin2 α 0 , 0   i.e. – 1, 0, 0 respectively.
    Co-factors of the elements of second row of | A | are
    negative open vertical bar table row 0 cell space space space space 0 end cell row cell sin space straight alpha end cell cell space space space minus cos space straight alpha end cell end table close vertical bar comma space space space open vertical bar table row 1 cell space space space space space space space 0 end cell row 0 cell space space space minus cos space straight alpha end cell end table close vertical bar comma space space space minus open vertical bar table row 1 cell space space space 0 end cell row 0 cell space space space sin space straight alpha end cell end table close vertical bar

    i.e. 0, cos α, – sin α, respectively.
    Co-factors of the elements of third row of | A | are
    open vertical bar table row 0 cell space space space 0 end cell row cell cos space space straight alpha end cell cell space space sin space straight alpha end cell end table close vertical bar comma space space minus open vertical bar table row 1 cell space space 0 end cell row 0 cell space space sin space straight alpha end cell end table close vertical bar comma space space open vertical bar table row 1 cell space space space 0 end cell row 0 cell space space space space cos space straight alpha end cell end table close vertical bar
    i.e. 0, – sin α, cos α respectively.
    therefore space space space adj space straight A space equals space open square brackets table row cell negative 1 end cell cell space space 0 end cell cell space space space space 0 end cell row 0 cell negative cos space straight alpha end cell cell space space minus sin space straight alpha end cell row 0 cell negative sin space straight alpha end cell cell space space cos space straight alpha end cell end table close square brackets space space space open square brackets table row cell negative 1 end cell cell space space 0 end cell cell space 0 end cell row 0 cell negative cos space straight alpha end cell cell space space space minus sin space straight alpha end cell row 0 cell negative sin space straight alpha end cell cell space cos space straight alpha end cell end table close square brackets
therefore space space space space straight A to the power of negative 1 end exponent space equals fraction numerator adj. space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space fraction numerator 1 over denominator negative 1 end fraction open square brackets table row cell negative 1 end cell cell space space space 0 end cell cell space space 0 end cell row 0 cell space space minus cos space straight alpha end cell cell space minus sin space straight alpha end cell row 0 cell negative space sin space straight alpha end cell cell space cos space straight alpha end cell end table close square brackets space equals open square brackets table row 1 0 cell space space 0 end cell row 0 cell cos space straight alpha end cell cell sin space straight alpha end cell row 0 cell sin space straight alpha end cell cell negative cos space straight alpha end cell end table close square brackets.

    Question 210
    CBSEENMA12034650

    If straight A space equals space open square brackets table row 1 cell space 2 end cell cell space space 5 end cell row 2 cell space 3 end cell cell space 1 end cell row cell negative 1 end cell cell space 1 end cell cell space 1 end cell end table close square brackets comma then compute the inverse of A and verify that A–1 A = I = A A–1

    Solution
    straight A space equals space open square brackets table row 1 cell space space space 2 end cell cell space space 5 end cell row 2 cell space space space 3 space end cell cell space 1 end cell row cell negative 1 end cell cell space 1 end cell cell space 1 end cell end table close square brackets
therefore space space space space open vertical bar straight A close vertical bar equals space open vertical bar table row 1 cell space space 2 end cell cell space space 5 space end cell row 2 cell space 3 end cell 1 row cell negative 1 end cell 1 1 end table close vertical bar space equals space 1 space open vertical bar table row 3 cell space space space space 1 end cell row 1 cell space space space space space 1 end cell end table close vertical bar minus 2 open vertical bar table row cell space space space 2 end cell cell space space space 1 end cell row cell negative 1 end cell cell space space space 1 end cell end table close vertical bar plus 5 space open vertical bar table row 2 cell space space space 3 end cell row cell negative 1 end cell cell space space space 1 end cell end table close vertical bar
space space space space space space space space space space space space space space equals space 1 left parenthesis 3 minus 1 right parenthesis space minus 2 left parenthesis 2 plus 1 right parenthesis plus 5 left parenthesis 2 plus 3 right parenthesis
space space space space space space space space space space space space space space space equals 2 minus 6 plus 25 space equals space 21 space not equal to space 0
space space space therefore space space space straight A to the power of negative 1 end exponent space exists. space
    Co-factors of the elements of the first row of | A | are
    open vertical bar table row 3 cell space space space space 1 end cell row 1 cell space space space space space 1 end cell end table close vertical bar comma space minus open vertical bar table row 2 cell space space space 1 end cell row cell negative 1 end cell cell space space space 1 end cell end table close vertical bar comma space space space open vertical bar table row 2 cell space space space 3 end cell row cell negative 1 end cell cell space space space 1 end cell end table close vertical bar
    i.e., 2, – 3,  5 respectively.
    Co-factors of the elements of the second row of | A | are
    negative open vertical bar table row 2 cell space space 5 end cell row 1 cell space space 1 end cell end table close vertical bar comma space space open vertical bar table row cell space space 1 end cell cell space space 5 end cell row cell negative 1 end cell cell space space 1 end cell end table close vertical bar comma space space minus open vertical bar table row cell space space 1 end cell cell space space space 2 end cell row cell negative 1 end cell cell space space 1 end cell end table close vertical bar
    i.e.,  3,   6, – 3 respectively.
    Co-factors of the elements of the third row of | A | are
    open vertical bar table row 2 cell space space space 5 end cell row 3 cell space space space 1 end cell end table close vertical bar comma space minus open vertical bar table row 1 cell space space space space 5 end cell row 2 cell space space space 1 end cell end table close vertical bar comma space space space open vertical bar table row 1 cell space space space space 2 end cell row 2 cell space space space space 3 end cell end table close vertical bar
    i.e., – 13, 9, – 1 respectively.
    therefore space space space adj. space straight A space equals space open square brackets table row 2 cell space space space minus 3 end cell cell space space space space space space 5 end cell row 3 cell space space space space 6 end cell cell space space minus 3 end cell row cell negative 13 end cell cell space space space 9 end cell cell space space minus 1 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row 2 cell space space 3 end cell cell space space minus 13 end cell row cell negative 3 end cell cell space space space 6 end cell cell space space space space space 9 end cell row 5 cell negative 3 end cell cell space space space minus 1 end cell end table close square brackets
Now comma space straight A to the power of negative 1 end exponent space equals space fraction numerator adj. space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space 1 over 21 open square brackets table row 2 cell space space space space 3 end cell cell space space minus 13 end cell row cell negative 3 end cell cell space space space space 6 end cell cell space space space space space space space 9 end cell row 5 cell space minus 3 end cell cell space space space minus 1 end cell end table close square brackets
Also comma space space space straight A to the power of negative 1 end exponent straight A space equals space 1 over 21 open square brackets table row 2 cell space space space space 3 end cell cell space space minus 13 end cell row cell negative 3 end cell cell space space space space space space 6 end cell cell space space space space space space 9 end cell row 5 cell space minus 3 end cell cell space space minus 1 end cell end table close square brackets space open square brackets table row 1 cell space space 2 end cell cell space space space 5 end cell row 2 cell space space space 3 end cell cell space space space 1 end cell row cell negative 1 end cell cell space 1 end cell cell space space space 1 end cell end table close square brackets

space space space space space space space space space space space space space space space space space space space space space equals space 1 over 21 open square brackets table row cell 2 plus 6 plus 13 end cell cell space space space space space space 4 plus 9 minus 13 end cell cell space space space space space 10 plus 3 minus 13 end cell row cell negative 3 plus 12 minus 9 end cell cell space space space minus 6 plus 18 plus 9 end cell cell space space space minus 15 plus 6 plus 9 end cell row cell 5 minus 6 plus 1 end cell cell space space 10 minus 9 minus 1 end cell cell space space space space space space 25 minus 3 minus 1 end cell end table close square brackets
space space space space space space space space space space space space space space space space space space space space space equals space 1 over 21 open square brackets table row 21 cell space space 0 end cell cell space space 0 end cell row 0 cell space space 21 end cell cell space space 0 end cell row 0 0 cell space space 21 end cell end table close square brackets space equals space open square brackets table row 1 cell space space 0 end cell cell space space space 0 end cell row 0 cell space space 1 end cell cell space space space 0 end cell row 0 cell space space 0 end cell cell space space 1 end cell end table close square brackets space equals space straight I
therefore space space space straight A to the power of negative 1 end exponent straight A space space equals space straight I.
space space space space space space space AA to the power of negative 1 end exponent space equals space 1 over 21 open square brackets table row 1 cell space space space 2 end cell cell space space 5 end cell row 2 cell space space 3 end cell cell space space 1 space end cell row cell negative 1 end cell cell space space 1 end cell cell space 1 end cell end table close square brackets space open square brackets table row 2 cell space space space 3 end cell cell space space space minus 13 end cell row cell negative 3 end cell cell space space 6 end cell cell space space space space 9 end cell row 5 cell negative 3 end cell cell space space minus 1 end cell end table close square brackets
                      equals space 1 over 21 open square brackets table row cell 2 minus 6 plus 25 end cell cell space space space 4 plus 12 minus 15 end cell cell space space space 13 plus 18 minus 5 end cell row cell 4 minus 9 plus 25 end cell cell space 6 plus 18 minus 3 end cell cell space minus 26 plus 27 minus 1 end cell row cell negative 2 minus 3 plus 5 end cell cell space minus 3 plus 6 minus 3 end cell cell space 13 plus 9 minus 1 end cell end table close square brackets
equals space 1 over 21 space open square brackets table row 21 cell space space space 0 end cell cell space space 0 end cell row 0 cell space 21 end cell cell space 0 end cell row 0 0 cell space 21 end cell end table close square brackets space equals space open square brackets table row 1 cell space space 0 end cell cell space 0 end cell row 0 cell space 1 end cell cell space 0 end cell row 0 cell space 0 end cell cell space 1 end cell end table close square brackets space equals space straight I
therefore space space we space have space straight A to the power of negative 1 end exponent straight A space equals space straight I space equals space straight A space straight A to the power of negative 1 end exponent.
    Question 211
    CBSEENMA12034651

    Let A = open square brackets table row 4 cell space space space minus 6 end cell cell space space space space 1 end cell row cell negative 1 end cell cell space minus 1 end cell cell space space 1 end cell row cell negative 4 end cell cell space space space 11 end cell cell negative 1 end cell end table close square brackets.
    Show that A is inevitable. Find adj. A and A Also verify that AA–1 = A–1 A = I.

    Solution
    straight A space equals space open square brackets table row 4 cell space space space minus 6 end cell cell space space space space space space 1 end cell row cell negative 1 end cell cell space space space minus 1 end cell cell space space space space space space space 1 end cell row cell negative 4 end cell cell space space space space 11 end cell cell space space minus 1 end cell end table close square brackets
therefore space space space open vertical bar straight A close vertical bar space equals space open vertical bar table row 4 cell space space space minus 6 end cell cell space space space space 1 end cell row cell negative 1 end cell cell space space space minus 1 end cell cell space space space space space space 1 end cell row cell negative 4 end cell cell space space minus 11 end cell cell space space minus 1 end cell end table close vertical bar space equals space 4 space open vertical bar table row cell negative 1 end cell cell space space space space space space space 1 end cell row 11 cell space space minus 1 end cell end table close vertical bar minus left parenthesis negative 6 right parenthesis space open vertical bar table row cell negative 1 end cell cell space space space space space space space 1 end cell row cell negative 4 end cell cell space space minus 1 end cell end table close vertical bar plus 1 open vertical bar table row cell negative 1 end cell cell space space minus 1 end cell row cell negative 4 end cell cell space space space space 11 end cell end table close vertical bar
space space space space space space space space space space space space space space equals 4 left parenthesis 1 minus 11 right parenthesis plus 6 left parenthesis 1 plus 4 right parenthesis plus 1 left parenthesis negative 11 minus 4 right parenthesis space equals space minus 40 plus 30 minus 15 equals space minus 25 not equal to 0.
therefore space space space space space straight A space is space non minus singular space and space invertible. space
    Co-factors of the element of the first row of | A | are
    open vertical bar table row cell negative 1 end cell cell space space space space space space 1 end cell row 11 cell space space minus 1 end cell end table close vertical bar comma space space minus open vertical bar table row cell negative 1 end cell cell space space space space space space space space 1 end cell row cell negative 4 end cell cell space space space space minus 1 end cell end table close vertical bar comma space space open vertical bar table row cell negative 1 end cell cell space space space space minus 1 end cell row cell negative 4 end cell cell space space space space 11 end cell end table close vertical bar

    i.e., – 10, – 5, – 15 respectively
    Co-factors of the elements of the second row of | A | are
    negative open vertical bar table row cell negative 6 end cell cell space space space space space 1 end cell row 11 cell space space space minus 1 end cell end table close vertical bar comma space space space open vertical bar table row 4 cell space space space space space 1 end cell row cell negative 4 end cell cell space space space minus 1 end cell end table close vertical bar comma space space minus open vertical bar table row cell space 4 end cell cell space space space minus 6 end cell row cell negative 4 end cell cell space space space space space 11 end cell end table close vertical bar
    i.e., 5, 0, – 20 respectively.
    Co-factors of the elements of the third row of | A | are
    open vertical bar table row cell negative 6 end cell cell space space space space 1 end cell row cell negative 1 end cell cell space space space 1 end cell end table close vertical bar comma space space minus open vertical bar table row 4 cell space space space space space 1 end cell row cell negative 1 end cell cell space space space space space 1 end cell end table close vertical bar comma space space space open vertical bar table row cell space 4 end cell cell space space minus 6 end cell row cell negative 1 end cell cell space space space minus 1 end cell end table close vertical bar
    i.e., – 5, – 5, – 10 respectively.
    therefore space space adj. space straight A space equals space open square brackets table row cell negative 10 end cell cell space space minus 5 end cell cell space space minus 15 end cell row cell space space 5 end cell cell space space space space 0 end cell cell space minus 20 end cell row cell negative 5 end cell cell negative 5 end cell cell space space minus 10 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row cell negative 10 end cell cell space space 5 end cell cell space space minus 5 end cell row cell negative 5 end cell cell space space space 0 end cell cell space minus 5 end cell row cell negative 15 end cell cell space minus 20 end cell cell space space minus 10 end cell end table close square brackets
Now space straight A to the power of negative 1 end exponent space equals space fraction numerator adj. space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space minus 1 over 25 open square brackets table row cell negative 10 end cell cell space space space 5 end cell cell space minus 5 end cell row cell negative 5 end cell cell space space 0 end cell cell space minus 5 end cell row cell negative 15 end cell cell space minus 20 end cell cell space minus 10 end cell end table close square brackets space equals space 1 fifth open square brackets table row 2 cell space space minus 1 end cell cell space space 1 end cell row 1 cell space space space 0 end cell cell space space 1 end cell row 3 cell space space 4 end cell cell space 2 end cell end table close square brackets
Also space straight A thin space straight A to the power of negative 1 end exponent space equals space 1 fifth open square brackets table row 4 cell space space space minus 6 end cell cell space space space space 1 end cell row cell negative 1 end cell cell space space space minus 1 end cell cell space space space space 1 end cell row cell negative 4 end cell cell space space space space 11 end cell cell space space minus 1 end cell end table close square brackets space open square brackets table row 2 cell space space minus 1 end cell cell space space space 1 end cell row 1 cell space space space space 0 end cell cell space 1 end cell row 3 cell space space 4 end cell cell space 2 end cell end table close square brackets
space space space space space space space space space space space space space space space space space space space space equals space 1 fifth open square brackets table row cell 8 minus 6 plus 3 end cell cell space space space minus 4 plus 0 plus 4 end cell cell space space space space 4 minus 6 plus 2 end cell row cell negative 2 minus 1 plus 3 end cell cell space space 1 plus 0 plus 4 end cell cell space minus 1 minus 1 plus 2 end cell row cell negative 8 plus 11 minus 3 end cell cell space space space 4 plus 0 minus 4 end cell cell space space minus 4 plus 11 plus 2 end cell end table close square brackets
space space space space space space space space space space space space space space space space space space space space equals space 1 fifth open square brackets table row 5 cell space space space 0 end cell cell space space space 0 end cell row 0 cell space space space 5 end cell cell space space 0 end cell row 0 cell space space 0 end cell cell space space 5 end cell end table close square brackets space equals space open square brackets table row 1 cell space space 0 end cell cell space space 0 end cell row 0 cell space space 1 end cell cell space space 0 end cell row 0 cell space space 0 end cell cell space 1 end cell end table close square brackets space equals space straight I
therefore space space space space AA to the power of negative 1 end exponent space equals space straight I. space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis


space space space space space space space space space space space space space space space space space space space space space space space
    Also,  
       straight A to the power of negative 1 end exponent straight A space equals 1 fifth open square brackets table row 2 cell space space minus 1 end cell cell space space space 1 end cell row 1 cell space space space space 0 end cell cell space space space 1 end cell row 3 cell space space 4 end cell cell space space 2 end cell end table close square brackets space space open square brackets table row 4 cell space space minus 6 end cell cell space space 1 end cell row cell negative 1 end cell cell negative 1 end cell cell space space space 1 end cell row cell negative 4 end cell cell space 11 end cell cell negative 1 end cell end table close square brackets
space space space space space space space space space space space equals 1 fifth open square brackets table row cell 8 plus 1 minus 4 end cell cell space space minus 12 plus 1 plus 11 end cell cell space space space space 2 minus 1 minus 1 end cell row cell 4 plus 0 minus 4 end cell cell space minus 6 plus 0 plus 11 end cell cell space space 1 plus 0 minus 1 end cell row cell 12 minus 4 minus 8 end cell cell space minus 18 minus 4 plus 22 end cell cell space space 3 plus 4 minus 2 end cell end table close square brackets
space space space space space space space space space space space equals space 1 fifth open square brackets table row 5 cell space space 0 end cell cell space space 0 end cell row 0 cell space space 5 end cell cell space space 0 end cell row 0 cell space space 0 end cell cell space space 5 end cell end table close square brackets space equals space open square brackets table row 1 cell space space 0 end cell cell space space 0 end cell row 0 cell space space 1 end cell cell space space 0 end cell row 0 cell space space 0 end cell cell space space 1 end cell end table close square brackets space equals space straight I
straight A to the power of negative 1 end exponent straight A space equals space straight I space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis

space space space space space space space space space space space space

    From (1) and (2), we get,
    AA–1 = I = A–1A.

    Question 212
    CBSEENMA12034652

    Verify AA–1 = A–1 A = I where
    straight A space equals open square brackets table row 0 cell space space space 0 end cell cell space space minus 1 end cell row 3 cell space space space space 4 end cell cell space space space space space 5 end cell row cell negative 2 end cell cell negative 4 end cell cell space space minus 7 end cell end table close square brackets.

    Solution

    Here  straight A space equals open square brackets table row 0 cell space space space space 0 end cell cell space space space minus 1 end cell row 3 cell space space space space space 4 end cell cell space space space space space space 5 end cell row cell negative 2 end cell cell space space minus 4 end cell cell space space minus 7 end cell end table close square brackets
    therefore space space space open vertical bar straight A close vertical bar space equals space open vertical bar table row 0 cell space space 0 end cell cell space space minus 1 end cell row 3 cell space space 4 end cell cell space space space space space 5 end cell row cell negative 2 end cell cell space space minus 4 end cell cell space space minus 7 end cell end table close vertical bar space equals space minus open vertical bar table row 3 cell space space space space space 4 end cell row cell negative 2 end cell cell space space space minus 4 end cell end table close vertical bar space equals space minus left parenthesis negative 12 plus 8 right parenthesis space equals space 4 not equal to 0
therefore space space space straight A to the power of negative 1 end exponent space exists. space
    Co-factors of the elements of the first row of | A | are
    open vertical bar table row cell space space 4 end cell cell space space space space space 5 end cell row cell negative 4 end cell cell space space space minus 7 end cell end table close vertical bar comma space space space space minus open vertical bar table row 3 cell space space space space space space space 5 end cell row cell negative 2 end cell cell space space minus 7 end cell end table close vertical bar comma space space open vertical bar table row 3 cell space space space space space space 4 end cell row cell negative 2 end cell cell space space minus 4 end cell end table close vertical bar
    i.e., – 8,  11,  –4 respectively
    Co-factors of the elements of the second row of | A | are
    negative open vertical bar table row 0 cell space space minus 1 end cell row cell negative 4 end cell cell space space minus 7 end cell end table close vertical bar comma space open vertical bar table row 0 cell space space minus 1 end cell row cell negative 2 end cell cell space space minus 7 end cell end table close vertical bar comma space space minus open vertical bar table row cell space 0 end cell cell space space space space space space 0 end cell row cell negative 2 end cell cell space space minus 4 end cell end table close vertical bar
    i.e., 4, – 2,   0 respectively.
    Co-factors of the elements of the third row of | A | are
    open vertical bar table row 0 cell space space minus 1 end cell row 4 cell space space space 5 end cell end table close vertical bar comma space space space minus open vertical bar table row 0 cell space space space minus 1 end cell row 3 cell space space space space space 5 end cell end table close vertical bar comma space space minus open vertical bar table row 0 cell space space space space 0 end cell row cell negative 2 end cell cell space space minus 4 end cell end table close vertical bar
    i.e.,   4, – 3, 0 respectively.
    therefore space space space space space space adj. space straight A space equals space open square brackets table row cell negative 8 end cell cell space space 11 end cell cell space space minus 4 end cell row 4 cell space minus 2 end cell cell space space space space space 0 end cell row 4 cell negative 3 end cell cell space space space space space 0 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row cell negative 8 end cell cell space space 4 end cell cell space space 4 end cell row 11 cell negative 2 end cell cell negative 3 end cell row cell negative 4 end cell cell space 0 end cell cell space space 0 end cell end table close square brackets
Now comma space straight A to the power of negative 1 end exponent space equals space fraction numerator adj. space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space 1 fourth open square brackets table row cell negative 8 end cell cell space space 4 end cell cell space space space space space 4 end cell row 11 cell space minus 2 end cell cell space space minus 3 end cell row cell negative 4 end cell cell space space 0 end cell cell space space space space 0 end cell end table close square brackets
therefore space space space space space AA to the power of negative 1 end exponent space equals space 1 fourth open square brackets table row 0 cell space space 0 end cell cell space space minus 1 end cell row 3 cell space space 4 end cell cell space space space space space 5 end cell row cell negative 2 end cell cell negative 4 end cell cell space minus 7 end cell end table close square brackets space open square brackets table row cell negative 8 end cell cell space space space space 4 end cell cell space space space space space 4 end cell row 11 cell space minus 2 end cell cell space space minus 3 end cell row cell negative 4 end cell cell space space space 0 end cell cell space space space space space space 0 end cell end table close square brackets
space space space space space space space space space space space space space space space space space space space space equals space 1 fourth open square brackets table row cell 0 plus 0 plus 4 end cell cell space space space space 0 plus 0 plus 0 end cell cell space space space space space space 0 plus 0 plus 0 end cell row cell negative 24 plus 44 minus 20 space end cell cell space 12 minus 8 plus 0 end cell cell space space space space space space 12 minus 12 plus 0 end cell row cell 16 minus 44 plus 28 end cell cell space minus 8 plus 8 plus 0 end cell cell space space space space minus 8 plus 12 plus 0 end cell end table close square brackets space
space space space space space space space space space space space space space space space space space space space space equals space 1 fourth open square brackets table row 4 cell space 0 end cell cell space space 0 end cell row 0 cell space space 4 end cell cell space 0 end cell row 0 cell space space 0 space end cell 4 end table close square brackets space equals space open square brackets table row 1 cell space space 0 end cell cell space space 0 end cell row 0 cell space 1 end cell cell space space 0 end cell row 0 cell space 0 end cell cell space space 1 end cell end table close square brackets space equals space straight I
straight A to the power of negative 1 end exponent straight A space equals space 1 fourth open square brackets table row cell negative 8 end cell cell space space space space 4 end cell cell space space space space 4 end cell row 11 cell space space minus 2 end cell cell space space minus 3 end cell row cell negative 4 end cell cell space space 0 end cell cell space space 0 end cell end table close square brackets space open square brackets table row 0 cell space space 0 end cell cell space space minus 1 end cell row 3 cell space space 4 end cell cell space space space 5 end cell row cell negative 2 end cell cell space space minus 4 end cell cell space space minus 7 end cell end table close square brackets
space space space space space space space space space space space space equals space 1 fourth open square brackets table row cell 0 plus 12 minus 8 end cell cell space space space 0 plus 16 minus 16 end cell cell space space 8 plus 20 minus 28 end cell row cell 0 minus 6 plus 6 end cell cell 0 minus 8 plus 12 end cell cell negative 11 minus 10 plus 21 end cell row cell 0 plus 0 plus 0 end cell cell 0 plus 0 plus 0 end cell cell 4 plus 0 plus 0 end cell end table close square brackets
space space space space space space space space space space space space space equals space 1 fourth open square brackets table row 4 cell space space space 0 end cell cell space space space 0 end cell row 0 cell space space 4 end cell cell space space 0 end cell row 0 cell space space 0 end cell cell space space 4 end cell end table close square brackets space equals space open square brackets table row 1 cell space space 0 end cell cell space space 0 end cell row 0 cell space space 1 end cell cell space space 0 end cell row 0 cell space space 0 end cell cell space space 1 end cell end table close square brackets space equals space straight I
therefore space space straight A space straight A to the power of negative 1 end exponent space equals space straight A to the power of negative 1 end exponent straight A space space equals straight I

    Question 213
    CBSEENMA12034657

    If straight A space equals space open square brackets table row 3 cell space space minus 3 end cell cell space space space 4 end cell row 2 cell space space minus 3 end cell cell space space 4 end cell row 0 cell space minus 1 end cell cell space space 1 end cell end table close square brackets.  then A3 = A–1 What is adj. A ?

    Solution
    straight A space equals space open square brackets table row 3 cell space space space minus 3 end cell cell space space 4 end cell row 2 cell space space space minus 3 end cell cell space space 4 end cell row 0 cell space space minus 1 end cell cell space space 1 end cell end table close square brackets
    therefore space space space space open vertical bar straight A close vertical bar space equals space open vertical bar table row 3 cell space minus 3 end cell cell space space space 4 end cell row 2 cell space minus 3 end cell cell space space space 4 end cell row 0 cell space minus 1 end cell cell space space space 1 end cell end table close vertical bar space equals 3 open vertical bar table row cell negative 3 end cell cell space space space 4 end cell row cell negative 1 end cell cell space space space 1 end cell end table close vertical bar minus left parenthesis negative 3 right parenthesis space open vertical bar table row 2 cell space space 4 end cell row 0 cell space space 1 end cell end table close vertical bar plus 4 open vertical bar table row 2 cell space space space minus 3 end cell row 0 cell space space space space minus 1 end cell end table close vertical bar
space space space space space space space space space space space space space space equals 3 left parenthesis negative 3 plus 4 right parenthesis plus 3 left parenthesis 2 minus 0 right parenthesis plus 4 left parenthesis negative 2 plus 0 right parenthesis space equals space 3 plus 6 minus 8 space equals space 1 space not equal to space 0
therefore space space space straight A to the power of negative 1 end exponent space exists
    Co-factors of the elements of first row of | A | are
    open vertical bar table row cell negative 3 end cell cell space space 4 end cell row cell negative 1 end cell cell space space 1 end cell end table close vertical bar comma space space minus open vertical bar table row 2 cell space space space space 4 end cell row 0 cell space space space space 1 end cell end table close vertical bar comma space space open vertical bar table row 2 cell space space minus 3 end cell row 0 cell space space space minus 1 end cell end table close vertical bar
    i.e.,   1, – 2, – 2 respectively
    Co-factors of the elements of second row of | A | are
    negative open vertical bar table row cell negative 3 end cell cell space space space space 4 end cell row cell negative 1 end cell cell space space space space 1 end cell end table close vertical bar comma space space open vertical bar table row 3 cell space space space space space space 4 end cell row 0 cell space space space space space space 1 end cell end table close vertical bar comma space space minus open vertical bar table row 3 cell space space space minus 3 end cell row 0 cell space space space space minus 1 end cell end table close vertical bar
    i.e.. – 1, 3, 3 respectively
    Co-factors of the elements of third row of | A | are
    open vertical bar table row cell negative 3 end cell cell space space 4 end cell row cell negative 3 end cell cell space space 4 end cell end table close vertical bar comma space space minus open vertical bar table row 3 cell space space space 4 end cell row 2 cell space space space 4 end cell end table close vertical bar comma space open vertical bar table row 3 cell space space minus 3 end cell row 2 cell space space space minus 3 end cell end table close vertical bar
    i.e., 0, – 4, – 3 respectively
    therefore space adj. space straight A space equals space open square brackets table row cell space space space 1 end cell cell space space space minus 2 end cell cell space space space minus 2 end cell row cell negative 1 end cell cell space space space space space space space 3 end cell cell space space space space space space 3 end cell row cell space space 0 end cell cell space space space minus 4 end cell cell space space minus 3 end cell end table close square brackets space equals space open square brackets table row 1 cell space space minus 1 end cell cell space space space space space 0 end cell row cell negative 2 end cell cell space space space space space 3 end cell cell space space minus 4 end cell row cell negative 2 end cell cell space space 3 end cell cell negative 3 end cell end table close square brackets
space space space space space space space space space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj. space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space open square brackets table row 1 cell space space space minus 1 end cell cell space space space space space 0 end cell row cell negative 2 end cell cell space space space space 3 end cell cell space space minus 4 end cell row cell negative 2 end cell cell space space space space 3 end cell cell space space minus 3 end cell end table close square brackets space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
Now space space straight A squared space equals space straight A. space straight A space equals space open square brackets table row 3 cell space space minus 3 end cell cell space space 4 end cell row 2 cell negative 3 end cell cell space space 4 end cell row 0 cell negative 1 end cell cell space 1 end cell end table close square brackets space open square brackets table row 3 cell negative 3 end cell cell space space 4 end cell row 2 cell negative 3 end cell cell space space 4 end cell row 0 cell negative 1 end cell cell space space 1 end cell end table close square brackets
space space space space space space space space space space space space space space equals space open square brackets table row cell 9 minus 6 plus 0 end cell cell space space space minus 9 plus 9 minus 4 end cell cell space space space 12 minus 12 plus 4 end cell row cell 6 minus 6 plus 0 end cell cell space minus 6 plus 9 minus 4 end cell cell space 8 minus 12 plus 4 end cell row cell 0 minus 2 plus 0 end cell cell space space space space 0 plus 3 minus 1 end cell cell space 0 minus 4 plus 1 end cell end table close square brackets space equals space open square brackets table row 3 cell space space minus 4 end cell cell space space space space 4 end cell row 0 cell space space space space space 1 end cell cell space space space space 0 end cell row cell negative 2 end cell cell space space 2 end cell cell space space minus 3 end cell end table close square brackets
straight A cubed space equals space straight A squared space straight A space equals space open square brackets table row 3 cell space space minus 4 end cell cell space space space space space 4 end cell row 0 cell space space space space space 1 end cell cell space space space space space 0 space end cell row cell negative 2 end cell cell space space space space 2 end cell cell space space minus 3 end cell end table close square brackets space open square brackets table row 3 cell space minus 3 end cell cell space space 4 end cell row 2 cell space minus 3 end cell cell space space 4 end cell row 0 cell space minus 1 end cell cell space space 1 end cell end table close square brackets
equals space open square brackets table row cell 9 minus 8 plus 0 end cell cell space minus 9 plus 12 minus 4 end cell cell space space 12 minus 16 plus 4 end cell row cell 0 minus 2 plus 0 end cell cell 0 plus 3 plus 0 end cell cell 0 minus 4 plus 0 end cell row cell negative 6 plus 4 plus 0 end cell cell 6 minus 6 plus 3 end cell cell negative 8 plus 8 minus 3 end cell end table close square brackets space equals open square brackets table row 1 cell space minus 1 end cell cell space space space 0 end cell row cell negative 2 end cell cell space space space 3 end cell cell negative 4 end cell row cell negative 2 end cell cell space space 3 end cell cell negative 3 end cell end table close square brackets

    From (1) and (2),
    A3 = A–1


    Question 214
    CBSEENMA12034659

    If straight A space equals space open square brackets table row 1 cell space space minus 1 end cell cell space space 1 end cell row 2 cell space minus 1 end cell cell space space 0 end cell row 1 cell space space space space 0 end cell cell space space 0 end cell end table close square brackets comma find A–1 and show that A–1 = A2.

    Solution
    straight A space equals space open square brackets table row 1 cell space space minus 1 end cell cell space space 1 end cell row 2 cell space space minus 1 end cell cell space space 0 end cell row 1 cell space space space space space 0 end cell cell space space 0 end cell end table close square brackets
open vertical bar straight A close vertical bar space equals space open vertical bar table row 1 cell space minus 1 end cell cell space space 1 end cell row 2 cell space minus 1 end cell cell space space 0 end cell row 1 cell space space space 0 end cell cell space space 0 end cell end table close vertical bar space equals space 1 open vertical bar table row 2 cell space space minus 1 end cell row 1 cell space space space space 0 end cell end table close vertical bar space equals space 0 plus 1 space equals space 1 space not equal to 0 space space space space rightwards double arrow space space straight A to the power of negative 1 end exponent space exists.
    Co-factors of the elements-of first row of | A | are
    open vertical bar table row cell negative 1 end cell cell space space space 0 end cell row 0 cell space space space 0 end cell end table close vertical bar comma space space minus open vertical bar table row 2 cell space space space space 0 end cell row 1 cell space space space space 0 end cell end table close vertical bar comma space space open vertical bar table row 2 cell space space minus 1 end cell row 1 cell space space space space space 0 end cell end table close vertical bar
    i.e.   0, – 1, – 1 respectively.
    Co-factors of the elements of third row of | A | are
    open vertical bar table row cell negative 1 end cell cell space space 1 end cell row cell negative 1 end cell cell space space 0 end cell end table close vertical bar comma space space space space minus open vertical bar table row 1 cell space space space space space 1 end cell row 2 cell space space space space space 0 end cell end table close vertical bar comma space space space open vertical bar table row 1 cell space space space space minus 1 end cell row 2 cell space space space space minus 1 end cell end table close vertical bar
    i.e.. 1, 2, 1 respectively
    therefore space space space adj. space straight A space equals space open square brackets table row 0 cell space space space space space 0 end cell cell space space space space space space 1 space end cell row 0 cell space space minus 1 end cell cell space space minus 1 end cell row 1 cell space space space space space 2 end cell cell space space space space space 1 end cell end table close square brackets space equals space open square brackets table row 0 cell space space space 0 end cell cell space space space 1 end cell row 0 cell negative 1 end cell cell space space space 2 end cell row 1 cell negative 1 end cell cell space space 1 end cell end table close square brackets
space space space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj. space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space open square brackets table row 0 cell space space space space space 0 end cell cell space space 1 space end cell row 0 cell space minus 1 end cell cell space space 2 end cell row 1 cell space minus 1 end cell cell space space 1 end cell end table close square brackets space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis space space space space space space space
straight A squared space equals space open square brackets table row 1 cell space space space minus 1 end cell cell space space 1 end cell row 2 cell space space minus 1 end cell cell space space 0 end cell row 1 cell space space space space 0 end cell cell space space 0 end cell end table close square brackets space space space open square brackets table row 1 cell space space minus 1 end cell cell space space 1 end cell row 2 cell space space minus 1 end cell cell space space 0 end cell row 1 cell space space space 0 end cell cell space space 0 end cell end table close square brackets space equals space open square brackets table row cell 1 minus 2 plus 1 end cell cell space space space space space minus 1 plus 1 plus 0 end cell cell space space space space 1 plus 0 plus 0 end cell row cell 2 minus 2 plus 0 end cell cell space space space minus 2 plus 1 plus 0 end cell cell space space space space 2 plus 0 plus 0 end cell row cell 1 plus 0 plus 0 end cell cell space space space minus 1 plus 0 plus 0 end cell cell space space 1 plus 0 plus 0 end cell end table close square brackets
therefore space space space space space space space space space straight A squared space equals space open square brackets table row 0 cell space space space space 0 end cell cell space space space space 1 end cell row 0 cell space space minus 1 end cell cell space space space space 2 end cell row 1 cell space minus 1 end cell cell space space space space 1 end cell end table close square brackets space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis space space space space space space space space space space space space

    From (1) and (2),
    A–1 = A2

    Question 215
    CBSEENMA12034662

    If straight A space equals space open square brackets table row 3 cell space space minus 3 end cell cell space space space 4 end cell row 2 cell space space minus 3 end cell cell space space space 4 end cell row 0 cell space space minus 1 end cell cell space space space 1 end cell end table close square brackets comma  show that A4 = I. Hence find A–1

    Solution
    straight A space equals space open square brackets table row 3 cell space space space minus 3 end cell cell space space 4 end cell row 2 cell space space minus 3 end cell cell space space 4 end cell row 0 cell space minus 1 end cell cell space space 1 end cell end table close square brackets
    Now straight A squared space equals space open square brackets table row 3 cell space space minus 3 end cell cell space space 4 end cell row 2 cell space space minus 3 end cell cell space space 4 end cell row 0 cell negative 1 end cell cell space space 1 end cell end table close square brackets space open square brackets table row 3 cell space space space minus 3 end cell cell space space space 4 end cell row 2 cell space space space minus 3 end cell cell space space space 4 end cell row 0 cell space minus 1 end cell cell space space space 1 end cell end table close square brackets space space space space space space space
              equals space open square brackets table row cell 9 minus 6 plus 0 end cell cell space space minus 9 plus 9 minus 4 end cell cell space space 12 minus 12 plus 4 end cell row cell 6 minus 6 plus 0 end cell cell space minus 6 plus 9 minus 4 end cell cell 8 minus 12 plus 4 end cell row cell 0 minus 2 plus 0 end cell cell 0 plus 3 minus 1 end cell cell 0 minus 4 plus 1 end cell end table close square brackets space equals space open square brackets table row 3 cell space space minus 4 end cell cell space space space space 4 end cell row 0 cell space minus 1 end cell cell space space space 0 end cell row cell negative 2 end cell cell space 2 end cell cell space minus 3 end cell end table close square brackets
straight A cubed space equals space open square brackets table row 3 cell space space minus 4 end cell cell space space space space space space 4 end cell row 0 cell space space minus 1 end cell cell space space space space space 0 end cell row cell negative 2 end cell cell space space 2 end cell cell space space minus 3 end cell end table close square brackets space space open square brackets table row 3 cell space minus 3 end cell cell space space 4 end cell row 2 cell negative 3 end cell cell space space 4 end cell row 0 cell negative 1 end cell cell space space 1 end cell end table close square brackets
space space space space space space space equals space open square brackets table row cell 9 minus 8 plus 0 end cell cell space space space minus 9 plus 12 minus 4 end cell cell space space 12 minus 6 plus 4 end cell row cell 0 minus 2 plus 0 end cell cell 0 plus 3 plus 0 end cell cell 0 minus 4 plus 0 end cell row cell negative 6 plus 4 plus 0 end cell cell 6 minus 6 plus 3 end cell cell negative 8 plus 8 minus 3 end cell end table close square brackets space equals space open square brackets table row cell space space 1 end cell cell space space minus 1 end cell cell space space space space 0 end cell row cell negative 2 end cell cell space space space space space 3 end cell cell space minus 4 end cell row cell negative 2 end cell cell space space space space 3 end cell cell space minus 3 end cell end table close square brackets space space space space space space space space space space... left parenthesis 2 right parenthesis
straight A to the power of 4 space equals space open square brackets table row 1 cell space space minus 1 end cell cell space space space space 0 end cell row cell negative 2 end cell cell space space space 3 end cell cell negative 4 end cell row cell negative 2 end cell cell space space 3 end cell cell negative 3 end cell end table close square brackets space space space open square brackets table row 3 cell space space minus 3 end cell cell space space space 4 end cell row 2 cell space space minus 3 end cell cell space space 4 end cell row 0 cell space space minus 1 end cell cell space space 1 end cell end table close square brackets
space space space space space space equals space open square brackets table row cell 3 minus 2 plus 0 end cell cell space space space minus 3 plus 3 plus 0 end cell cell space space space space 4 plus 4 plus 0 end cell row cell negative 6 plus 6 plus 0 end cell cell 6 minus 9 plus 4 end cell cell negative 8 plus 12 minus 4 end cell row cell negative 6 plus 6 plus 0 end cell cell 6 minus 9 plus 3 end cell cell negative 8 plus 12 minus 3 end cell end table close square brackets space equals space open square brackets table row 1 cell space space 0 end cell cell space space 0 end cell row 0 cell space 1 end cell cell space space 0 end cell row 0 cell space space 0 end cell cell space space 1 end cell end table close square brackets
therefore space space space space space straight A to the power of 4 space equals space space straight I space space space space rightwards double arrow space space space space straight A to the power of 4 straight A to the power of negative 1 end exponent space space equals IA to the power of negative 1 end exponent space space space space rightwards double arrow space space space space space straight A cubed space equals space straight A to the power of negative 1 end exponent space
rightwards double arrow space space space space space space straight A to the power of negative 1 end exponent space space equals space open square brackets table row 1 cell space space space minus 1 end cell cell space space space space space space 0 end cell row cell negative 2 end cell cell space space space space space 3 end cell cell space space minus 4 end cell row cell negative 2 end cell cell space space space space 3 end cell cell space space minus 3 end cell end table close square brackets space space
                  
    Question 216
    CBSEENMA12034664

    If A = open square brackets table row 2 cell space space 0 end cell cell space space minus 1 end cell row 5 cell space space 1 end cell cell space space space space 0 end cell row 0 cell space space 1 end cell cell space space space space 3 end cell end table close square brackets comma  prove that A–1 = A–2 – 6 A + 111.

    Solution

    Here straight A space equals space open square brackets table row 2 cell space space space 0 end cell cell space space minus 1 end cell row 5 cell space space space 1 end cell cell space space space space 0 end cell row 0 cell space space space 1 end cell cell space space space space 3 end cell end table close square brackets
    therefore space space space open vertical bar straight A close vertical bar space equals space open vertical bar table row 2 cell space space space 0 end cell cell negative 1 end cell row 5 cell space space 1 end cell cell space space space 0 end cell row 0 cell space space 1 end cell cell space space 3 end cell end table close vertical bar space equals space 2 space open vertical bar table row 1 cell space space space 0 end cell row 1 cell space space 3 end cell end table close vertical bar space minus space 0 space open vertical bar table row 5 cell space space 0 end cell row 0 cell space space 3 end cell end table close vertical bar space plus space left parenthesis negative 1 right parenthesis space open vertical bar table row 5 cell space space 1 end cell row 0 cell space space 1 end cell end table close vertical bar
space space space equals space 2 left parenthesis 3 minus 0 right parenthesis minus 0 minus left parenthesis 5 minus 0 right parenthesis space equals space 6 minus 5 space equals space 1 space not equal to space 0
therefore space space space straight A to the power of negative 1 end exponent space exists
    Co-factors of the elements of first row of | A | are
    open vertical bar table row 1 cell space space space 0 end cell row 1 cell space space space 3 end cell end table close vertical bar comma space space space minus open vertical bar table row 5 cell space space space 0 end cell row 0 cell space space space 3 end cell end table close vertical bar comma space space space space space open vertical bar table row 5 cell space space space 1 end cell row 0 cell space space space 1 end cell end table close vertical bar
    i.e.   3, – 15, 5 respectively
    Co-factors of the elements of second row of | A | are
    negative open vertical bar table row 0 cell space space space minus 1 end cell row 1 cell space space space space space 3 end cell end table close vertical bar comma space space open vertical bar table row 2 cell space space space space minus 1 end cell row 0 cell space space space space space space 3 end cell end table close vertical bar comma space space minus open vertical bar table row 2 cell space space space space space 0 end cell row 0 cell space space space space space 1 end cell end table close vertical bar
    i.e.   – 1, 6, – 2 respectively
    Co-factors of the elements of third row of | A | are
    open vertical bar table row 0 cell space space space minus 1 end cell row 1 cell space space space space space 0 end cell end table close vertical bar comma space space minus open vertical bar table row 2 cell space space space minus 1 end cell row 5 cell space space space space space 0 end cell end table close vertical bar comma space space open vertical bar table row 2 cell space space space space space 0 end cell row 5 cell space space space space space 1 end cell end table close vertical bar

    i.e.   1, – 5,   2 respectively
    therefore space space space adj. space straight A space equals space open square brackets table row cell space space 3 end cell cell space space space minus 15 end cell cell space space space space 5 end cell row cell negative 1 end cell cell space space space space space 6 end cell cell negative 2 end cell row 1 cell space space space minus 5 end cell cell space space 2 end cell end table close square brackets to the power of apostrophe space equals space space open square brackets table row cell space space 3 end cell cell space space minus 1 end cell cell space space space space space 1 end cell row cell negative 15 end cell cell space space space space space 6 end cell cell space minus 5 end cell row cell space space 5 end cell cell negative 2 end cell cell space space space space space 2 end cell end table close square brackets
space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj. space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space 1 over 1 open square brackets table row cell space space space space 3 end cell cell space space space space minus 1 end cell cell space space space space space 1 end cell row cell negative 15 end cell cell space space space space space space 6 end cell cell space space minus 5 end cell row cell space space space space space 5 end cell cell space space space minus 2 end cell cell space space space space space 2 end cell end table close square brackets space equals space open square brackets table row cell space space space space 3 end cell cell space space space space minus 1 end cell cell space space space space space 1 end cell row cell negative 15 end cell cell space space space space space space 6 end cell cell space space minus 5 end cell row cell space space space space space 5 end cell cell space space space minus 2 end cell cell space space space space space 2 end cell end table close square brackets
straight A squared space equals space open square brackets table row 2 cell space space space space 0 end cell cell space space space minus 1 end cell row 5 cell space space space 1 end cell cell space space space space space 0 end cell row 0 cell space space space space 1 end cell cell space space space space space space 3 end cell end table close square brackets space open square brackets table row 2 cell space space space space 0 end cell cell space space minus 1 end cell row 5 cell space space space 1 end cell cell space space space space space 0 end cell row 0 cell space space 1 end cell cell space space space 3 end cell end table close square brackets
space space space equals space open square brackets table row cell 4 plus 0 plus 0 end cell cell space space space 0 plus 0 minus 1 end cell cell space space minus 2 plus 0 minus 3 end cell row cell 10 plus 5 plus 0 end cell cell 0 plus 1 plus 0 end cell cell negative 5 plus 0 plus 0 end cell row cell 0 plus 5 plus 0 end cell cell 0 plus 1 plus 3 end cell cell 0 plus 0 plus 9 end cell end table close square brackets space equals space open square brackets table row 4 cell space space minus 1 end cell cell space space space minus 5 end cell row 15 cell space space space space 1 end cell cell space space minus 5 end cell row 5 cell space space space 4 end cell cell space space space 9 end cell end table close square brackets
straight R. straight H. straight S space equals space straight A squared minus 6 straight A space plus space 11 space straight I
space space space space space space space space space space space space space space space
                       equals space open square brackets table row 4 cell space space minus 1 end cell cell space space space minus 5 end cell row 15 cell space space space space space 1 end cell cell space space minus 5 end cell row 5 cell space space space space 4 end cell cell space space space space space 9 end cell end table close square brackets minus 6 space open square brackets table row 2 cell space space space 0 end cell cell space space minus 1 end cell row 5 cell space space space 1 end cell cell space space space space space 0 end cell row 0 cell space space space 1 end cell cell space space space space space 3 end cell end table close square brackets space plus space 11 space open square brackets table row 1 cell space space space 0 end cell cell space space 0 end cell row 0 cell space space 1 end cell cell space space 0 end cell row 0 cell space space 0 end cell cell space space 1 end cell end table close square brackets
space equals space open square brackets table row 4 cell space space minus 1 end cell cell space space minus 5 end cell row 15 cell space space space space space 1 end cell cell space minus 5 end cell row 5 cell space space space 4 end cell cell space space space space 9 end cell end table close square brackets space plus space open square brackets table row cell negative 12 end cell cell space space space space 0 end cell cell space space space 6 end cell row cell negative 30 end cell cell space minus 6 end cell cell space space space 0 end cell row 0 cell space space minus 6 end cell cell space space space minus 18 end cell end table close square brackets space plus space space open square brackets table row 11 cell space 0 end cell cell space space 0 end cell row 0 cell space space 11 end cell cell space space 0 end cell row 0 0 cell space space 11 end cell end table close square brackets
equals space open square brackets table row cell 4 minus 12 plus 11 end cell cell space space space minus 1 plus 0 plus 0 end cell cell space space space space space minus 5 plus 6 plus 0 end cell row cell 15 minus 30 plus 0 end cell cell space space 1 minus 6 plus 11 end cell cell space space minus 5 plus 0 plus 0 end cell row cell 5 plus 0 plus 0 end cell cell space 4 minus 6 plus 0 end cell cell space space space space space 9 minus 18 plus 11 end cell end table close square brackets space equals space open square brackets table row cell space space 3 end cell cell space space minus 1 end cell cell space space space space space 1 end cell row cell negative 15 end cell cell space space space space space 6 end cell cell space minus 5 end cell row cell space space space 5 end cell cell space minus 2 end cell cell space space space space 2 end cell end table close square brackets
equals space straight A squared space equals space straight R. straight H. straight S.

     
    Question 217
    CBSEENMA12034665

    If straight A space equals space open square brackets table row 1 cell space space 2 end cell cell space space 2 end cell row 2 cell space space 1 end cell cell space space 2 end cell row 2 cell space space 2 end cell cell space space 1 end cell end table close square brackets comma space Find A–1 and hence prove that A2 – 4A – 5 I = O.

    Solution
    straight A space equals space open square brackets table row 1 cell space space space 2 end cell cell space space space 2 end cell row 2 cell space space space 1 end cell cell space space space 2 end cell row 2 cell space space space 2 end cell cell space space 1 end cell end table close square brackets
therefore space space space space space open vertical bar straight A close vertical bar space equals space open vertical bar table row 1 cell space space space 2 end cell cell space space space 2 end cell row 2 cell space space space 1 end cell cell space space space 2 end cell row 2 cell space space space 2 end cell cell space space 1 end cell end table close vertical bar space space equals space 1 open vertical bar table row 1 cell space space space 2 end cell row 2 cell space space space 1 end cell end table close vertical bar minus 2 open vertical bar table row 2 cell space space space space 2 end cell row 2 cell space space space space 1 end cell end table close vertical bar plus 2 open vertical bar table row 2 cell space space space space 1 end cell row 2 cell space space space space space 2 end cell end table close vertical bar
space space space space space space space space space space space space space space space space space equals 1 left parenthesis 1 minus 4 right parenthesis minus 2 left parenthesis 2 minus 4 right parenthesis plus 2 left parenthesis 4 minus 2 right parenthesis space equals space minus 3 plus 4 plus 4 space equals 5
therefore space space space space space straight A to the power of negative 1 end exponent space exists
    Co-factors of the elements of the first row of | A | are
    open vertical bar table row 1 cell space space 2 end cell row 2 cell space space 1 end cell end table close vertical bar comma space space space minus open vertical bar table row 2 cell space space space space 2 end cell row 2 cell space space space 1 end cell end table close vertical bar comma space space open vertical bar table row 2 cell space space space 1 end cell row 2 cell space space space 2 end cell end table close vertical bar
    i.e. – 3, 2, 2 respectively
    Co-factors of the elements of the second row of | A | are
    negative open vertical bar table row 2 cell space space space 2 end cell row 2 cell space space space 1 end cell end table close vertical bar comma space space space space open vertical bar table row 1 cell space space space 2 end cell row 2 cell space space 1 end cell end table close vertical bar comma space space space minus open vertical bar table row 1 cell space space 2 end cell row 2 cell space space space 2 end cell end table close vertical bar
    i.e. 2, – 3, 2 respectively.
    Co-factors of the elements of the third row of | A | are
    open vertical bar table row 2 cell space space 2 end cell row 1 cell space space 2 end cell end table close vertical bar comma space space space minus open vertical bar table row 1 cell space space space 2 end cell row 2 cell space space space 2 end cell end table close vertical bar comma space space open vertical bar table row 1 cell space space space 2 end cell row 2 cell space space 1 end cell end table close vertical bar
straight i. straight e. comma space space 2 comma space space 2 comma space – space 3 space respectively
    therefore space space space adj. space straight A space equals space open square brackets table row cell negative 3 end cell cell space space space space space space 2 end cell cell space space space space space 2 end cell row 2 cell space space minus 3 end cell cell space space space space space 2 end cell row 2 cell space space space space space 2 end cell cell space space minus 3 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row cell negative 3 end cell cell space space space space space space 2 end cell cell space space space space space 2 end cell row 2 cell space space minus 3 end cell cell space space space space space 2 end cell row 2 cell space space space space space 2 end cell cell space space minus 3 end cell end table close square brackets
Now space straight A to the power of negative 1 end exponent space equals space fraction numerator adj. space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space 1 fifth open square brackets table row cell negative 3 end cell cell space space 2 end cell cell space space space space 2 end cell row cell space space 2 end cell cell negative 3 end cell cell space space space space 2 end cell row cell space space 2 end cell cell space space 2 end cell cell negative 3 end cell end table close square brackets.
space therefore space space space space space space space 5 space straight A to the power of negative 1 end exponent space equals space open square brackets table row cell 1 minus 4 end cell cell space space space space 2 plus 0 end cell cell space space space space space 2 plus 0 end cell row cell 2 plus 0 end cell cell space space space 1 minus 4 end cell cell space space space 2 plus 0 end cell row cell 2 plus 0 end cell cell space space space 2 plus 0 end cell cell space space space 1 minus 4 end cell end table close square brackets
rightwards double arrow space space space space space space 5 space straight A to the power of negative 1 end exponent space equals space space open square brackets table row 1 cell space space space 2 end cell cell space space 2 end cell row 2 cell space space 1 end cell cell space space 2 end cell row 2 cell space space 2 end cell cell space space 1 end cell end table close square brackets plus space open square brackets table row cell negative 4 end cell cell space space space 0 end cell cell space space space space space space 0 end cell row 0 cell space minus 4 end cell cell space space space space space 0 end cell row 0 cell space space 0 end cell cell space minus 4 end cell end table close square brackets
rightwards double arrow space space space space space 5 space straight A to the power of negative 1 end exponent space equals space open square brackets table row 1 cell space space 2 end cell cell space space 2 end cell row 2 cell space 1 end cell cell space space 2 end cell row 2 cell space space 2 end cell cell space 1 end cell end table close square brackets space minus space 4 open square brackets table row 1 cell space 0 end cell cell space 0 end cell row 0 cell space 1 end cell cell space 0 end cell row 0 cell space space 0 end cell cell space 1 end cell end table close square brackets
rightwards double arrow space space space space 5 space straight A to the power of negative 1 end exponent space equals space straight A space minus space 4 space straight I
rightwards double arrow space space space space 5 space straight A space straight A to the power of negative 1 end exponent space equals space AA space minus space 4 straight A space straight I
rightwards double arrow space space space space space space space 5 space straight I space equals space straight A squared minus 4 space straight A
rightwards double arrow space space space space space space straight A squared minus 4 straight A space minus space 5 space straight I space equals space 0.
    Question 218
    CBSEENMA12034669

    For the matrix straight A space equals space open square brackets table row 1 cell space space 1 end cell cell space space space space space 1 end cell row 1 cell space space space 2 end cell cell space minus 3 end cell row 2 cell negative 1 end cell cell space space space space 3 end cell end table close square brackets comma show that A3 + 6A2 + 5A + 11 I = 0. Hence, find A–1.

    Solution
    straight A equals open square brackets table row 1 cell space space space 1 end cell cell space space space space 1 end cell row 1 cell space space space 2 end cell cell space minus 3 end cell row 2 cell space space space 1 space end cell cell space space space 3 end cell end table close square brackets
    straight A squared space equals space open square brackets table row 1 cell space space space space space space 1 end cell cell space space space space space 1 end cell row 1 cell space space space space space space 2 end cell cell space space minus 3 end cell row 2 cell space minus 1 end cell cell space space space space space 3 end cell end table close square brackets space open square brackets table row 1 cell space space space 1 end cell cell space space space space 1 end cell row 1 cell space space space space 2 end cell cell space minus 3 end cell row 2 cell negative 1 end cell cell space space space space 3 end cell end table close square brackets
space space space space space equals space open square brackets table row cell 1 plus 1 plus 2 end cell cell space space space space 1 plus 2 minus 1 end cell cell space space space space 1 minus 3 plus 3 end cell row cell 1 plus 2 minus 6 end cell cell space space 1 plus 4 plus 3 end cell cell space 1 minus 6 minus 9 end cell row cell 2 minus 1 plus 6 end cell cell space space 2 minus 2 minus 3 end cell cell space space 2 plus 3 plus 9 end cell end table close square brackets space equals space open square brackets table row cell space 4 end cell cell space space space 2 end cell cell space space space 1 end cell row cell negative 3 end cell cell space space space space 8 end cell cell space space 14 end cell row 7 cell space minus 3 end cell cell space space 14 end cell end table close square brackets
straight A cubed space equals space open square brackets table row cell space space space 4 end cell cell space space space space 2 end cell cell space space space space space space 1 end cell row cell negative 3 end cell cell space space space space space 8 end cell cell space space minus 14 end cell row cell space space 7 end cell cell space space minus 3 end cell cell space space space space space 14 end cell end table close square brackets space open square brackets table row 1 cell space space space space space 1 end cell cell space space space 1 end cell row 1 cell space space space space 2 end cell cell space space minus 3 end cell row 2 cell space space minus 1 end cell cell space space space 3 end cell end table close square brackets
space space space space space equals open square brackets table row cell 4 plus 2 plus 2 end cell cell space space space space space space space 4 plus 4 minus 1 end cell cell space space space space space 4 minus 6 plus 3 end cell row cell negative 3 plus 8 minus 28 end cell cell space space space space space minus 3 plus 16 plus 14 end cell cell space space space space minus 3 minus 24 minus 42 end cell row cell 7 minus 3 plus 28 end cell cell space space space space space 7 minus 6 minus 14 end cell cell space space space space space space space 7 plus 9 plus 42 end cell end table close square brackets space equals space open square brackets table row 8 cell space space 7 end cell cell space space 1 end cell row cell negative 23 end cell cell space space 27 end cell cell negative 69 end cell row 32 cell negative 13 end cell cell space space space 58 end cell end table close square brackets
    Consider A3 + 6A2 + 5A + 11 I
    equals space open square brackets table row 8 cell space space space 7 end cell cell space space space space 1 end cell row cell negative 23 end cell cell space space space space 27 end cell cell space space minus 69 end cell row 32 cell space minus 13 end cell cell space space space space 58 end cell end table close square brackets space minus space 6 open square brackets table row 4 cell space space space 2 end cell cell space space 1 end cell row cell negative 3 end cell cell space space space 8 end cell cell negative 14 end cell row 7 cell space minus 3 end cell cell space space 14 end cell end table close square brackets space plus space 5 space open square brackets table row 1 cell space 1 end cell cell space 1 end cell row 1 cell space space 2 end cell cell negative 3 end cell row 2 cell space minus 1 end cell cell space space space 3 end cell end table close square brackets plus space 11 open square brackets table row 1 cell space 0 end cell cell space 0 end cell row 0 cell space 1 end cell cell space space 0 end cell row 0 cell space 0 end cell cell space space 1 end cell end table close square brackets
equals space open square brackets table row 8 cell space space 7 end cell cell space space 1 end cell row cell negative 23 end cell cell space space 27 end cell cell negative 69 end cell row 32 cell negative 13 end cell cell space space 58 end cell end table close square brackets plus space open square brackets table row cell negative 24 end cell cell space space space minus 12 end cell cell space space minus 6 end cell row 18 cell space minus 48 end cell cell space space space space 84 end cell row cell negative 42 end cell cell space 18 end cell cell negative 84 end cell end table close square brackets space plus space open square brackets table row 5 cell space space 5 end cell 5 row 5 cell space 10 end cell cell negative 15 end cell row 10 cell negative 5 end cell 15 end table close square brackets space plus space open square brackets table row 11 cell space 0 end cell 0 row 0 11 0 row 0 0 11 end table close square brackets
space equals space open square brackets table row cell 8 minus 24 plus 5 plus 11 end cell cell space space space space space 7 minus 12 plus 5 plus 0 end cell cell space space space space space space 1 minus 6 plus 5 plus 0 end cell row cell negative 23 plus 18 plus 5 plus 0 end cell cell space space space space space space space 27 minus 48 plus 10 plus 11 end cell cell space space space minus 69 plus 84 minus 15 plus 0 end cell row cell 32 minus 42 plus 10 plus 0 end cell cell negative 13 plus 18 minus 5 plus 0 end cell cell space space space space space space space 58 minus 84 plus 15 plus 11 end cell end table close square brackets space equals space open square brackets table row 0 cell space 0 end cell cell space 0 end cell row 0 cell space 0 end cell cell space 0 end cell row 0 cell space 0 end cell cell space 0 end cell end table close square brackets
therefore space space space straight A cubed minus 6 straight A squared plus 5 straight A plus 11 space straight I space equals space straight O
rightwards double arrow space space space space space space space 11 space straight I space equals space minus straight A cubed plus 6 straight A squared minus 5 straight A
rightwards double arrow space space space space space space space 11 space straight A to the power of negative 1 end exponent space space equals negative straight A squared plus 6 straight A minus 5 thin space straight I
space space space space space space space space space space space space space space space space space space space space space space space equals negative open square brackets table row 4 cell space space space space 2 end cell cell space space space space 1 end cell row cell negative 3 end cell cell space space space 8 end cell cell space space minus 14 end cell row 7 cell space minus 3 end cell cell space minus 14 end cell end table close square brackets plus space 6 space open square brackets table row 1 cell space space space space space space space 1 end cell cell space space space space space 1 end cell row 1 cell space space space space space space space 2 end cell cell space space minus 3 end cell row 2 cell space space minus 1 end cell cell space space space space 3 end cell end table close square brackets minus 5 open square brackets table row 1 cell space space space 0 end cell cell space space space 0 end cell row 0 cell space space 1 end cell cell space space 0 end cell row 0 cell space 0 end cell cell space space space 1 end cell end table close square brackets
therefore space space space space space space space 11 space straight A to the power of negative 1 end exponent space equals space open square brackets table row cell negative 4 end cell cell space space space minus 2 end cell cell space space minus 1 end cell row cell space space 3 end cell cell space space minus 8 end cell cell space space space space space 14 end cell row cell negative 7 end cell cell space space space 3 end cell cell negative 14 end cell end table close square brackets plus open square brackets table row 6 cell space space 6 end cell cell space space space 6 end cell row 6 cell space 12 end cell cell negative 18 end cell row 12 cell negative 6 end cell cell space 18 end cell end table close square brackets space plus open square brackets table row cell negative 5 end cell cell space space space space 0 end cell cell space space space space 0 end cell row 0 cell space minus 5 end cell cell space space space space 0 end cell row 0 cell space space 0 end cell cell space space minus 5 end cell end table close square brackets space space space space space space space space space space space space space
    rightwards double arrow space space 11 space straight A to the power of negative 1 end exponent space equals space open square brackets table row cell negative 4 plus 6 minus 5 end cell cell space space space space minus 2 plus 6 plus 0 end cell cell space space space space space space minus 1 plus 6 plus 0 end cell row cell 3 plus 6 plus 0 end cell cell space minus 8 plus 12 minus 5 end cell cell space space 14 minus 18 plus 0 end cell row cell negative 7 plus 12 plus 0 end cell cell space 3 minus 6 plus 0 end cell cell space space minus 14 plus 18 minus 5 end cell end table close square brackets
rightwards double arrow space space space space space 11 space straight A to the power of negative 1 end exponent space equals space open square brackets table row cell negative 3 end cell cell space space space 4 end cell cell space space space 5 end cell row 9 cell space minus 1 end cell cell space minus 4 end cell row 5 cell negative 3 end cell cell space minus 1 end cell end table close square brackets
rightwards double arrow space space space space space straight A to the power of negative 1 end exponent space equals space 1 over 11 open square brackets table row cell negative 3 end cell cell space space space 4 end cell cell space space space space 5 end cell row 9 cell negative 1 end cell cell space minus 4 end cell row 5 cell negative 3 end cell cell space minus 1 end cell end table close square brackets
    Question 219
    CBSEENMA12034674

    If straight A space equals space open square brackets table row cell space space 2 end cell cell space space space minus 1 end cell cell space space space space space 1 end cell row cell negative 1 end cell cell space space space space space 2 end cell cell space minus 1 end cell row cell space space 1 end cell cell space space minus 1 end cell cell space space space space 2 end cell end table close square brackets comma
    verify that A1 – 6A2 + 9A – 4 I = O and hence find A–1.

    Solution
    straight A space equals space open square brackets table row 2 cell space space space space minus 1 end cell cell space space space space space 1 end cell row cell negative 1 end cell cell space space space space space 2 end cell cell space space minus 1 end cell row 1 cell space space minus 1 end cell cell space space space 2 end cell end table close square brackets comma
    straight A squared space equals space open square brackets table row cell space 2 end cell cell space space space space space minus 1 end cell cell space space space space space 1 end cell row cell negative 1 end cell cell space space space space space space space 2 end cell cell space minus 1 end cell row cell space space 1 end cell cell space space space minus 1 end cell cell space space space space 2 end cell end table close square brackets space open square brackets table row cell space 2 end cell cell space space space minus 1 end cell cell space space space space space space 1 end cell row cell negative 1 end cell cell space space space space space space space 2 end cell cell space space minus 1 end cell row cell space 1 end cell cell space space space minus 1 end cell cell space space space space 2 end cell end table close square brackets space space
space space space space space equals open square brackets table row cell 4 plus 1 plus 1 end cell cell space minus 2 minus 2 minus 1 end cell cell space space space 2 plus 1 plus 2 end cell row cell negative 2 minus 2 minus 1 end cell cell space space 1 plus 4 plus 1 end cell cell negative 1 minus 2 minus 2 end cell row cell 2 plus 1 plus 2 end cell cell negative 1 minus 2 minus 2 end cell cell 1 plus 1 plus 4 end cell end table close square brackets space equals space open square brackets table row 6 cell space minus 5 end cell cell space space 5 end cell row cell negative 5 end cell cell space space 6 end cell cell negative 5 end cell row 5 cell negative 5 end cell cell space space 6 end cell end table close square brackets space space space
straight A cubed space equals space open square brackets table row cell space space 6 end cell cell space space minus 5 end cell cell space space space space space space space 5 end cell row cell negative 5 end cell cell space space space space space 6 end cell cell space space space minus 5 end cell row cell space 5 end cell cell space space minus 5 end cell cell space space space space space space 6 end cell end table close square brackets space space open square brackets table row 2 cell space space space minus 1 end cell cell space space space space space 1 end cell row cell negative 1 end cell cell space space space space space space 2 end cell cell space space space minus 1 end cell row 1 cell space space space minus 1 end cell cell space space space space space 2 end cell end table close square brackets
space space space space equals open square brackets table row 6 cell space space space minus 5 end cell cell space space space space space 5 end cell row cell negative 5 end cell cell space space space space space 6 end cell cell space minus 5 end cell row 5 cell space minus 5 end cell cell space space space space 6 end cell end table close square brackets space open square brackets table row cell space 2 end cell cell space space space minus 1 end cell cell space space space space space 1 end cell row cell negative 1 end cell cell space space space space space 2 end cell cell space minus 1 end cell row 1 cell space space minus 1 end cell cell space space space 2 end cell end table close square brackets
space space space space equals space open square brackets table row cell 12 plus 5 plus 5 end cell cell space space space minus 6 minus 10 minus 5 end cell cell space space space 6 plus 5 plus 10 end cell row cell negative 10 minus 6 minus 5 end cell cell space space 5 plus 12 plus 5 end cell cell negative 5 minus 6 minus 10 end cell row cell 10 plus 5 plus 6 end cell cell negative 5 minus 10 minus 6 end cell cell 5 plus 5 plus 12 end cell end table close square brackets space equals space open square brackets table row 22 cell space space minus 21 end cell cell space space 21 end cell row cell negative 21 end cell cell space space space 22 end cell cell negative 21 end cell row 21 cell negative 21 end cell cell space space 22 end cell end table close square brackets
    Consider A3 – 6A2 + 9A – 4 I
    equals space open square brackets table row cell space space 22 end cell cell space space space space minus 21 end cell cell space space space 21 end cell row cell negative 21 end cell cell space space space space 22 end cell cell negative 21 end cell row cell space space 21 end cell cell negative 21 end cell cell space space 22 end cell end table close square brackets minus 6 space open square brackets table row cell space space 6 end cell cell space space space minus 5 end cell cell space space 5 end cell row cell negative 5 end cell cell space space space space space space space 6 end cell cell negative 5 end cell row cell space space 5 end cell cell space space space minus 5 end cell cell space space 6 end cell end table close square brackets plus 9 space open square brackets table row 2 cell space space minus 1 end cell 1 row cell negative 1 end cell cell space space space space space 2 end cell cell negative 1 end cell row 1 cell negative 1 end cell 2 end table close square brackets minus 4 open square brackets table row 1 cell space space 0 end cell cell space 0 end cell row 0 cell space 1 end cell cell space 0 end cell row 0 cell space 0 end cell 1 end table close square brackets
equals space open square brackets table row 22 cell space space space minus 21 end cell cell space space 21 end cell row cell negative 21 end cell cell space space space 22 end cell cell space minus 21 end cell row 21 cell space space minus 21 end cell cell space space space space 22 end cell end table close square brackets space plus space open square brackets table row cell negative 36 end cell cell space 30 end cell cell space minus 30 end cell row 30 cell negative 36 end cell cell space space space 30 end cell row 30 30 cell space space minus 36 end cell end table close square brackets plus space open square brackets table row 18 cell space minus 9 end cell cell space space space space 9 end cell row cell negative 9 end cell cell space space space 18 end cell cell negative 9 end cell row 9 cell negative 9 end cell 18 end table close square brackets plus open square brackets table row cell negative 4 end cell cell space space 0 end cell cell space space space space 0 end cell row 0 cell space minus 4 end cell cell space space space space 2 end cell row 0 cell space 0 end cell cell space minus 4 end cell end table close square brackets
equals space open square brackets table row cell 22 minus 36 plus 18 minus 4 end cell cell space space space space space minus 21 plus 30 minus 9 plus 0 end cell cell space space space space space space 21 minus 30 plus 9 plus 0 end cell row cell negative 21 plus 30 minus 9 plus 0 end cell cell space space space space 22 minus 36 plus 18 minus 4 end cell cell space space space minus 21 plus 30 minus 9 plus 0 end cell row cell 21 minus 30 plus 9 plus 0 end cell cell space space minus 21 plus 30 minus 9 plus 0 end cell cell space space space space 22 minus 36 plus 18 minus 4 end cell end table close square brackets
equals space space open square brackets table row 0 cell space 0 end cell cell space space 0 end cell row 0 cell space 0 end cell cell space 0 end cell row 0 cell space 0 end cell cell space 0 end cell end table close square brackets space equals space straight O
space space space space space space space space space therefore space space space space space space straight A cubed minus 6 straight A squared plus 9 straight A minus 4 straight I space space equals space straight O
space space space space space space space space space space rightwards double arrow space space space space 4 space straight I space equals space straight A cubed space minus space 6 straight A squared space plus space 9 straight A
space space space space space space space space space rightwards double arrow space space space 4 space straight A to the power of negative 1 end exponent space equals space straight A squared space minus space 6 straight A plus space 9 space straight I space space space space space space space space space space space
space space space space space space space space space space space space rightwards double arrow space space space 4 straight A to the power of negative 1 end exponent space equals space open square brackets table row cell space space space space 6 end cell cell space space space minus 5 end cell cell space space space space 5 end cell row cell negative 5 end cell cell space space space space space space 6 end cell cell negative 5 end cell row cell space space 5 end cell cell negative 5 end cell cell space space space space 6 end cell end table close square brackets minus 6 space open square brackets table row 2 cell space space minus 1 end cell cell space space 1 end cell row cell negative 1 end cell cell space space space space space 2 end cell cell negative 1 end cell row 1 cell negative 1 end cell 2 end table close square brackets space plus space 9 space open square brackets table row 1 cell space space space space 0 end cell cell space space 0 end cell row 0 cell space space 1 end cell cell space space 0 end cell row 0 cell space 0 end cell cell space 1 end cell end table close square brackets
space
               rightwards double arrow space space space 4 straight A to the power of negative 1 end exponent space equals space open square brackets table row cell space space space 6 end cell cell space space minus 5 end cell cell space space space 5 end cell row cell negative 5 end cell cell space space space space space 6 end cell cell negative 5 end cell row cell space space space 5 end cell cell space space minus 5 end cell cell space space space 6 end cell end table close square brackets plus space open square brackets table row cell negative 12 end cell cell space 6 end cell cell space minus 6 end cell row cell space 6 end cell cell negative 12 end cell cell space space space space 6 end cell row cell negative 6 end cell 6 cell negative 12 end cell end table close square brackets plus space open square brackets table row 9 cell space 0 end cell cell space space 0 end cell row 0 cell space 9 end cell cell space 0 end cell row 0 cell space 0 end cell cell space 9 end cell end table close square brackets
rightwards double arrow space space space space 4 straight A to the power of negative 1 end exponent space equals space open square brackets table row cell 6 minus 12 plus 9 end cell cell space space space space space minus 5 plus 6 plus 0 end cell cell space space space space space space 5 minus 6 plus 0 end cell row cell negative 5 plus 6 plus 0 end cell cell space space space space 6 minus 12 plus 9 end cell cell space space space space minus 5 plus 6 plus 0 end cell row cell 5 minus 6 plus 0 end cell cell space space minus 5 plus 6 plus 0 end cell cell space space space space space 6 minus 12 plus 9 end cell end table close square brackets
rightwards double arrow space space space space space space 4 straight A to the power of negative 1 end exponent space equals space open square brackets table row cell 6 minus 12 plus 9 end cell cell space space space space minus 5 plus 6 plus 0 end cell cell space space space space space space 5 minus 6 plus 0 end cell row cell negative 5 plus 6 plus 0 end cell cell space space space space space 6 minus 12 plus 9 end cell cell space space space minus 5 plus 6 plus 0 end cell row cell 5 minus 6 plus 0 end cell cell space minus 5 plus 6 plus 0 end cell cell space space space space space space 6 minus 12 plus 9 end cell end table close square brackets
rightwards double arrow space space space space space space 4 straight A to the power of negative 1 end exponent space equals space open square brackets table row 3 cell space space space space 1 end cell cell space space space minus 1 end cell row 1 cell space space space space 3 end cell cell space space space space 1 end cell row cell negative 1 end cell cell space space space 1 end cell cell space space space 3 end cell end table close square brackets
rightwards double arrow space space space space space straight A to the power of negative 1 end exponent space equals space 1 fourth open square brackets table row 3 cell space space space 1 end cell cell space space space minus 1 end cell row 1 cell space space space 3 end cell cell space space space space 1 end cell row cell negative 1 end cell cell space space 1 end cell cell space space space 3 end cell end table close square brackets.
    Question 220
    CBSEENMA12034675

    Compute (AB)-1  where straight A space equals space open square brackets table row 5 cell space space space 0 end cell cell space space 4 end cell row 2 cell space space 3 space end cell cell space 2 end cell row 1 cell space 2 end cell cell space 1 end cell end table close square brackets comma space space space straight B to the power of negative 1 end exponent space equals space open square brackets table row 1 cell space space 2 end cell cell space space 3 end cell row 1 cell space space 4 end cell cell space space 3 end cell row 1 cell space space 3 end cell cell space space 4 end cell end table close square brackets

    Solution

    Here,   
           straight A space equals open square brackets table row 5 cell space space 0 end cell cell space space 4 end cell row 2 cell space space 3 end cell cell space space 2 end cell row 1 cell space space 2 end cell cell space 1 space end cell end table close square brackets space space space space space straight B to the power of negative 1 end exponent space equals space open square brackets table row 1 cell space space 2 end cell cell space space 3 end cell row 1 cell space 4 end cell cell space 3 end cell row 1 cell space 3 end cell cell space 4 end cell end table close square brackets
therefore space space space space open vertical bar straight A close vertical bar space equals space open vertical bar table row 5 cell space space 0 end cell cell space space 4 end cell row 2 cell space 3 end cell cell space 2 end cell row 1 cell space 2 end cell cell space 1 end cell end table close vertical bar space equals space 5 open vertical bar table row 3 cell space space space 2 end cell row 2 cell space space 1 end cell end table close vertical bar comma space space minus 0 open vertical bar table row 2 cell space space space space 2 end cell row 1 cell space space space 1 end cell end table close vertical bar plus space open vertical bar table row 2 cell space space space 3 end cell row 1 cell space space space 2 end cell end table close vertical bar
space space space space space space space space space space space space space space equals space 5 left parenthesis 3 minus 4 right parenthesis minus 0 left parenthesis 2 minus 2 right parenthesis plus 4 left parenthesis 4 minus 3 right parenthesis space equals space 5 left parenthesis negative 1 right parenthesis minus 0 left parenthesis 0 right parenthesis space plus space 4 left parenthesis 1 right parenthesis
space space space space space space space space space space space space space space space equals negative 5 minus 0 plus 4 space equals space minus 1 not equal to 0
therefore space space space space straight A to the power of negative 1 end exponent space exists.
    Co-factors of the elements of first row of | A | are
    open vertical bar table row 3 cell space space space 2 end cell row 2 cell space space 1 end cell end table close vertical bar comma space space minus open vertical bar table row 2 cell space space space space 2 end cell row 1 cell space space space space 1 end cell end table close vertical bar comma space space space space open vertical bar table row 2 cell space space space space 3 end cell row 1 cell space space space 2 end cell end table close vertical bar
    i.e. 3 – 4. – (2 – 2). 4 – 3   i.e. – 1,0, I respectively.
    Co-factors of the elements of second row of | A | are
    negative open vertical bar table row 0 cell space space 4 end cell row 2 cell space space 1 end cell end table close vertical bar comma space space open vertical bar table row 5 cell space space 4 end cell row 1 cell space space 1 end cell end table close vertical bar comma space space minus open vertical bar table row 5 cell space space space 0 end cell row 1 cell space space space 2 end cell end table close vertical bar
    i.e. – (0 – 8), 5 – 4 , – (10 – 0) i.e. 8, I, – 10 respectively.
    Co-factors of the elements of second row of | A | are
    open vertical bar table row 0 cell space space space 4 end cell row 3 cell space space space 2 end cell end table close vertical bar comma space space minus open vertical bar table row 5 cell space space space 4 end cell row 2 cell space space 2 end cell end table close vertical bar comma space space space open vertical bar table row 5 cell space space space 0 end cell row 2 cell space space space 3 end cell end table close vertical bar
    i.e.     0 – 12, – (10 – 8). 15–0    i.e. – 12, 2, 15 respectively.
               therefore space space space adj. space straight A space equals space open square brackets table row cell negative 1 end cell cell space space 0 end cell cell space space 1 end cell row 8 cell space 1 end cell cell negative 10 end cell row cell negative 12 end cell cell negative 2 end cell 15 end table close square brackets to the power of apostrophe space equals space open square brackets table row cell negative 1 end cell cell space space 8 end cell cell space space minus 12 end cell row cell space 0 end cell cell space 1 end cell cell space space minus 2 end cell row 1 cell negative 10 end cell cell space 15 end cell end table close square brackets
therefore space space space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space open square brackets table row cell negative 1 end cell cell space space 8 end cell cell space space minus 12 end cell row 0 1 cell negative 2 end cell row 1 cell negative 10 end cell cell space 15 end cell end table close square brackets space equals space open square brackets table row 1 cell space space minus 8 end cell cell space space space 12 end cell row 0 cell negative 1 end cell cell space space space 2 end cell row cell negative 1 end cell 10 cell negative 15 end cell end table close square brackets
space space space space space space space space space space left parenthesis AB right parenthesis to the power of negative 1 end exponent space equals space straight B to the power of negative 1 end exponent straight A to the power of negative 1 end exponent space equals space minus open square brackets table row 1 cell space 2 end cell cell space 3 end cell row 1 cell space 4 end cell cell space 3 end cell row 1 cell space 3 end cell cell space 4 end cell end table close square brackets open square brackets table row 1 cell space space minus 8 end cell cell space space space 12 end cell row 0 cell space minus 1 end cell cell space space space 2 end cell row cell negative 1 end cell cell space 10 end cell cell negative 15 end cell end table close square brackets
space space space space space space space space space space space space space space equals space open square brackets table row cell 1 plus 0 minus 3 end cell cell space space space space minus 8 minus 2 plus 30 end cell cell space space space space 12 plus 4 minus 45 end cell row cell 1 plus 0 minus 3 end cell cell space minus 8 minus 4 plus 30 end cell cell space 12 plus 8 minus 45 end cell row cell 1 plus 0 minus 4 end cell cell space minus 8 minus 3 plus 40 end cell cell 1 space 2 plus 6 minus 60 end cell end table close square brackets
space space space space space space space space space space space space space equals space open square brackets table row cell negative 2 end cell cell space space space 20 end cell cell space space minus 29 end cell row cell negative 2 end cell cell space 18 end cell cell negative 25 end cell row cell negative 3 end cell cell space space 29 end cell cell negative 42 end cell end table close square brackets
space space space space space space space space space space space

    Question 221
    CBSEENMA12034680

    Compute (AB)1 where:
    straight A space equals space open square brackets table row 1 cell space space space space 1 end cell cell space space space 2 end cell row 0 cell space space space 2 end cell cell space minus 3 end cell row 3 cell space minus 2 end cell cell space space space space 4 end cell end table close square brackets space space space space space space space straight B to the power of negative 1 end exponent space equals space open square brackets table row 1 cell space space space space space 2 end cell cell space space space space space 0 end cell row 0 cell space space space 3 end cell cell space space minus 1 end cell row 1 cell space space 0 end cell cell space space space space 2 end cell end table close square brackets

    Solution
    Here space straight A space equals space open square brackets table row 1 cell space space space space space 1 end cell cell space space space space space 2 end cell row 0 cell space space space space space space 2 end cell cell space space minus 3 end cell row 3 cell space space minus 2 end cell cell space space space space 4 end cell end table close square brackets comma space space straight B to the power of negative 1 end exponent space equals space open square brackets table row 1 cell space space space 2 end cell cell space space 0 end cell row 0 cell space space space 3 end cell cell negative 1 end cell row 1 cell space space space 0 end cell cell space space 2 end cell end table close square brackets
    therefore space space space space open vertical bar straight A close vertical bar space equals open vertical bar table row 1 cell space space space space 1 end cell cell space space space space 2 end cell row 0 cell space space space space 2 end cell cell space space minus 3 end cell row 3 cell space minus 2 end cell cell space space space space space 4 end cell end table close vertical bar space equals space 1 open vertical bar table row 2 cell space space minus 3 end cell row cell negative 2 end cell cell space space space space space 4 end cell end table close vertical bar minus 1 open vertical bar table row 0 cell space space minus 3 end cell row 3 cell space space space space space 4 end cell end table close vertical bar plus 2 open vertical bar table row 0 cell space space space space space space 2 end cell row 3 cell space space minus 2 end cell end table close vertical bar
space space space space space space equals 1 left parenthesis 8 minus 6 right parenthesis minus 1 left parenthesis 0 plus 9 right parenthesis plus 2 left parenthesis 0 minus 6 right parenthesis space equals space 2 minus 9 minus 12 space equals space minus 19
therefore space space space space space straight A to the power of negative 1 end exponent space exists.
    Co-factors of the elements of first row of | A | are
    open vertical bar table row 2 cell space space space minus 3 end cell row cell negative 2 end cell cell space space space space space 4 end cell end table close vertical bar comma space space minus open vertical bar table row 0 cell space space minus 3 end cell row 3 cell space space space space 4 end cell end table close vertical bar comma space space open vertical bar table row 0 cell space space space space space 2 end cell row 3 cell space space minus 2 end cell end table close vertical bar
    i.e., 2, – 9, – 6 respectively

    Co-factors of the elements of first row of | A | are
    negative open vertical bar table row 1 cell space space space 2 end cell row cell negative 2 end cell cell space space space 4 end cell end table close vertical bar comma space space space open vertical bar table row 1 cell space space space space space space 2 end cell row 3 cell space space space space space 4 end cell end table close vertical bar comma space minus space open vertical bar table row 1 cell space space space space space space space 1 end cell row 3 cell space space minus 2 end cell end table close vertical bar

    i.e.. — 8, – 2, 5 respectively
    Co-factors of the elements of third row of | A | are
    open vertical bar table row 1 cell space space space space space 2 end cell row 2 cell space minus 3 end cell end table close vertical bar minus space open vertical bar table row 1 cell space space space space space space 2 end cell row 0 cell space space minus 3 end cell end table close vertical bar comma space space space open vertical bar table row 1 cell space space space 1 end cell row 0 cell space space space 2 end cell end table close vertical bar
    i.e.,   -7, 3, 2 respectively.
    therefore space space adj. space straight A space equals space open square brackets table row 2 cell space space minus 9 end cell cell space space minus 6 end cell row cell negative 8 end cell cell space space minus 2 end cell cell space space space space space 5 end cell row cell negative 7 end cell cell space space space space 3 end cell cell space space space space 2 end cell end table close square brackets to the power of apostrophe space equals open square brackets table row cell space space 2 end cell cell space space space minus 8 end cell cell space minus 7 end cell row cell negative 9 end cell cell space space minus 2 end cell cell space space space space 3 end cell row cell negative 6 end cell cell space space space space space 5 end cell cell space space space 2 end cell end table close square brackets
                   space space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj. space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space minus 1 over 19 open square brackets table row 2 cell space space space minus 8 end cell cell space space space minus 7 end cell row cell negative 9 end cell cell space space space minus 2 end cell cell space space space space space 3 space end cell row cell negative 6 end cell cell space space space space space 5 end cell cell space space space 2 end cell end table close square brackets space equals 1 over 19 open square brackets table row cell negative 2 end cell cell space space 8 end cell cell space space space space space space 7 end cell row 9 cell space space 2 end cell cell space minus 3 end cell row 6 cell space minus 5 end cell cell space space minus 2 end cell end table close square brackets
space space space space space space space space space space left parenthesis AB right parenthesis to the power of negative 1 end exponent space equals space straight B to the power of minus to the power of 1 straight A to the power of negative 1 end exponent space equals space 1 over 19 open square brackets table row 1 cell space space 2 end cell cell space space space 0 end cell row 0 cell space space 3 end cell cell space minus 1 end cell row 1 cell space space 0 end cell cell space space space space 2 end cell end table close square brackets space open square brackets table row cell negative 2 end cell cell space space 8 end cell cell space space space 7 end cell row 9 cell space space space 2 end cell cell space space minus 3 end cell row 6 cell space minus 5 end cell cell space space minus 2 end cell end table close square brackets space
space space space space space space space space space space space space space space space space space space space equals space 1 over 19 open square brackets table row cell negative 2 plus 18 plus 0 end cell cell space space space 8 plus 4 plus 0 end cell cell space space space 7 minus 6 plus 0 end cell row cell 0 plus 27 minus 6 end cell cell 0 plus 6 plus 5 end cell cell 0 minus 9 plus 2 end cell row cell negative 2 plus 0 plus 12 end cell cell 8 plus 0 minus 10 end cell cell 7 plus 0 minus 4 end cell end table close square brackets space equals 1 over 19 open square brackets table row 16 cell space space 12 end cell cell space space 1 end cell row 21 cell space 11 end cell cell negative 7 end cell row 10 cell space minus 2 end cell cell space space space 3 end cell end table close square brackets
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space

    Question 222
    CBSEENMA12034684

    If straight A space equals space open square brackets table row 2 cell space space space 2 end cell cell space space space 1 end cell row cell negative 2 end cell cell space space space 1 end cell cell space space 2 end cell row 1 cell space minus 2 end cell cell space space 2 end cell end table close square brackets space space space and space straight B space equals space open square brackets table row 1 cell space space 3 end cell cell space space 2 end cell row 1 cell space space space 1 end cell cell space 1 end cell row 2 cell negative 3 end cell cell space 1 end cell end table close square brackets comma verify that (AB)–1 = B"–1 A–1.

    Solution
    straight A space equals space open square brackets table row 2 cell space space space space 2 end cell cell space space space 1 end cell row cell negative 2 end cell cell space space space space 1 end cell cell space space space 2 end cell row 1 cell space space minus 2 end cell cell space space space 2 end cell end table close square brackets comma space space space straight B space equals space open square brackets table row 1 cell space space space space 3 end cell cell space space space space 2 end cell row 1 cell space space space space 1 end cell cell space space space space 1 end cell row 2 cell space minus 3 end cell cell space minus 1 end cell end table close square brackets
    open vertical bar straight A close vertical bar space equals space open vertical bar table row 2 cell space space space space 2 end cell cell space space space space 1 end cell row cell negative 2 end cell cell space space space space 1 end cell cell space space space space 2 end cell row 1 cell space space minus 2 end cell cell space space space space 2 end cell end table close vertical bar space equals space 2 open vertical bar table row 1 cell space space space space 2 end cell row cell negative 2 end cell cell space space space space 2 end cell end table close vertical bar minus 2 open vertical bar table row cell negative 2 end cell cell space space space space 2 end cell row 1 cell space space space space 2 end cell end table close vertical bar space plus space 1 open vertical bar table row cell negative 2 end cell cell space space space space space space 1 end cell row 1 cell space space minus 2 end cell end table close vertical bar
space space space space space space space space space equals 2 space left parenthesis 2 plus 4 right parenthesis space minus 2 space left parenthesis negative 4 minus 2 right parenthesis plus 1 space left parenthesis 4 minus 1 right parenthesis space equals 12 plus 12 plus 3 space equals 27 not equal to 0
straight A subscript 11 space equals space open vertical bar table row 1 cell space space space 2 end cell row cell negative 2 end cell cell space space space 2 end cell end table close vertical bar space equals space 2 space plus space 4 space equals 6
straight A subscript 12 space equals space minus open vertical bar table row cell negative 2 end cell cell space space space space 2 end cell row 1 cell space space 2 end cell end table close vertical bar space equals space minus left parenthesis 4 minus 2 right parenthesis space equals space 6
straight A subscript 13 space equals space open vertical bar table row cell negative 2 end cell cell space space space 1 end cell row 1 cell space space minus 2 end cell end table close vertical bar space space equals space 4 minus 1 space equals space 3
straight A subscript 21 space equals negative open vertical bar table row 2 cell space space space 1 end cell row cell negative 2 end cell cell space space 2 end cell end table close vertical bar space equals space minus left parenthesis 4 plus 2 right parenthesis space equals space minus 6
straight A subscript 22 space space equals space open vertical bar table row 2 cell space space space space space 1 end cell row 1 cell space space space 2 end cell end table close vertical bar space equals space 4 minus 1 space equals space 3
straight A subscript 23 space equals space minus open vertical bar table row 2 cell space space space space space space space 2 end cell row 1 cell space space minus 2 end cell end table close vertical bar space equals space minus left parenthesis negative 4 minus 2 right parenthesis space equals space 6
straight A subscript 31 space equals space open vertical bar table row 2 cell space space 1 end cell row 1 cell space space 2 end cell end table close vertical bar space equals space 4 minus 1 space equals space 3
    straight A subscript 32 space equals space minus open vertical bar table row 2 cell space space space 1 end cell row cell negative 2 end cell cell space space space 2 end cell end table close vertical bar space equals space minus left parenthesis 4 plus 2 right parenthesis space equals space minus 6
straight A subscript 33 space equals space open vertical bar table row 2 cell space space space 2 end cell row cell negative 2 end cell cell space space space 1 end cell end table close vertical bar space equals space 2 plus 4 space space equals 6
therefore space space space adj. space straight A space equals space open square brackets table row 6 cell space space 6 end cell cell space space 3 end cell row cell negative 6 end cell cell space space 3 end cell cell space space 6 end cell row 3 cell space minus 6 end cell cell space space 6 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row 6 cell space space minus 6 end cell cell space space 3 end cell row 6 cell space space space space 3 end cell cell negative 6 end cell row 3 cell space space space 6 end cell cell space space 6 end cell end table close square brackets
straight A to the power of negative 1 end exponent space equals space fraction numerator adj. space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space 1 over 27 open square brackets table row 6 cell space space minus 6 end cell cell space space 3 end cell row 6 cell space space space space space 3 end cell cell negative 6 end cell row 3 cell space space space space space 6 end cell cell space space 6 end cell end table close square brackets
space space space space open vertical bar straight B close vertical bar space equals space open vertical bar table row 1 cell space space space space 3 end cell cell space space space space space space 2 end cell row 1 cell space space space space 1 end cell cell space space minus 1 end cell row 2 cell negative 3 end cell cell space space minus 1 end cell end table close vertical bar space equals space 1 open vertical bar table row 1 cell space space space 1 end cell row cell negative 3 end cell cell space minus 1 end cell end table close vertical bar minus 3 open vertical bar table row 1 cell space space space space space 1 end cell row 2 cell space minus 1 end cell end table close vertical bar plus 2 space open vertical bar table row 1 cell space space space space 1 end cell row 2 cell space space minus 3 end cell end table close vertical bar
space space space space space space space space space space space equals space 1 left parenthesis negative 1 plus 3 right parenthesis space minus space 3 left parenthesis negative 1 minus 2 right parenthesis space plus space 2 left parenthesis negative 3 minus 2 right parenthesis space equals space 2 plus 9 minus 10 space equals space 1 not equal to 0
    straight B subscript 11 space equals space open vertical bar table row 1 cell space space 1 end cell row cell negative 3 end cell cell space minus 1 end cell end table close vertical bar space equals space minus 1 plus 3 space equals space 2
straight B subscript 12 space equals space minus open vertical bar table row 1 cell space space space space space space space space 1 end cell row 2 cell space space space space minus 1 end cell end table close vertical bar space equals space minus left parenthesis negative 1 minus 2 right parenthesis space equals space 3
straight B subscript 13 space equals space open vertical bar table row 1 cell space space space space space space 1 end cell row 2 cell space space minus 3 end cell end table close vertical bar space equals space minus 3 minus 2 space equals space minus 5
straight B subscript 21 space equals space minus open vertical bar table row cell space space space 3 end cell cell space space space 2 end cell row cell negative 3 end cell cell space minus 1 end cell end table close vertical bar space equals space minus left parenthesis negative 3 plus 6 right parenthesis space equals space 3
straight B subscript 22 space equals space open vertical bar table row 1 cell space space space space space space 2 end cell row 2 cell space space minus 1 end cell end table close vertical bar space equals space minus 1 minus 4 space equals space minus 5
straight B subscript 23 space equals negative open vertical bar table row 1 cell space space space space space space 3 end cell row 2 cell space minus 3 end cell end table close vertical bar space space equals negative left parenthesis negative 3 minus 6 right parenthesis space equals space 9
straight B subscript 31 space equals space open vertical bar table row 3 cell space space 2 end cell row 1 cell space 1 end cell end table close vertical bar space equals space 3 minus 2 space equals space 1
straight B subscript 32 space equals space open vertical bar table row 1 cell space space space 2 end cell row 1 cell space space 1 end cell end table close vertical bar space space equals negative left parenthesis 1 minus 2 right parenthesis space equals space 1
straight B subscript 33 space equals space open vertical bar table row 1 cell space space space 3 end cell row 1 cell space space 1 end cell end table close vertical bar space equals space 1 minus 3 space equals space minus 2
    therefore space space space space adj. space straight B space equals space open square brackets table row 2 cell space space space space space 3 end cell cell space space minus 5 end cell row cell negative 3 end cell cell space minus 5 end cell cell space space space space space 9 end cell row 1 cell space space space 1 end cell cell space space space space 2 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row 2 cell space space space minus 3 end cell cell space space space space space space 1 end cell row 3 cell space space minus 5 end cell cell space space space space space space 1 end cell row cell negative 5 end cell cell space space space space 9 end cell cell space space minus 2 end cell end table close square brackets
space space space space space space space space space space straight B to the power of negative 1 end exponent space equals space fraction numerator adj. space straight B over denominator open vertical bar straight B close vertical bar end fraction space equals open square brackets table row cell space space space space 2 end cell cell space space minus 3 end cell cell space space space 1 end cell row cell space space space space 3 end cell cell space space minus 5 end cell cell space space space 1 end cell row cell negative 5 end cell cell space space space space space space 9 end cell cell space space minus 2 end cell end table close square brackets
therefore space space space space straight B to the power of negative 1 end exponent straight A to the power of negative 1 end exponent space equals space 1 over 27 open square brackets table row cell space space 2 end cell cell space space minus 3 end cell cell space space space space space space 1 end cell row cell space space space 3 end cell cell space minus 5 end cell cell space space space space space space 1 end cell row cell negative 5 end cell cell space space 9 end cell cell space space minus 2 end cell end table close square brackets space open square brackets table row 6 cell space space minus 6 end cell cell space space space space space 3 end cell row 6 cell space space space space space space 3 end cell cell space minus 6 end cell row 3 cell space space space space space 6 end cell cell space space space 6 end cell end table close square brackets
space space space space space space space space space space space space space space space space space space space space space space space equals 1 over 27 open square brackets table row cell 12 minus 18 plus 3 end cell cell space space space space space minus 12 minus 9 plus 6 end cell cell space space space space space 6 plus 18 plus 6 end cell row cell 18 minus 30 plus 3 end cell cell space space space space space minus 18 minus 15 plus 6 end cell cell space space space space space 9 plus 30 plus 6 end cell row cell negative 30 plus 54 minus 6 end cell cell space space space space space 30 plus 27 minus 12 end cell cell space space space minus 15 minus 54 minus 12 end cell end table close square brackets
therefore space space space straight B to the power of negative 1 end exponent straight A to the power of negative 1 end exponent space equals space 1 over 27 open square brackets table row cell negative 3 end cell cell space space space space space minus 15 end cell cell space space space space 30 end cell row cell negative 9 end cell cell space space space space minus 27 end cell cell space space space 45 end cell row 18 cell space space space space 45 end cell cell space space minus 81 end cell end table close square brackets space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
Also comma space space space space AB space equals space open square brackets table row 2 cell space space 2 end cell cell space space space 1 end cell row cell negative 2 end cell cell space space 1 end cell cell space space space 2 end cell row 1 cell space space minus 2 end cell cell space space space 2 end cell end table close square brackets space open square brackets table row 1 cell space space space 3 end cell cell space space space space 2 end cell row 1 cell space space space space 1 end cell cell space space space space 1 end cell row 2 cell space space minus 3 end cell cell space space minus 1 end cell end table close square brackets
space space space space space space space space
                       equals space open square brackets table row cell space 2 plus 2 plus 2 end cell cell space space space space space space 6 plus 2 minus 3 end cell cell space space space space space space space 4 plus 2 minus 1 end cell row cell negative 2 plus 1 plus 4 end cell cell space space minus 6 plus 1 minus 6 end cell cell space space space minus 4 plus 1 minus 2 end cell row cell space space 1 minus 2 plus 4 end cell cell space space space space 3 minus 2 minus 6 end cell cell space space space space space 2 minus 2 minus 2 end cell end table close square brackets space equals space open square brackets table row 6 cell space space space space 5 end cell cell space space space 5 end cell row 3 cell space minus 11 end cell cell space minus 5 end cell row 3 cell negative 5 end cell cell space minus 2 end cell end table close square brackets
open vertical bar AB close vertical bar space equals space open square brackets table row 6 cell space space space 5 end cell cell space space space space space 5 end cell row 3 cell space minus 11 end cell cell space space minus 5 end cell row 3 cell space minus 5 end cell cell space space minus 2 end cell end table close square brackets space equals space 6 open vertical bar table row cell negative 11 end cell cell space space minus 5 end cell row cell negative 5 end cell cell space space minus 2 end cell end table close vertical bar space minus space 5 open vertical bar table row 3 cell space space space minus 5 end cell row 3 cell space space minus 2 end cell end table close vertical bar space plus space 5 space open vertical bar table row 3 cell space space minus 11 end cell row 3 cell space space minus 5 end cell end table close vertical bar
space space space space space space space space space space space equals 6 left parenthesis 22 minus 25 right parenthesis minus 5 left parenthesis negative 6 plus 15 right parenthesis plus 5 left parenthesis negative 15 plus 33 right parenthesis space equals space minus 18 minus 45 plus 90 space equals space 27

    Co-factors of the elements of first row of | AB | and –3, –9, 18 respectively. Co-factor of the elements of second row of | AB | and –15, –27, 45 respectively. Co-factors of the elements of third row of | AB | and 30, 45, –81, respectively.therefore space space space adj. space left parenthesis AB right parenthesis space equals space open square brackets table row cell negative 3 end cell cell space space minus 9 end cell cell space space 18 end cell row cell negative 15 end cell cell space space minus 27 end cell cell space 45 end cell row 30 cell space space 45 end cell cell negative 81 end cell end table close square brackets space equals space open square brackets table row cell negative 3 end cell cell space space minus 15 end cell cell space space 30 end cell row cell negative 9 end cell cell space minus 27 end cell 45 row 18 45 cell negative 81 end cell end table close square brackets
therefore space space space space left parenthesis AB right parenthesis to the power of negative 1 end exponent space equals space 1 over 27 open square brackets table row cell negative 3 end cell cell space space minus 15 end cell cell space space 30 end cell row cell negative 9 end cell cell space minus 27 end cell cell space space 45 end cell row 18 cell space 45 end cell cell negative 81 end cell end table close square brackets space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis
    From (1) and (2), we get,
    (AB)–1 = B–1 A–1.
    Question 223
    CBSEENMA12034688

    If straight A to the power of negative 1 end exponent space equals space open square brackets table row 3 cell space space minus 1 end cell cell space space space space space 1 end cell row cell negative 15 end cell cell space space space space space 6 end cell cell space minus 5 end cell row 5 cell space minus 2 end cell cell space space space space 2 end cell end table close square brackets space space space and space straight B space equals space open square brackets table row cell space space space 1 end cell cell space space space space 2 end cell cell space space space minus 2 end cell row cell negative 1 end cell cell space space space space space 3 end cell cell space space space space space 0 end cell row cell space space 0 end cell cell space space minus 2 end cell cell space space space space space 1 end cell end table close square brackets comma find (AB)–1.

    Solution
    straight A to the power of negative 1 end exponent space equals space open square brackets table row cell space space space 3 end cell cell space space minus 1 end cell cell space space space space space 1 end cell row cell negative 15 end cell cell space space space space space 6 end cell cell space space minus 5 end cell row cell space space 5 end cell cell space space minus 2 end cell cell space space space space 2 end cell end table close square brackets space space comma space straight B space equals open square brackets table row cell space space space 1 end cell cell space space space space 2 end cell cell space space space minus 2 end cell row cell negative 1 end cell cell space space space space 3 end cell cell space space space space space 0 end cell row cell space space space 0 end cell cell space minus 2 end cell cell space space space space 1 end cell end table close square brackets comma
          open vertical bar straight B close vertical bar space equals space open vertical bar table row cell space space 1 end cell cell space space space 2 end cell cell space space space minus 2 end cell row cell negative 1 end cell cell space space space space 3 end cell cell space space space space space space 0 end cell row cell space space 0 end cell cell space minus 2 end cell cell space space space space space 1 end cell end table close vertical bar space equals space 1 open vertical bar table row 3 cell space space space 0 end cell row cell negative 2 end cell cell space space space 1 end cell end table close vertical bar minus 2 space open vertical bar table row cell negative 1 end cell cell space space 0 end cell row 0 cell space space 1 end cell end table close vertical bar plus left parenthesis negative 2 right parenthesis space open vertical bar table row cell negative 1 end cell cell space space space space 3 end cell row 0 cell space minus 2 end cell end table close vertical bar
space space space space space space space equals 1 left parenthesis 3 minus 0 right parenthesis space minus space 2 left parenthesis negative 1 minus 0 right parenthesis minus 2 left parenthesis 2 minus 0 right parenthesis space equals space 3 plus 2 minus 4 space equals space 1 not equal to space 0
therefore space space space space straight B to the power of negative 1 end exponent space exists.
space space space space space space straight B subscript 11 space equals space open vertical bar table row 3 cell space space space 0 end cell row cell negative 2 end cell cell space space 1 end cell end table close vertical bar space equals space 3 minus 0 space equals space 3
space space space space space space straight B subscript 12 space equals space minus open vertical bar table row cell negative 1 end cell cell space space space 0 end cell row cell space 0 end cell cell space space 1 end cell end table close vertical bar space equals space minus left parenthesis negative 1 minus 0 right parenthesis space equals space 1
space space space space space space straight B subscript 13 space equals space open vertical bar table row cell negative 1 end cell cell space space space space 3 end cell row 0 cell space space minus 2 end cell end table close vertical bar space equals space 2 minus 0 space equals space 2
space space space space space straight B subscript 21 space equals space minus open vertical bar table row 2 cell space space space minus 2 end cell row cell negative 2 end cell cell space space space 1 end cell end table close vertical bar space equals space minus left parenthesis 2 minus 4 right parenthesis space equals space 2
space space space space space straight B subscript 22 space equals space open vertical bar table row 1 cell space space space minus 2 end cell row 0 cell space space space space space 1 end cell end table close vertical bar space equals space 1 minus 0 space equals space 1
space space space space straight B subscript 23 space equals space minus open vertical bar table row 1 cell space space space space space space 2 end cell row 0 cell space space minus 2 end cell end table close vertical bar space equals negative left parenthesis negative 2 minus 0 right parenthesis space equals space 2
space space space straight B subscript 31 space equals space open vertical bar table row 2 cell space space space minus 2 end cell row 3 cell space space space space space space 0 end cell end table close vertical bar space equals space 0 plus 6 space equals space 6
          straight B subscript 32 space equals space minus open vertical bar table row 1 cell space space space minus 2 end cell row cell negative 1 end cell cell space space space space space space 0 end cell end table close vertical bar space equals space minus left parenthesis 0 minus 2 right parenthesis space equals space 2
straight B subscript 33 space equals space open vertical bar table row cell space space space 1 end cell cell space space space 2 end cell row cell negative 1 end cell cell space space space 3 end cell end table close vertical bar space equals 3 plus 2 space equals 5
space adj. space straight B space equals space open square brackets table row 3 cell space space 1 end cell cell space space 2 end cell row 2 cell space space 1 end cell cell space space 2 end cell row 6 cell space space 2 end cell cell space space 5 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row 3 cell space space space space 2 end cell cell space space space 6 end cell row 1 cell space space space 1 end cell cell space space space 2 end cell row 2 cell space space space 2 end cell cell space space space 5 end cell end table close square brackets space
therefore space space straight B to the power of negative 1 end exponent space equals space fraction numerator adj. space straight B over denominator open vertical bar straight B close vertical bar end fraction space equals space open square brackets table row 3 cell space space space 2 end cell cell space space 6 end cell row 1 cell space space 1 end cell cell space space 2 end cell row 2 cell space 2 end cell cell space 5 end cell end table close square brackets space space
Now space left parenthesis AB right parenthesis to the power of negative 1 end exponent space space equals space straight B to the power of negative 1 end exponent straight A to the power of negative 1 end exponent space equals space open square brackets table row 3 cell space space 2 end cell cell space space 6 end cell row 1 cell space 1 end cell cell space space 2 end cell row 2 cell space 2 end cell cell space space 5 end cell end table close square brackets space space open square brackets table row cell space 3 end cell cell space space minus 1 end cell cell space space 1 end cell row cell negative 15 end cell cell space space space space 6 end cell cell space space minus 5 end cell row 5 cell space space minus 2 end cell cell space space space space 2 end cell end table close square brackets
space space space space space space space space space space space space space space space space space space space space space space space equals space open square brackets table row cell 9 minus 30 plus 30 end cell cell space space space space space minus 3 plus 12 minus 12 end cell cell space space space space 3 minus 10 plus 12 end cell row cell 3 minus 15 plus 10 end cell cell space minus 1 plus 6 minus 4 end cell cell space 1 minus 5 plus 4 end cell row cell 6 minus 30 plus 25 end cell cell space minus 2 plus 12 minus 10 end cell cell space space space space 2 minus 10 plus 10 end cell end table close square brackets
space space space space space space space space space space space space space space space space space space space space space space space equals open square brackets table row 9 cell space space minus 3 end cell cell space space space 5 end cell row cell negative 2 end cell cell space space space space 1 end cell cell space space space 0 end cell row 1 cell space space space space 0 end cell cell space space space 2 end cell end table close square brackets
    Question 224
    CBSEENMA12034689

    Let A be a non-singular square matrix of order 3 × 3. Then | adj A| j is equal to
    • | A |
    • | A |2
    • | A |3
    • 3 | A |

    Solution

    B.

    | A |2

    We know that
    I adj A | = | A |n_l where A is of order n
    Now A is non-singular matrix of order 3 × 3
    ∴   | adj A | = | A |2
    ∴   (B) is correct answer.

    Question 225
    CBSEENMA12034690

    If A is an invertible matrix of order 2, then det (A–1) is equal to

    • det (A)

    • fraction numerator 1 over denominator det space left parenthesis straight A right parenthesis end fraction
    • 1

    • 0

    Solution

    B.

    fraction numerator 1 over denominator det space left parenthesis straight A right parenthesis end fraction

    We know that
                   AA to the power of negative 1 end exponent space equals space straight I
      therefore space space space space space open vertical bar AA to the power of negative 1 end exponent close vertical bar space equals space space open vertical bar straight I close vertical bar space space space space space space space space space space space space space space rightwards double arrow space space space space space left parenthesis straight A right parenthesis space open vertical bar straight A to the power of negative 1 end exponent close vertical bar space equals space straight I
therefore space space space space space open vertical bar straight A to the power of negative 1 end exponent close vertical bar space equals space fraction numerator 1 over denominator open vertical bar straight A close vertical bar end fraction
therefore space space space space left parenthesis straight B right parenthesis space is space correct space answer.

    Question 226
    CBSEENMA12034695

    If x, y, z are non-zero real numbers, then the inverse of matrix straight A space equals open square brackets table row straight x cell space space space space 0 end cell cell space space space 0 end cell row 0 cell space space space straight y end cell cell space space space 0 end cell row 0 cell space space space 0 end cell cell space space space straight z end cell end table close square brackets space is
    • open square brackets table row cell straight x to the power of negative 1 end exponent end cell cell space space 0 end cell cell space space 0 end cell row 0 cell space space straight y to the power of negative 1 space end exponent end cell cell space space 0 end cell row 0 0 cell space straight z to the power of negative 1 end exponent end cell end table close square brackets
    • xyz open square brackets table row cell straight x to the power of negative 1 end exponent end cell cell space space 0 end cell cell space space space 0 end cell row 0 cell space space straight y to the power of negative 1 end exponent space end cell cell space space 0 end cell row 0 0 cell space straight z to the power of negative 1 end exponent end cell end table close square brackets
    • 1 over xyz open square brackets table row straight x cell space space 0 end cell cell space space 0 end cell row 0 cell space straight y end cell cell space space 0 end cell row 0 cell space 0 end cell cell space space straight z end cell end table close square brackets
    • 1 over xyz open square brackets table row 1 cell space space 0 end cell cell space space 0 end cell row 0 cell space space 1 end cell cell space space 0 end cell row 0 cell space space 0 end cell cell space space 1 end cell end table close square brackets

    Solution

    A.

    open square brackets table row cell straight x to the power of negative 1 end exponent end cell cell space space 0 end cell cell space space 0 end cell row 0 cell space space straight y to the power of negative 1 space end exponent end cell cell space space 0 end cell row 0 0 cell space straight z to the power of negative 1 end exponent end cell end table close square brackets straight A space equals space open square brackets table row straight x cell space space 0 end cell cell space 0 end cell row 0 cell space space straight y end cell 0 row 0 cell space 0 end cell cell space straight z end cell end table close square brackets
    therefore space space space open vertical bar straight A close vertical bar space equals space open vertical bar table row straight x cell space space 0 end cell cell space space 0 end cell row 0 cell space space straight y end cell cell space space 0 end cell row 0 cell space space 0 end cell cell space space straight z end cell end table close vertical bar space equals space xyz
    [Product of diagonal elements]
    Co-factors of the elements of first row of | A | are
    open vertical bar table row straight y cell space space 0 end cell row 0 cell space straight z end cell end table close vertical bar comma space minus open vertical bar table row 0 cell space space 0 end cell row 0 cell space space straight z end cell end table close vertical bar comma space space open vertical bar table row 0 cell space space space straight y end cell row 0 cell space space 0 end cell end table close vertical bar
    i.e. yz, 0, 0 respectively.
    Co-factors of the elements of second row of | A | are
    negative open vertical bar table row 0 cell space space space 0 end cell row 0 cell space space space straight z end cell end table close vertical bar comma space space open vertical bar table row straight x cell space space space 0 end cell row 0 cell space space space straight z end cell end table close vertical bar comma space space minus open vertical bar table row straight x cell space space space 0 end cell row 0 cell space space space 0 end cell end table close vertical bar
    i.e. 0, zx, 0 respectively.
    Cofactors of the elements of third row of | A | are
    open vertical bar table row 0 cell space space 0 end cell row straight y cell space space 0 end cell end table close vertical bar comma space space minus open vertical bar table row straight x cell space space 0 end cell row 0 cell space space 0 end cell end table close vertical bar comma space space open vertical bar table row straight x cell space space 0 end cell row 0 cell space space straight y end cell end table close vertical bar
    i.e. 0, 0, xy respectively.
    therefore space space space adj space straight A space equals space open square brackets table row yz cell space 0 end cell cell space space 0 end cell row 0 cell space zx end cell cell space space 0 end cell row 0 0 cell space space xy end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row yz cell space 0 end cell cell space 0 end cell row 0 cell space zx end cell cell space 0 end cell row 0 0 cell space xy end cell end table close square brackets
space therefore space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj over denominator open vertical bar straight A close vertical bar end fraction space equals space 1 over xyz open square brackets table row yz cell space space space 0 end cell cell space space 0 end cell row 0 cell space space space zx end cell cell space space 0 end cell row 0 cell space 0 end cell cell space space xy end cell end table close square brackets
space space space space space space space space space space space space space space equals space open square brackets table row cell 1 over straight x end cell 0 0 row 0 cell 1 over straight y end cell 0 row 0 0 cell 1 over straight z end cell end table close square brackets space equals space open square brackets table row cell straight x to the power of negative 1 end exponent end cell cell space space 0 end cell cell space space 0 end cell row 0 cell space straight y to the power of negative 1 space end exponent end cell cell space space 0 end cell row 0 0 cell space space straight z to the power of negative 1 end exponent end cell end table close square brackets
therefore space space space left parenthesis straight A right parenthesis space is space correct space answer.


     

    Question 227
    CBSEENMA12034697

    Examine the consistency of the system of equations:
    x + 2y = 2
    2x + 3y = 3 

    Solution

    The given equations are
    x + 2y = 2    
    2x + 3y = 3
    These equations can be written as
                open square brackets table row 1 cell space space space 2 end cell row 2 cell space space space 3 end cell end table close square brackets space open square brackets table row straight x row straight y end table close square brackets space equals space open square brackets table row 2 row 3 end table close square brackets
     or space AX space equals space straight B space where space straight A space equals space open square brackets table row 1 cell space space 2 end cell row 2 cell space space 3 end cell end table close square brackets comma space space straight X space equals space open square brackets table row straight x row straight y end table close square brackets comma space space straight B space equals space open square brackets table row 2 row 3 end table close square brackets
space space space space space space space space space space space space space space space space space space space space open vertical bar straight A close vertical bar space equals space open vertical bar table row 1 cell space space space 2 end cell row 2 cell space space space 3 end cell end table close vertical bar space equals space 3 minus 4 space equals space minus 1 space not equal to space 0 space
    ∴   A–1 exists
    ∴ system of equations has a unique solution
    ∴  system of equations is consistent.

    Question 228
    CBSEENMA12034699

    Examine the consistency of the system of equations:
    2x – y = 5
    x + y = 4

    Solution

    The given equations are
    2x – y = 5
    x + y = 4
    These equations can be written as
                           open square brackets table row 2 cell space space minus 1 end cell row 1 cell space space space space 1 end cell end table close square brackets space open square brackets table row straight x row straight y end table close square brackets space equals space open square brackets table row 5 row 4 end table close square brackets
    or         AX space equals space straight B space where space straight A space equals space open square brackets table row 2 cell space space minus 1 end cell row 1 cell space space space space 1 end cell end table close square brackets comma space space space straight X space equals space open square brackets table row straight x row straight y end table close square brackets comma space space space straight B space equals space open square brackets table row 5 row 4 end table close square brackets
space space space space space space space space space space space space space space space space space space space space space space space space open vertical bar straight A close vertical bar space equals space open vertical bar table row 2 cell space space space minus 1 end cell row 1 cell space space space space space 1 end cell end table close vertical bar space equals space 2 plus 1 space equals space 3 space not equal to space 0
    ∴   A–1 exists
    ∴   system of equations has a unique solution, system of equations is consistent.

    Question 229
    CBSEENMA12034700

    Examine the consistency of the system of equations:
    x + 3y = 5
    2x + 6y = 8

    Solution

    The given equations are
    x + 3y = 5
    2x + 6y = 8
    These equations can be written as
                         open square brackets table row 1 cell space space 3 end cell row 2 cell space space 6 end cell end table close square brackets space open square brackets table row straight x row straight y end table close square brackets space equals space open square brackets table row 5 row 8 end table close square brackets
    or     AX space equals space straight B space where space straight A space equals space open square brackets table row 1 cell space space 3 end cell row 2 cell space space 6 end cell end table close square brackets comma space space space straight X space equals space open square brackets table row straight x row straight y end table close square brackets comma space space straight B space equals space open square brackets table row cell table row 5 row 8 end table end cell end table close square brackets
                        open vertical bar straight A close vertical bar space equals space open vertical bar table row 1 cell space space 3 end cell row 2 cell space space 6 end cell end table close vertical bar space equals space 6 minus 6 space equals space 0
space space adj space straight A space equals space open square brackets table row 6 cell space space space minus 2 end cell row cell negative 3 end cell cell space space space space space 1 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row cell space space space 6 end cell cell space space space minus 3 end cell row cell negative 2 end cell cell space space space space space space 1 end cell end table close square brackets
therefore space space left parenthesis adj space straight A right parenthesis space straight B space equals space open square brackets table row 6 cell space space space minus 3 end cell row cell negative 2 end cell cell space space space space space space 1 space end cell end table close square brackets space open square brackets table row 5 row 8 end table close square brackets space equals space open square brackets table row cell 30 minus 24 end cell row cell negative 10 plus 8 end cell end table close square brackets space equals space open square brackets table row 6 row cell negative 2 end cell end table close square brackets not equal to space straight O
     ∴   solution does not exist and so system of equations is inconsistent.      

    Question 230
    CBSEENMA12034702

    Examine the consistency of the system of equations:
    x+y+z = 1
    2x + 3y + 2z = 2
    ax+ay+2az = 4

    Solution
    The given equations are
    straight x plus straight y plus straight z space equals space 1
2 straight x plus 3 straight y plus 2 straight z space equals space 2
straight x plus straight y plus 2 straight z space equals space 4 over straight a
    These equations can be written as
    space space space space space space space space open square brackets table row 1 cell space space 1 end cell cell space space space 1 end cell row 2 cell space space 3 end cell cell space space 2 end cell row 1 cell space space 1 end cell cell space space 2 end cell end table close square brackets space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row 1 row 2 row cell 4 over straight a end cell end table close square brackets
    therefore space space space AX space equals space straight B space where space straight A space equals space open square brackets table row 1 cell space space space 1 end cell cell space space space 1 end cell row 2 cell space space 3 end cell cell space space space 2 end cell row 1 cell space space 1 end cell cell space space space 2 end cell end table close square brackets comma space space straight X space equals space open square brackets table row straight x row straight y row straight z end table close square brackets comma space space straight B space equals space open square brackets table row 1 row 2 row cell 4 over straight a end cell end table close square brackets
space space space space space space space open vertical bar straight A close vertical bar space equals space open vertical bar table row 1 cell space space 1 end cell cell space space 1 end cell row 2 cell space space 3 end cell cell space space 2 end cell row 1 cell space space 1 end cell cell space 2 end cell end table close vertical bar space equals space open square brackets table row 1 cell space space 0 end cell cell space space 0 end cell row 2 cell space 1 end cell cell space space 0 end cell row 1 cell space space 0 end cell cell space space 1 end cell end table close square brackets comma space space by space straight C subscript 2 space rightwards arrow space straight C subscript 2 minus 2 straight C subscript 1 comma space space straight C subscript 3 rightwards arrow space space straight C subscript 3 space minus space straight C subscript 1
space space space space space space space space space space space space space space equals space 1 open vertical bar table row 1 cell space space 0 end cell row 0 cell space 1 end cell end table close vertical bar space equals space 1 left parenthesis 1 minus 0 right parenthesis space equals space 1 space not equal to space 0
therefore space space space space straight A to the power of negative 1 end exponent space exists.
    ∴    given equations has a unique solution and so system of equations is consistent.
    Question 231
    CBSEENMA12034708

    Examine the consistency of the system of equations:
    3x – y – 2z = 2
    2y – z = – 1
    3x – 5y = 3

    Solution

    The given equations are
    3x – y – 2z = 2
    0x + 2y – z = – 1
    3x – 5y+Oz = 3
    These equations can be written as
    open square brackets table row 3 cell space space space minus 1 end cell cell space space space minus 2 end cell row 0 cell space space space space space space 2 end cell cell space space space minus 1 end cell row 3 cell space space minus 5 end cell cell space space space space space space 0 end cell end table close square brackets space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row cell space space space 2 end cell row cell negative 1 end cell row cell space space 3 end cell end table close square brackets
    therefore space space space space space space AX space equals space straight B space space where space straight A space equals space open square brackets table row 3 cell space minus 1 end cell cell space space minus 2 end cell row 0 cell space space space space space 2 end cell cell space space minus 1 end cell row 3 cell space minus 5 end cell cell space space space 0 end cell end table close square brackets comma space space straight X space equals space open square brackets table row straight x row straight y row straight z end table close square brackets comma space space straight B space equals space open square brackets table row cell space space space 2 end cell row cell negative 1 end cell row cell space space space 3 end cell end table close square brackets
space space space space space space space space space space space space space space space space open vertical bar straight A close vertical bar space equals space open vertical bar table row 3 cell space minus 1 end cell cell space space minus 2 end cell row 0 cell space space space 2 end cell cell space space minus 1 end cell row 3 cell space space minus 5 end cell cell space space space space space 0 end cell end table close vertical bar space equals space 3 open vertical bar table row 2 cell space space minus 1 end cell row cell negative 5 end cell cell space space space space space 0 end cell end table close vertical bar space minus 0 space open vertical bar table row cell negative 1 end cell cell space space minus 2 end cell row cell negative 5 end cell cell space space space space 0 end cell end table close vertical bar plus 3 space open vertical bar table row cell negative 1 end cell cell space space minus 2 end cell row 2 cell space minus 1 end cell end table close vertical bar
space space space space space space space space space space space space space space space space space space space space space equals 3 left parenthesis 0 minus 5 right parenthesis minus 0 plus 3 left parenthesis 1 plus 4 right parenthesis space equals space minus 15 minus 0 plus 15 space equals space 0
therefore space space space space space straight A to the power of negative 1 end exponent space does space not space exists.
space space space space space
    Cofactors of the elements of first row of | A | are
    open vertical bar table row cell space space 2 end cell cell space space space minus 1 end cell row cell negative 5 end cell cell space space space space space space 0 end cell end table close vertical bar comma space space space minus open vertical bar table row 0 cell space space space minus 1 end cell row 3 cell space space space space space 0 end cell end table close vertical bar comma space space open vertical bar table row 0 cell space space space space 2 end cell row 3 cell space space minus 5 end cell end table close vertical bar
    i.e. 0 – 5, – (0 + 3), 0 – 6 i.e. – 5, – 3, – 6 respectively.
    Cofactors of the elements of second row of | A | are
    negative open vertical bar table row cell negative 1 end cell cell space space space minus 2 end cell row cell negative 5 end cell cell space space space space 0 end cell end table close vertical bar comma space space space space open vertical bar table row 3 cell space space space minus 2 end cell row 3 cell space space space space space 0 end cell end table close vertical bar comma space space minus open vertical bar table row 3 cell space space space minus 1 end cell row 3 cell space space minus 5 end cell end table close vertical bar
    i.e. – (0 – 10), 0 + 6, –(– 15 + 3) i.e. 10, 6, 12 respectively.
    Co-factors of the elements of third row of | A | are
    open vertical bar table row cell negative 1 end cell cell space space minus 2 end cell row 2 cell space space minus 1 end cell end table close vertical bar comma space space minus open vertical bar table row 3 cell space space minus 2 end cell row 0 cell space space minus 1 end cell end table close vertical bar comma space space open vertical bar table row 3 cell space space minus 1 end cell row 0 cell space space space space 2 end cell end table close vertical bar
    i.e. 1 + 4, – (– 3 – 0), 6 – 0 i.e. 5, 3, 6 respectively.
    therefore space space adj space straight A space equals space open square brackets table row cell negative 5 end cell cell space space minus 3 end cell cell space space minus 6 end cell row 10 cell space space space space 6 end cell cell space space space 12 end cell row 5 cell space space 3 end cell cell space space 6 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row cell negative 5 end cell cell space space 10 end cell cell space space space space 5 end cell row cell negative 3 end cell cell space space 6 end cell cell space space space 3 end cell row cell negative 6 end cell cell space space 12 end cell cell space space space 6 end cell end table close square brackets
therefore space space space left parenthesis adj space straight A right parenthesis thin space straight B space equals open square brackets table row cell negative 5 end cell cell space space 10 end cell cell space space 5 end cell row 10 6 cell space space 3 end cell row 5 12 cell space space 6 end cell end table close square brackets space open square brackets table row cell space space space 2 end cell row cell negative 1 end cell row cell space space space 3 end cell end table close square brackets space equals space open square brackets table row cell negative 10 minus 10 plus 15 end cell row cell negative 6 minus 6 plus 9 end cell row cell negative 12 minus 12 plus 18 end cell end table close square brackets space equals space open square brackets table row cell negative 5 end cell row cell negative 3 end cell row 6 end table close square brackets space not equal to space straight O
    ∴ solution does not exist and so system of equations is inconsistent.

    Question 232
    CBSEENMA12034710

    Examine the consistency of the system of equations:
    5x – y + 4z = 5
    2x + 3y + 5z = 2
    5x – 2y + 6z = – 1

    Solution

    The given equations are
    5x – y + 4z = 5
    2x + 3y + 5z = 2
    5 x – 2 y + 6 z = – 1
    These equations can be written as
    open square brackets table row 5 cell space space minus 1 end cell cell space space space 4 end cell row 2 cell space space space space space 3 end cell cell space space space 5 end cell row 5 cell space space minus 2 end cell cell space space 6 end cell end table close square brackets space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row cell space 5 end cell row cell space space 2 end cell row cell negative 1 end cell end table close square brackets
    therefore space space space space space space AX space space equals space straight B space where space straight A space equals space open square brackets table row 5 cell space space minus 1 end cell cell space space space 4 end cell row 2 cell space space space space space space 3 end cell cell space space space 5 end cell row 5 cell space space minus 2 end cell cell space space space 6 end cell end table close square brackets comma space space straight X space equals space open square brackets table row straight x row straight y row straight z end table close square brackets comma space space straight B space equals space open square brackets table row cell space space space 5 end cell row cell space space space space 2 end cell row cell negative 1 end cell end table close square brackets
space space space space space space space space open vertical bar straight A close vertical bar space equals space open vertical bar table row 5 cell space space minus 1 end cell cell space space 4 end cell row 2 cell space space space space space 3 end cell cell space space 5 end cell row 5 cell space space minus 2 end cell cell space space 6 end cell end table close vertical bar space equals space 5 open vertical bar table row cell space space 3 end cell cell space space space 5 end cell row cell negative 2 end cell cell space space 6 end cell end table close vertical bar minus left parenthesis negative 1 right parenthesis open vertical bar table row 2 cell space space 5 end cell row 5 cell space space 6 end cell end table close vertical bar plus 4 open vertical bar table row 2 cell space space space space space 3 end cell row 5 cell space space minus 2 end cell end table close vertical bar
space space space space space space space space space space space space space space space space equals 5 space left parenthesis 18 plus 10 right parenthesis plus 1 space left parenthesis 12 minus 25 right parenthesis plus 4 space left parenthesis negative 4 minus 15 right parenthesis
space space space space space space space space space space space space space space space space space equals 5 left parenthesis 28 right parenthesis plus 1 left parenthesis negative 13 right parenthesis plus 4 left parenthesis negative 19 right parenthesis space equals 140 minus 13 minus 76 space equals space 51 not equal to 0
therefore space space space space straight A to the power of negative 1 end exponent space exists.
     ∴  given system of equations "has a unique solution and so system of equations is consistent.

    Question 233
    CBSEENMA12034713

    Examine the consistencies of the system of equations:
    3x – y + 2z = 3
    2x + y + 3z =5
    x - 2y - z = 1

    Solution

    The given equations are
    3x – y + 2z = 3
    2x + y + 3z = 5
    x – 2 – z = 1
    These equations can be written as
                              open square brackets table row 3 cell space space minus 1 end cell cell space space space space space space 2 end cell row 2 cell space space space space space 1 end cell cell space space space space space space 3 end cell row 1 cell space space minus 2 end cell cell space space minus 1 end cell end table close square brackets space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row 3 row 5 row 1 end table close square brackets
    or     AX space equals space straight B space where space straight A space equals space open square brackets table row 3 cell space space minus 1 end cell cell space space 2 end cell row 2 cell space space 1 end cell cell space 3 end cell row 1 cell space minus 2 end cell cell space 1 end cell end table close square brackets comma space space space straight X space equals space open square brackets table row straight x row straight y row straight z end table close square brackets comma space space straight B space equals space open square brackets table row 3 row 5 row 1 end table close square brackets
    open vertical bar straight A close vertical bar space equals space open vertical bar table row 3 cell space minus 1 end cell cell space space space space 2 end cell row 2 cell space space space 1 end cell cell space space space space space 3 space end cell row 1 cell negative 2 end cell cell space minus 1 end cell end table close vertical bar space equals space 3 left parenthesis negative 1 plus 6 right parenthesis minus left parenthesis negative 1 right parenthesis minus left parenthesis negative 2 minus 3 right parenthesis plus 2 left parenthesis negative 4 minus 1 right parenthesis
space space space space space equals space 15 minus 5 minus 10 space equals space 0
    Co-factors of the elements of the first row of | A | are
    open vertical bar table row cell space space 1 end cell cell space space space space space space 3 end cell row cell negative 2 end cell cell space space minus 1 end cell end table close vertical bar comma space space minus open vertical bar table row 2 cell space space space space space space 3 end cell row 1 cell space space space minus 1 end cell end table close vertical bar comma space space open vertical bar table row 2 cell space space space space space space 1 end cell row 1 cell space space space space minus 2 end cell end table close vertical bar

    or – 1 + 6, – (– 2, – 3), – 4 – 1 or 5, 5 – 5 respectively.
    Co-factors of the elements of second row of | A | are
    negative open vertical bar table row cell negative 1 end cell cell space space space space space space space 2 end cell row cell negative 2 end cell cell space space space minus 1 end cell end table close vertical bar comma space space space space open vertical bar table row 3 cell space space space space space space 2 end cell row 1 cell space space minus 1 end cell end table close vertical bar comma space space space minus open vertical bar table row 3 cell space space space minus 1 end cell row 1 cell space space space minus 2 end cell end table close vertical bar
or space space space minus 5 comma space space minus 5 comma space space 5 space respectively.
    Co-factors of the elements of the third row of | A | are
    open vertical bar table row cell negative 1 end cell cell space space space 2 end cell row 1 cell space space 3 end cell end table close vertical bar comma space space minus open vertical bar table row 3 cell space space space space space 2 end cell row 2 cell space space space space space 3 end cell end table close vertical bar comma space space open vertical bar table row 3 cell space space space space minus 1 end cell row 2 cell space space space space space space 1 end cell end table close vertical bar
    or   – 5,   – 5,  5 respectively.
    therefore space space adj. space straight A space equals space open square brackets table row cell space space space 5 end cell cell space space space space space space space 5 end cell cell space space space minus 5 end cell row cell negative 5 end cell cell space space space minus 5 end cell cell space space space space space space 5 end cell row cell negative 5 end cell cell space space space minus 5 end cell cell space space space space space 5 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row 5 cell space space space minus 5 end cell cell space space space space minus 5 end cell row 5 cell space space minus 5 end cell cell space space minus 5 end cell row cell negative 5 end cell cell space space space space space 5 end cell cell space space space space space 5 end cell end table close square brackets
space space space space space space space left parenthesis adj. space straight A right parenthesis thin space straight B space equals space open square brackets table row cell space space 5 end cell cell space space space minus 5 end cell cell space space space space minus 5 end cell row cell space 5 end cell cell space space minus 5 end cell cell space space space minus 5 end cell row cell negative 5 space end cell cell space space space space space 5 end cell cell space space space space space 5 end cell end table close square brackets space open square brackets table row 3 row 5 row 1 end table close square brackets
space space space space space space space space space space space space space space space space space space space space space space space equals space open square brackets table row cell 15 minus 25 minus 5 end cell row cell 15 minus 25 minus 5 end cell row cell negative 15 plus 25 plus 5 end cell end table close square brackets space equals space open square brackets table row cell negative 15 end cell row cell negative 15 end cell row 15 end table close square brackets not equal to space straight O
    given equations have no solution.

    Question 234
    CBSEENMA12034716

    Examine the consistencies of the system of equations:
    x - y+ z = 3
    2x - y – z = 2
    – x – 2y + 2z = 1

    Solution

    The given equations are
    x – y + z = 3    ...(1)
    2 x – y – z = 2    ...(2)
    – x –2y + 2z = 1    ...(3)
    These equations can be written as
    open square brackets table row 1 cell space space space minus 1 end cell cell space space space space space 1 end cell row cell space 2 end cell cell space space space space 1 end cell cell space space minus 1 end cell row cell negative 1 end cell cell space minus 2 end cell cell space space space space space 2 end cell end table close square brackets space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row 3 row 2 row 1 end table close square brackets
    or   AX space equals space straight B space where space straight A space equals space open square brackets table row 1 cell space space space minus 1 end cell cell space space space space space 1 end cell row 2 cell space space space space space space 1 end cell cell space minus 1 end cell row cell negative 1 end cell cell space space space minus 2 end cell cell space space space space 2 end cell end table close square brackets comma space space space straight X space equals space open square brackets table row straight x row straight y row straight z end table close square brackets comma space space space space straight B space equals space open square brackets table row 3 row 2 row 1 end table close square brackets
                          open vertical bar straight A close vertical bar space equals space open vertical bar table row 1 cell space space space space minus 1 end cell cell space space space space space 1 end cell row 2 cell space space space space space space space 1 end cell cell space space minus 1 end cell row cell negative 1 end cell cell space space space minus 2 end cell cell space space space space 2 end cell end table close vertical bar space equals space open vertical bar table row cell space 1 end cell cell space space space 0 end cell cell space space space space 0 end cell row cell space space 2 end cell cell space space space 3 end cell cell space space minus 3 end cell row cell negative 1 end cell cell space space minus 3 end cell cell space space space space space 3 end cell end table close vertical bar
space space space space space space space space equals space open vertical bar table row 3 cell space space space minus 3 end cell row cell negative 3 end cell cell space space space space space space space 3 end cell end table close vertical bar space equals space 9 minus 9 space equals space 0
    Co-factors of the elements of first row of | A | are
    open vertical bar table row 1 cell space space space space minus 1 end cell row cell negative 2 end cell cell space space space space space space 2 end cell end table close vertical bar comma space space space space minus open vertical bar table row cell space 2 end cell cell space space space minus 1 end cell row cell negative 1 end cell cell space space space space space 2 end cell end table close vertical bar comma space space open vertical bar table row 2 cell space space space space space 1 end cell row cell negative 1 end cell cell space space space minus 2 end cell end table close vertical bar

    or  0, – 3, – 3 respectively.
    Co-factors of the elements of 2nd row of | A | are
    negative open vertical bar table row cell negative 1 end cell cell space space space space space 1 end cell row cell negative 2 end cell cell space space space space space 2 end cell end table close vertical bar comma space space open vertical bar table row 1 cell space space space space 1 end cell row cell negative 1 end cell cell space space space space 2 end cell end table close vertical bar comma space space space minus open vertical bar table row cell space space 1 end cell cell space space space minus 1 end cell row cell negative 1 end cell cell space space minus 2 end cell end table close vertical bar

    or 0, 3, 3 respectively.
    Co-factors of the elements of third row of | A | are
                       open vertical bar table row cell negative 1 end cell cell space space space space space space 1 end cell row 1 cell space space minus 1 end cell end table close vertical bar comma space space space minus open vertical bar table row 1 cell space space space space space space 1 end cell row 2 cell space space minus 1 end cell end table close vertical bar comma space space space open vertical bar table row 1 cell space space minus 1 end cell row 2 cell space space space space space space 1 end cell end table close vertical bar space space space or space space 0 comma space 3 comma space 3 space respectively.
    therefore space space space adj. space straight A space equals space open square brackets table row 0 cell space space minus 3 end cell cell space space space minus 3 end cell row 0 cell space space space space space 3 end cell cell space space space space space space space 3 space end cell row 0 cell space space space space 3 end cell cell space space space space space space space 3 space end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row 0 cell space space space 0 end cell cell space space 0 end cell row cell negative 3 end cell cell space space space 3 end cell cell space space space 3 end cell row cell negative 3 end cell cell space space space 3 end cell cell space space space 3 end cell end table close square brackets
left parenthesis adj. space straight A right parenthesis space straight B space equals space open square brackets table row 0 cell space space space 0 end cell cell space space 0 end cell row cell negative 3 end cell cell space space space 3 end cell cell space space space 3 end cell row cell negative 3 end cell cell space space space 3 end cell cell space space space 3 end cell end table close square brackets space open square brackets table row 3 row 2 row 1 end table close square brackets space equals space open square brackets table row cell 0 plus 0 plus 0 end cell row cell negative 9 plus 6 plus 3 end cell row cell negative 9 plus 6 plus 3 end cell end table close square brackets space equals space open square brackets table row 0 row 0 row 0 end table close square brackets space equals space straight O
therefore space space space given space equations space have space infinite space solutions. space
Adding space left parenthesis 1 right parenthesis space and space left parenthesis 2 right parenthesis comma space we space get comma space space 3 straight x space equals space 5 space space space space space space rightwards double arrow space space space space straight x space equals space 5 over 3
Adding space left parenthesis 1 right parenthesis space and space left parenthesis 3 right parenthesis comma space we space get comma space space minus 3 straight y plus 3 straight z space equals space 4 comma space space Put space straight z space equals space straight k
therefore space space space space space 3 space straight y space equals space 3 space straight k space minus 4 space space space space space space space space space rightwards double arrow space space space space straight y space equals space straight k minus 4 over 3
therefore space space space solutions space are space straight x space equals space 5 over 3 comma space space straight y space equals space straight k minus 4 over 3 comma space space straight z space equals space straight k
where space straight k space is space straight a space parameter.

    Question 235
    CBSEENMA12034719

    Solve the following system of equations using matrix method:
    2x + 5y = 1
    1x + 2y = 7

    Solution

    The given equations are
    2x + 5y = 1
    3x + 2y = 7
    These equations can be written as
                            open square brackets table row 2 cell space space 5 end cell row 3 cell space space 2 end cell end table close square brackets space open square brackets table row straight x row straight y end table close square brackets space equals space open square brackets table row 1 row 7 end table close square brackets
    or           AX space equals space straight B space space space space where space straight A space equals space open square brackets table row 2 cell space space space 5 end cell row 3 cell space space 2 end cell end table close square brackets comma space space space straight X space equals open square brackets table row straight x row straight y end table close square brackets comma space space space straight B space equals space open square brackets table row 1 row 7 end table close square brackets space
         open vertical bar straight A close vertical bar space equals space open vertical bar table row 2 cell space space space 5 end cell row 3 cell space space space 2 end cell end table close vertical bar space equals space 4 minus 15 space equals space minus 11 space not equal to space 0
therefore space space space straight A to the power of negative 1 end exponent space exists
space space space space space space space straight A subscript 11 space equals space 2 comma space space space straight A subscript 12 space equals negative 3 comma space space space straight A subscript 21 space equals space minus 5 comma space space straight A subscript 22 space equals space 2
space space space space space space space adj. space straight A space equals space open square brackets table row 2 cell space space space minus 3 end cell row cell negative 5 end cell cell space space space space space space 2 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row cell space space 2 end cell cell space space space minus 5 end cell row cell negative 3 end cell cell space space space space space space space 2 end cell end table close square brackets
space space space space space space space space space space space space space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj. space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals negative 1 over 11 open square brackets table row 2 cell space space space minus 5 end cell row cell negative 3 end cell cell space space space space space 2 end cell end table close square brackets
Now space AX space equals space straight B space space space space space rightwards double arrow space space space space straight X space equals space straight A to the power of negative 1 end exponent straight B
    rightwards double arrow space space space space space open square brackets table row straight x row straight y end table close square brackets space equals space minus 1 over 11 open square brackets table row 2 cell space space minus 5 end cell row cell negative 3 end cell cell space space space space 2 end cell end table close square brackets space open square brackets table row 1 row 7 end table close square brackets space space space space space rightwards double arrow space space space open square brackets table row straight x row straight y end table close square brackets space equals space minus 1 over 11 open square brackets table row cell space 2 minus 35 end cell row cell negative 3 plus 14 end cell end table close square brackets
rightwards double arrow space space space space open square brackets table row straight x row straight y end table close square brackets space equals space minus 1 over 11 open square brackets table row cell negative 33 end cell row 11 end table close square brackets space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space space space open square brackets table row straight x row straight y end table close square brackets space equals space open square brackets table row cell space space space space 3 end cell row cell negative 1 end cell end table close square brackets
therefore space space space space space straight x space equals space 3 comma space space space space space straight y space equals space minus 1.

    Question 236
    CBSEENMA12034721

    Solve system of linear equations,  using matrix method:
    5x + 2y = 4
    7x + 3y = 5

    Solution

    The given equations are
    5x  + 2y = 4    
    7x + 3y = 5
    These equations can be written as
    open square brackets table row 5 cell space space space 2 end cell row 7 cell space space space 3 end cell end table close square brackets space open square brackets table row straight x row straight y end table close square brackets space equals space open square brackets table row 4 row 5 end table close square brackets            
       or space space space space space space space space space space space space space AX space equals space straight B space space where space straight A space equals space open square brackets table row 5 cell space space 2 end cell row 7 cell space space 3 end cell end table close square brackets comma space space space straight X space equals space open square brackets table row straight x row straight y end table close square brackets comma space space straight B space equals space open square brackets table row 4 row 5 end table close square brackets
space space space space space space space space space space space space space space space open vertical bar straight A close vertical bar space equals space open vertical bar table row 5 cell space space space 2 end cell row 7 cell space space 3 end cell end table close vertical bar space equals space 15 minus 14 space equals space 1 space not equal to space 0
therefore space space space space straight A to the power of negative 1 end exponent space exists.
space space space space space space straight A subscript 11 space equals space 3 comma space space space space space straight A subscript 12 space equals space minus 7 comma space space space straight A subscript 21 space equals space minus 2 comma space space space straight A subscript 22 space equals space 5
space space space space space space space space space space space adj. space straight A space equals space open square brackets table row cell space space space 3 end cell cell space space space space minus 7 end cell row cell negative 2 end cell cell space space space space space 5 end cell end table close square brackets to the power of apostrophe space space space equals space open square brackets table row 3 cell space space space minus 2 end cell row cell negative 7 end cell cell space space space space space 5 end cell end table close square brackets
space space space space space space space space space space space space space space space space space space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj. space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space open square brackets table row 3 cell space space space minus 2 end cell row cell negative 7 end cell cell space space space space space 5 end cell end table close square brackets
Now space AX space equals space straight B space space space rightwards double arrow space space space space space straight X space equals space straight A to the power of negative 1 end exponent straight B
       rightwards double arrow space space space open square brackets table row straight x row straight y end table close square brackets space equals space open square brackets table row 3 cell space space space minus 2 end cell row cell negative 7 end cell cell space space space space space space 5 end cell end table close square brackets space open square brackets table row 4 row 5 end table close square brackets space space space space rightwards double arrow space space space space open square brackets table row straight x row straight y end table close square brackets space equals space open square brackets table row cell 12 minus 10 end cell row cell negative 28 plus 25 end cell end table close square brackets
rightwards double arrow space space space space space open square brackets table row straight x row straight y end table close square brackets space space equals space open square brackets table row cell space space space space 2 end cell row cell negative 3 end cell end table close square brackets
space therefore space space space space space straight x space equals space 2 comma space space space straight y space equals space minus 3

    Question 237
    CBSEENMA12034722

    Solve system of linear equations,  using matrix method:
    2x - y = -2
    3x + 4y = 3

    Solution

    The given equations are
    2x – y = –2
    3x + 4y = 3
    These equations can be written as
                      open square brackets table row 2 cell space space space minus 1 end cell row 3 cell space space space space space 4 end cell end table close square brackets space open square brackets table row straight x row straight y end table close square brackets space equals space open square brackets table row cell negative 2 end cell row cell space space 3 space end cell end table close square brackets
    or          AX = B where straight A space equals space open square brackets table row 2 cell space space minus 1 end cell row 3 cell space space space space 4 end cell end table close square brackets comma space space straight X space equals space open square brackets table row straight x row straight y end table close square brackets comma space space space space straight B space equals space open square brackets table row cell negative 2 end cell row cell space space 3 end cell end table close square brackets
       open vertical bar straight A close vertical bar space equals space open vertical bar table row 2 cell space space minus 1 end cell row 3 cell space space space space 4 end cell end table close vertical bar space equals space 8 plus 3 space equals space 11 space not equal to space 0
therefore space space space space space straight A to the power of negative 1 end exponent space exists.
space space space space space space space space straight A subscript 11 space equals space 4 comma space space space space space straight A subscript 12 space equals space minus 3 comma space space space straight A subscript 21 space equals space 1 comma space space straight A subscript 21 space equals space 2
space space space space space space space space adj. space straight A space equals space open square brackets table row 4 cell space space minus 3 end cell row 1 cell space space space space 4 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row cell space 4 end cell cell space space space 1 end cell row cell negative 3 end cell cell space space space 2 end cell end table close square brackets
space space space space space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj. space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space 1 over 11 open square brackets table row 4 cell space space space space 1 end cell row cell negative 3 end cell cell space space space 2 end cell end table close square brackets
Now comma space space space AX space equals space straight B space space space rightwards double arrow space space space space straight X space equals space straight A to the power of negative 1 end exponent straight B
    rightwards double arrow space space space open square brackets table row straight x row straight y end table close square brackets space equals space 1 over 11 open square brackets table row 4 cell space space space 1 end cell row cell negative 3 end cell cell space space space 2 end cell end table close square brackets space open square brackets table row cell negative 2 end cell row cell space 3 end cell end table close square brackets space space rightwards double arrow space space space space open square brackets table row straight x row straight y end table close square brackets space equals space 1 over 11 open square brackets table row cell negative 8 plus 3 end cell row cell space 6 plus 6 end cell end table close square brackets
rightwards double arrow space space space open square brackets table row straight x row straight y end table close square brackets space equals 1 over 11 open square brackets table row cell negative 5 end cell row cell space 12 end cell end table close square brackets space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space space space space open square brackets table row straight x row straight y end table close square brackets space equals space open square brackets table row cell fraction numerator negative 5 over denominator 11 end fraction end cell row cell 12 over 11 end cell end table close square brackets
therefore space space space space straight x space equals space minus 5 over 11 comma space space space straight y space equals space 12 over 11

    Question 238
    CBSEENMA12034726

    Solve system of linear equations,  using matrix method:
    4x – 3y = 3 
    3x – 5y = 7 

    Solution

    The given equations are
    4x – 3y = 3
    3x – 5y = 7
    These equations can be written as
                        open square brackets table row 4 cell space space minus 3 end cell row 3 cell space space space minus 5 end cell end table close square brackets space open square brackets table row straight x row straight y end table close square brackets space equals space open square brackets table row 3 row 7 end table close square brackets         
    or space space AX space equals space straight B space where space straight A space equals space open square brackets table row 4 cell space space minus 3 end cell row 3 cell space space minus 5 end cell end table close square brackets comma space space space straight X space equals space open square brackets table row straight x row straight y end table close square brackets comma space space space straight B space equals space open square brackets table row 3 row 7 end table close square brackets
space space space space space space space space space space space space space space space space space space space space open vertical bar straight A close vertical bar space space equals space open vertical bar table row 4 cell space space minus 3 end cell row 3 cell space space minus 5 end cell end table close vertical bar space equals space minus 20 plus 9 space equals space minus 11 space not equal to space 0
therefore space space space straight A to the power of negative 1 end exponent space exists.
space space space space space straight A subscript 11 space equals space minus 5 comma space space space space straight A subscript 12 space equals space minus 3 comma space space space straight A subscript 21 space equals space 3 comma space space space space straight A subscript 22 space equals space 4
space space space space space space adj. space straight A space space equals space open square brackets table row cell negative 5 end cell cell space space minus 3 end cell row 3 cell space space space space 4 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row cell negative 5 end cell cell space space space space 3 end cell row cell negative 3 end cell cell space space space 4 end cell end table close square brackets
space space space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj. space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space minus 1 over 11 open square brackets table row cell negative 5 end cell cell space space space 3 end cell row cell negative 3 end cell cell space space space 4 end cell end table close square brackets
Now comma space space AX space equals space straight B space space space space rightwards double arrow space space space space straight X space equals space straight A to the power of negative 1 end exponent straight B
rightwards double arrow space space space space space open square brackets table row straight x row straight y end table close square brackets space equals space minus 1 over 11 open square brackets table row cell negative 5 end cell cell space space space 3 end cell row cell negative 3 end cell cell space space 4 end cell end table close square brackets space open square brackets table row 3 row 7 end table close square brackets space space rightwards double arrow space space space open square brackets table row straight x row straight y end table close square brackets space equals negative 1 over 11 open square brackets table row cell negative 15 plus 21 end cell row cell negative 9 plus 28 end cell end table close square brackets space
rightwards double arrow space space space space open square brackets table row straight x row straight y end table close square brackets space equals space minus 1 over 11 open square brackets table row 6 row 19 end table close square brackets space space space rightwards double arrow space space space space space open square brackets table row straight x row straight y end table close square brackets space equals space open square brackets table row cell negative 6 over 11 end cell row cell negative 19 over 11 end cell end table close square brackets
therefore space space space space straight x equals negative 6 over 11 comma space space space straight y space equals space minus 19 over 11

     
    Question 239
    CBSEENMA12034728

    Solve system of linear equations,  using matrix method:
    5x + 2y = 3
    3x + 2y = 5

    Solution

    The given equations are
    5x + 2y = 3
    3x + 2y = 5
    These equations can be written as
                   open square brackets table row 5 cell space space 2 end cell row 3 cell space space 2 end cell end table close square brackets space open square brackets table row straight x row straight y end table close square brackets space equals space open square brackets table row 3 row 5 end table close square brackets
    or           AX = B where,
    straight A space equals open square brackets table row 5 cell space space 2 end cell row 3 cell space space 2 end cell end table close square brackets comma space space space straight X space equals space open square brackets table row straight x row straight y end table close square brackets comma space space space space straight B space equals space open square brackets table row 3 row 5 end table close square brackets
space space space space space space space space space space space space space space space open vertical bar straight A close vertical bar space equals space open vertical bar table row 5 cell space space space 2 end cell row 3 cell space space space 2 end cell end table close vertical bar space equals space 10 minus 6 space equals space 4 not equal to space 0
space space therefore space space space straight A to the power of negative 1 end exponent space exists.
space space space space space space space straight A subscript 11 space equals space 2 comma space space space space straight A subscript 12 space equals space minus 3 comma space space space straight A subscript 21 space equals space minus 2 comma space space space straight A subscript 22 space equals space 5
space therefore space space space adj. space straight A space equals space open square brackets table row cell space space 2 end cell cell space space minus 3 end cell row cell negative 2 end cell cell space space space space 5 end cell end table close square brackets to the power of apostrophe space space equals space open square brackets table row cell space space 2 end cell cell space space space minus 2 end cell row cell negative 3 end cell cell space space space space 5 end cell end table close square brackets
space space space space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj. space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space 1 fourth open square brackets table row cell space space space 2 end cell cell space space space minus 2 end cell row cell negative 3 end cell cell space space space space 5 end cell end table close square brackets
Now space AX space equals space straight B space space rightwards double arrow space space space straight X space equals space straight A to the power of negative 1 end exponent straight B
space space space rightwards double arrow space space space space open square brackets table row straight x row straight y end table close square brackets space equals space 1 fourth open square brackets table row 2 cell space space space minus 2 end cell row cell negative 3 end cell cell space space space space space 5 end cell end table close square brackets space open square brackets table row 3 row 5 end table close square brackets space space space space rightwards double arrow space space open square brackets table row straight x row straight y end table close square brackets space equals space 1 fourth open square brackets table row cell 6 minus 10 end cell row cell negative 9 plus 25 end cell end table close square brackets
space space space rightwards double arrow space space space space open square brackets table row straight x row straight y end table close square brackets space equals 1 fourth open square brackets table row cell negative 4 end cell row cell space space 16 end cell end table close square brackets space space rightwards double arrow space space space space space space open square brackets table row straight x row straight y end table close square brackets space equals space open square brackets table row cell negative 1 end cell row cell space space 4 end cell end table close square brackets
therefore space space space space space space space straight x space equals space 1 comma space space space space space straight y space equals space 4

    Question 240
    CBSEENMA12034730

    Use matrix method to solve the system of equations:
    3x – 2y = 7
    5x + 3y = 1

    Solution

     The given equations are
    3x – 2y = 7
    5x + 3y = 1
    The equations can be written as
        open square brackets table row 3 cell space space minus 2 end cell row 5 cell space space space space space 3 end cell end table close square brackets space open square brackets table row straight x row straight y end table close square brackets space equals space open square brackets table row 7 row 1 end table close square brackets
    or         AX space equals space straight B comma space where space straight A space equals space open square brackets table row 3 cell space space space minus 2 end cell row 5 cell space space space space space 3 end cell end table close square brackets comma space space space straight X space equals space open square brackets table row straight x row straight y end table close square brackets comma space space space space straight B space equals space open square brackets table row 7 row 1 end table close square brackets
space space space space space space space space open vertical bar straight A close vertical bar space equals space open vertical bar table row 3 cell space space space minus 2 end cell row 5 cell space space space space 3 end cell end table close vertical bar space equals space 9 plus 10 space equals space 19 space not equal to 0 space space space space space space rightwards double arrow space space space straight A to the power of negative 1 end exponent space exists.
space space space space space adj. space straight A space equals space open square brackets table row 3 cell space space space minus 5 end cell row 2 cell space space space space space space 3 end cell end table close square brackets to the power of apostrophe space equals space space open vertical bar table row cell space space space 3 end cell cell space space space space 2 end cell row cell negative 5 end cell cell space space space space 3 end cell end table close vertical bar
space space space space space space space space space space straight A to the power of negative 1 end exponent space space equals fraction numerator adj. space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space 1 over 19 open square brackets table row 3 cell space space space space 2 end cell row cell negative 5 end cell cell space space space 3 end cell end table close square brackets
Now space space space AX space equals space straight B space space space space space rightwards double arrow space space space space straight X space equals space straight A to the power of negative 1 end exponent straight B
rightwards double arrow space space space space space open square brackets table row straight x row straight y end table close square brackets space equals space 1 over 19 open square brackets table row 3 cell space space space space 2 end cell row cell negative 5 end cell cell space space space 3 end cell end table close square brackets space open square brackets table row 7 row 1 end table close square brackets space space space space rightwards double arrow space open square brackets table row straight x row straight y end table close square brackets space equals space 1 over 19 open square brackets blank close square brackets
rightwards double arrow space space open square brackets table row straight x row straight y end table close square brackets space equals space open square brackets table row cell space space 23 over 19 end cell row cell negative 32 over 19 end cell end table close square brackets space space space space space space space space space space space space space space rightwards double arrow space space space space space space straight x space equals space 23 over 19 comma space space straight y space equals negative 32 over 19 space is space the space solution.

    Question 241
    CBSEENMA12034732

    Use matrix method to solve the system of equations:
    2x + 3y = – 1
    x + 2y = 2

    Solution

    The given equations are
    2x + 3y = – 1
    x + 2y = 2
    The equations can be written as
                  open square brackets table row 2 cell space space space 3 end cell row 1 cell space space space 2 end cell end table close square brackets space open square brackets table row straight x row straight y end table close square brackets space equals space open square brackets table row cell negative 1 end cell row cell space space 2 end cell end table close square brackets
    or      AX space equals space straight B space where space straight A space equals space open square brackets table row 2 cell space space space 3 end cell row 1 cell space space space 2 end cell end table close square brackets comma space space space space space straight A space equals space open square brackets table row straight x row straight y end table close square brackets comma space space straight B space equals space open square brackets table row cell negative 1 end cell row cell space space space 2 end cell end table close square brackets
             open vertical bar straight A close vertical bar space equals space open square brackets table row 2 cell space space space 3 end cell row 1 cell space space space 2 end cell end table close square brackets space equals space 4 minus 3 space equals space 1 space not equal to space 0 space space space space space space space space rightwards double arrow space space space straight A to the power of negative 1 end exponent space exists.
adj. space straight A space equals space open square brackets table row 2 cell space space space minus 1 end cell row cell negative 3 end cell cell space space space space space space 2 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row cell space space 2 end cell cell space space space space minus 3 end cell row cell negative 1 end cell cell space space space space space space 2 end cell end table close square brackets
space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj. space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals open square brackets table row cell space space space 2 end cell cell space space space minus 3 end cell row cell negative 1 end cell cell space space space space space 2 end cell end table close square brackets
Now comma space AX space equals space straight B space space space rightwards double arrow space space straight X space equals straight A to the power of negative 1 end exponent straight B
rightwards double arrow space space space space space space open square brackets table row straight x row straight y end table close square brackets space equals open square brackets table row 2 cell space space minus 3 end cell row cell negative 1 end cell cell space space space space 2 end cell end table close square brackets space open square brackets table row cell negative 1 end cell row cell space 2 end cell end table close square brackets space space space space rightwards double arrow space space space space space space apostrophe open square brackets table row straight x row straight y end table close square brackets space equals space open square brackets table row cell negative 2 minus 6 end cell row cell 1 plus 4 end cell end table close square brackets
rightwards double arrow space space space space space open square brackets table row straight x row straight y end table close square brackets space equals space open square brackets table row cell negative 8 end cell row cell space space 5 end cell end table close square brackets space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space space space space straight x space equals space minus 8 comma space space space straight y space equals space 5 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space

    Question 242
    CBSEENMA12034735

    Use matrix method to solve the system of equations:
    5x - 7y = 2
    7x - 5y = 3

    Solution

    The given equations are
    5x – 7y = 2
    1x – 5y = 3
    The equations can be written as
      open square brackets table row 5 cell space space space minus 7 end cell row 7 cell space space minus 5 end cell end table close square brackets space open square brackets table row straight x row straight y end table close square brackets space equals space open square brackets table row 2 row 3 end table close square brackets
    or       AX = B   where straight A space equals space open square brackets table row 5 cell space space space minus 7 end cell row 7 cell space space minus 5 end cell end table close square brackets space space comma space space straight X space equals space open square brackets table row straight x row straight y end table close square brackets comma space space straight B space equals space open square brackets table row 2 row 3 end table close square brackets
                 open vertical bar straight A close vertical bar space equals space open vertical bar table row 5 cell space space space minus 7 end cell row 7 cell space space minus 5 end cell end table close vertical bar space equals space minus 25 plus 49 space equals space 24 space not equal to space 0 space space space rightwards double arrow space space space space straight A to the power of negative 1 end exponent space exists
adj. space straight A space equals space open square brackets table row cell negative 5 end cell cell space space space minus 7 end cell row 7 cell space space space space 5 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row cell negative 5 end cell cell space space space space 7 end cell row cell negative 7 end cell cell space space space space 5 end cell end table close square brackets
space space space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj. space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space 1 over 24 open square brackets table row cell negative 5 end cell cell space space space 7 end cell row cell negative 7 end cell cell space space 5 end cell end table close square brackets
Now comma space AX space equals space straight B space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space space space space straight X space equals space straight A to the power of negative 1 end exponent straight B
rightwards double arrow space space space space space open square brackets table row straight x row straight y end table close square brackets space equals 1 over 24 open square brackets table row cell negative 5 end cell cell space space space 7 end cell row cell negative 7 end cell cell space space 5 end cell end table close square brackets open square brackets table row 2 row 3 end table close square brackets space space space space space space space space rightwards double arrow space space space space open square brackets table row straight x row straight y end table close square brackets space equals space 1 over 24 open square brackets table row cell negative 10 plus 21 end cell row cell negative 14 plus 15 end cell end table close square brackets
rightwards double arrow space space space open square brackets table row straight x row straight y end table close square brackets space equals space open square brackets table row cell 11 over 24 end cell row cell 1 over 24 end cell end table close square brackets space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space space straight x space equals space 11 over 24 comma space space straight y space equals space 1 over 24 space is space the space solution

    Question 243
    CBSEENMA12034736

    Use matrix method to solve the system of equations:
    x + 2y = 4
    2x + 5y = 9

    Solution

    The given equations are
    x + 2y = 4
    2x + 5y = 9
    These equations can be written as
                  open square brackets table row 1 cell space space space 2 end cell row 2 cell space space 5 end cell end table close square brackets space open square brackets table row straight x row straight y end table close square brackets space equals space open square brackets table row 4 row 9 end table close square brackets
    or      straight A space straight X space equals space straight B
    where straight A space equals space open square brackets table row 1 cell space space 2 end cell row 2 cell space space 5 end cell end table close square brackets space straight X space space equals space open square brackets table row straight x row straight y end table close square brackets comma space space space straight B space equals open square brackets table row 4 row 9 end table close square brackets
          open vertical bar straight A close vertical bar space equals space open vertical bar table row 1 cell space space space 2 end cell row 2 cell space space space 5 end cell end table close vertical bar space equals space 5 minus 4 space equals space 1 space not equal to 0 space space space space rightwards double arrow space space space straight A to the power of negative 1 end exponent space exists.
space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj. space open vertical bar straight A close vertical bar over denominator open vertical bar straight A close vertical bar end fraction space equals space 1 over 1 open square brackets table row 5 cell space space minus 2 end cell row cell negative 2 end cell cell space space space space 1 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row cell space space space 5 end cell cell space space space minus 2 end cell row cell negative 2 end cell cell space space space space 1 end cell end table close square brackets
Now space space space space AX space equals space straight B space space space rightwards double arrow space space space straight X space equals space straight A to the power of negative 1 end exponent straight B space space space space space space space space space space space space space rightwards double arrow space space space space open square brackets table row straight x row straight y end table close square brackets space equals space open square brackets table row cell space space space 5 end cell cell space space space space minus 2 end cell row cell negative 2 end cell cell space space space space space space space 1 end cell end table close square brackets space open square brackets table row 4 row 9 end table close square brackets
rightwards double arrow space space space space space space space space open square brackets table row straight x row straight y end table close square brackets space equals space open square brackets table row 2 row 1 end table close square brackets
therefore space space space space straight x space equals space 2 comma space space space space straight y space equals space 1 space is space the space required space solution.

    Question 244
    CBSEENMA12034738

    Use matrix method to solve the system of equations:
    2x + 3y = 5
    3x - y = 2

    Solution

    The given equations are
    2x + 3y = 5
    3x – y = 2
    These equations can be written as
                  open square brackets table row 2 cell space space space space space space 3 end cell row 3 cell space space minus 1 end cell end table close square brackets space open square brackets table row straight x row straight y end table close square brackets space equals space open square brackets table row 5 row 2 end table close square brackets
    or      AX space equals space straight B space where space straight A space equals space open square brackets table row 2 cell space space space space space 3 end cell row 3 cell space minus 1 end cell end table close square brackets comma space space straight X space equals space open square brackets table row straight x row straight y end table close square brackets comma space space straight B space equals space open square brackets table row 5 row 2 end table close square brackets
                        open vertical bar straight A close vertical bar space equals space open vertical bar table row 2 cell space space space space space space 3 end cell row 3 cell space space minus 1 end cell end table close vertical bar comma space space space equals negative 2 minus 9 space equals space minus 11 space not equal to space 0
    therefore space space space straight A to the power of negative 1 end exponent space exists.
                straight A subscript 11 space equals space minus 1 comma space space space space space straight A subscript 12 space equals negative 3 comma space space space straight A subscript 21 space equals space minus 3 comma space space space straight A subscript 22 space equals space 2
    therefore space space space space space space space space space adj. space straight A space equals space open square brackets table row cell negative 1 end cell cell space space space minus 3 end cell row cell negative 3 end cell cell space space space space space space 2 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row cell negative 1 end cell cell space space space minus 3 end cell row cell negative 3 end cell cell space space space space space 2 end cell end table close square brackets
space space space space space space space space space space space space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals negative 1 over 11 open square brackets table row cell negative 1 end cell cell space space space minus 3 end cell row cell negative 3 end cell cell space space space space space 2 end cell end table close square brackets
Now space AX space equals space straight B space space space rightwards double arrow space space space straight X space equals space straight A to the power of negative 1 end exponent straight B
space space space space rightwards double arrow space space space space space space space open square brackets table row straight x row straight y end table close square brackets space equals negative 1 over 11 open square brackets table row cell negative 1 end cell cell space space space minus 3 end cell row cell negative 3 end cell cell space space space space space space 2 end cell end table close square brackets space open square brackets table row 5 row 2 end table close square brackets space space rightwards double arrow space space space open square brackets table row straight x row straight y end table close square brackets space equals space minus 1 over 11 open square brackets table row cell negative 5 minus 6 end cell row cell negative 15 plus 4 end cell end table close square brackets
space space space rightwards double arrow space space space space space space space space open square brackets table row straight x row straight y end table close square brackets space equals space minus 1 over 11 open square brackets table row cell negative 11 end cell row cell negative 11 end cell end table close square brackets space space space space space rightwards double arrow space space space space space open square brackets table row straight x row straight y end table close square brackets space equals space open square brackets table row 1 row 1 end table close square brackets
therefore space space space space straight x space equals space 1 comma space space straight y space equals space 1

    Question 245
    CBSEENMA12034747

    Use matrix method to solve the system of equations:
    3x + 5y = 8
    2x - y = 1

    Solution

    The given equations are
    3x + 5y = 8
    2x – y = 1
    These equations can be written as
                        open square brackets table row 3 cell space space space space space space 5 end cell row 2 cell space space minus 1 end cell end table close square brackets space space open square brackets table row straight x row straight y end table close square brackets space equals open square brackets table row 8 row 1 end table close square brackets
    or       AX space equals space straight B space where space straight A space equals space open square brackets table row 3 cell space space space space space space 5 end cell row 2 cell space minus 1 end cell end table close square brackets comma space space space space space straight X space equals space open square brackets table row straight x row straight y end table close square brackets comma space space space straight B space equals space open square brackets table row 8 row 1 end table close square brackets
space space space space space space space space space space space space space space space space space space space space space open vertical bar straight A close vertical bar equals space open vertical bar table row 3 cell space space space space space space 5 end cell row 2 cell space minus 1 end cell end table close vertical bar space equals space minus 3 minus 10 space equals space minus 13 space not equal to space 0
therefore space space space space space straight A to the power of negative 1 end exponent space exists.
space space space space space space space space space space space space space space space space space straight A subscript 11 space equals negative 1 comma space space space straight A subscript 12 space equals negative 2 comma space space space straight A subscript 21 space equals space minus 5 comma space space space straight A subscript 22 space equals space 3
therefore space space space space space space space space space space adj. space straight A space equals space open square brackets table row cell negative 1 end cell cell space space minus 2 end cell row cell negative 5 end cell cell space space space space 3 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row cell negative 1 end cell cell space space space minus 5 end cell row cell negative 2 end cell cell space space space space space space 3 end cell end table close square brackets
space space space space space space space space space space space space space space space space space space space space space space space straight A to the power of negative 1 end exponent space space equals space fraction numerator adj space straight A over denominator open vertical bar straight A close vertical bar. end fraction space equals space minus 1 over 13 open square brackets table row cell negative 1 end cell cell space space space space minus 5 end cell row cell negative 2 end cell cell space space space space space 3 end cell end table close square brackets
Now space space space space AX space space equals straight B space space space space space space space space rightwards double arrow space space space space space straight X space equals space straight A to the power of negative 1 end exponent straight B
space rightwards double arrow space space space space space space space space open square brackets table row straight x row straight y end table close square brackets space equals space minus 1 over 13 open square brackets table row cell negative 1 end cell cell space space space minus 5 end cell row cell negative 2 end cell cell space space space space space 3 end cell end table close square brackets space open square brackets table row 8 row 1 end table close square brackets space space space space rightwards double arrow space space space space space open square brackets table row straight x row straight y end table close square brackets space space equals negative 1 over 13 open square brackets table row cell negative 8 minus 5 end cell row cell negative 16 plus 3 end cell end table close square brackets
rightwards double arrow space space space space space space space space space open square brackets table row straight x row straight y end table close square brackets space equals space minus 1 over 13 open square brackets table row cell negative 13 end cell row cell negative 13 end cell end table close square brackets space space space rightwards double arrow space space space space space space open square brackets table row straight x row straight y end table close square brackets space equals space open square brackets table row 1 row 1 end table close square brackets
therefore space space space space straight x space equals space 1 comma space space space space straight y space equals space 1
space
space space space space space space

    Question 246
    CBSEENMA12034749

    Use matrix method to solve the system of equations:
    5x - y  = 4
    3x + 7y =  10

    Solution

    The given equations are
    5x – y = 4
    3x + 7y = 10
    These equations can be written as
                           open square brackets table row 5 cell space space space minus 1 end cell row 3 cell space space space space space 7 end cell end table close square brackets space open square brackets table row straight x row straight y end table close square brackets space equals space open square brackets table row 4 row 10 end table close square brackets
    or          AX space equals space straight B space where space straight A space equals space open square brackets table row 5 cell space space space minus 1 end cell row 3 cell space space space space space 7 end cell end table close square brackets comma space space straight X space equals space open square brackets table row straight x row straight y end table close square brackets comma space space space straight B space equals space open square brackets table row 4 row 10 end table close square brackets
space space space space space space space space space space space space space space space space space space space space open vertical bar straight A close vertical bar space equals space open vertical bar table row 5 cell space space minus 1 end cell row 3 cell space space space space space 7 end cell end table close vertical bar space equals space 35 plus 3 space equals space 38 space not equal to 0
therefore space space space space space space space space straight A to the power of negative 1 end exponent space exists.
space space space space space space space space space space space space straight A subscript 11 space equals space 7 comma space space space straight A subscript 12 space equals space minus 3 comma space space space space straight A subscript 21 space equals space 1 comma space space space straight A subscript 22 space equals 5
therefore space space space space space space space space space space space space space space adj. space straight A space equals space open square brackets table row 7 cell space space minus 3 end cell row 1 cell space space space space 5 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row 7 cell space space space 1 end cell row cell negative 8 end cell cell space space space space 5 space space end cell end table close square brackets space space space space
space space space space space space space space space space space space space space space space space space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space 1 over 38 open square brackets table row 7 cell space space space 1 end cell row cell negative 3 end cell cell space space space 5 end cell end table close square brackets
Now space space space AX space equals space straight B space space space space space rightwards double arrow space space space space straight X space equals space straight A to the power of negative 1 end exponent straight B
rightwards double arrow space space space space space space space space space space space space open square brackets table row straight x row straight y end table close square brackets space equals space 1 over 38 open square brackets table row cell space space space 7 end cell cell space space space 1 end cell row cell negative 3 end cell cell space space space 5 end cell end table close square brackets space open square brackets table row 4 row 10 end table close square brackets space space space space space rightwards double arrow space space space space space open square brackets table row straight x row straight y end table close square brackets space equals space 1 over 38 open square brackets table row cell 28 plus 10 end cell row cell negative 12 plus 50 end cell end table close square brackets
rightwards double arrow space space space space space space space space space space space space space space space open square brackets table row straight x row straight y end table close square brackets space equals space 1 over 38 open square brackets table row 38 row 38 end table close square brackets space space space space rightwards double arrow space space space space space space open square brackets table row straight x row straight y end table close square brackets space equals space open square brackets table row 1 row 1 end table close square brackets
therefore space space space space space space space space space space space straight x space equals space 1 comma space space space straight y space equals space 1

    Question 247
    CBSEENMA12034751

    Using matrices, solve the following system of linear equations:
    x + 2y – 3z = – 4
    2x + 3y + 2z = 2
    3x – 3y – 4z = 11 

    Solution

    The given equations are
    x + 2y – 3z = – 4
    2x + 3y + 2z = 2
    3x – 3y – 4z = 11
    These equations can be written as
                        open square brackets table row 1 cell space space space space 2 end cell cell space space minus 3 end cell row 2 cell space space space 3 end cell cell space space space space space space 2 end cell row 3 cell space minus 3 end cell cell space space minus 4 end cell end table close square brackets space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row cell negative 4 end cell row cell space space space 2 end cell row cell space space 11 end cell end table close square brackets
    or space space AX space space equals space straight B space where space straight A space equals space open square brackets table row 1 cell space space space 2 end cell cell space space minus 3 end cell row 2 cell space space space space 3 end cell cell space space space space space space 2 end cell row 3 cell space minus 3 end cell cell space space minus 4 end cell end table close square brackets comma space space space space straight X space equals space open square brackets table row straight x row straight y row straight z end table close square brackets comma space space straight B space equals space open square brackets table row cell negative 4 end cell row cell space space 2 end cell row cell space space 11 end cell end table close square brackets
open vertical bar straight A close vertical bar space equals space open square brackets table row 1 cell space space space space 2 end cell cell space space minus 3 end cell row 2 cell space space space space 3 end cell cell space space space space space 2 end cell row 3 cell negative 3 end cell cell space minus 4 end cell end table close square brackets space equals space 1 space open vertical bar table row cell space space space 3 end cell cell space space space space space space space space 2 end cell row cell negative 3 end cell cell space space space minus 4 end cell end table close vertical bar minus space 2 space open vertical bar table row 2 cell space space space space space space space 2 end cell row 3 cell space space minus 4 end cell end table close vertical bar space plus space left parenthesis negative 3 right parenthesis space open vertical bar table row 2 cell space space space space space space space 3 end cell row 3 cell space space minus 3 end cell end table close vertical bar
space space space space space space equals 1 space left parenthesis negative 12 plus 6 right parenthesis space minus space 2 left parenthesis negative 8 minus 6 right parenthesis space minus space 3 left parenthesis negative 6 minus 9 right parenthesis space equals space 1 left parenthesis negative 6 right parenthesis space minus space 2 left parenthesis negative 14 right parenthesis minus 3 left parenthesis negative 15 right parenthesis
space space space space space space space equals negative 6 plus 28 plus 45 space equals space 67 space not equal to space 0   
    Co-factors of the elements of first row of | A | are
       negative open vertical bar table row cell space space space 2 end cell cell space space space minus 3 end cell row cell negative 3 end cell cell space space space minus 4 end cell end table close vertical bar comma space space space space open vertical bar table row 1 cell space space space minus 3 end cell row 3 cell space space space minus 4 end cell end table close vertical bar comma space space minus open vertical bar table row 1 cell space space space space space 2 end cell row 3 cell space minus 3 end cell end table close vertical bar space space straight i. straight e. space minus left parenthesis negative 8 minus 9 right parenthesis comma space space minus 4 plus 9 comma space space minus left parenthesis negative 3 minus 6 right parenthesis
straight i. straight e. space space space space 17 comma space space 5 comma space space 9 space respectively.
    Co-factors of the elements of thitd row of | A | are
    open vertical bar table row 2 cell space space minus 3 end cell row 3 cell space space space space space 2 end cell end table close vertical bar comma space space space space space minus open vertical bar table row 1 cell space space space minus 3 end cell row 2 cell space space space space space 2 end cell end table close vertical bar comma space space space space open vertical bar table row 1 cell space space space 2 end cell row 2 cell space space 3 end cell end table close vertical bar space space straight i. straight e. space space 4 plus 9 comma space space space space minus left parenthesis 2 plus 6 right parenthesis comma space space 3 minus 4
    i.e. 13, – 8, – 1 respectively.
    therefore space space space space space space space space space space space space space space adj. space straight A space equals space open square brackets table row cell negative 6 end cell cell space space 14 end cell cell space space minus 15 end cell row 17 cell space space space space 5 end cell cell space space space space space 9 end cell row 13 cell space minus 8 end cell cell space space space space 1 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row cell negative 6 end cell cell space space space 17 end cell cell space space space space space 13 end cell row cell space 14 end cell cell space space space 5 end cell cell space space space minus 8 end cell row cell negative 15 end cell cell space space 9 end cell cell space space space minus 1 end cell end table close square brackets
therefore space space space space space space space straight A to the power of negative 1 end exponent space space equals space fraction numerator adj. space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space 1 over 67 open square brackets table row cell negative 6 end cell cell space space 17 end cell cell space space 13 end cell row cell space space 14 end cell cell space space 5 end cell cell negative 8 end cell row cell negative 15 end cell cell space 9 end cell cell negative 1 end cell end table close square brackets
Now comma space AX space equals space straight B space space space space space rightwards double arrow space space space space space straight X equals straight A to the power of negative 1 end exponent straight B
    therefore space space space space space space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 over 67 open square brackets table row cell negative 6 end cell cell space space 17 end cell cell space space 13 end cell row 14 cell space 5 end cell cell negative 8 end cell row cell negative 15 end cell cell space 9 end cell cell negative 1 end cell end table close square brackets space open square brackets table row cell negative 4 end cell row cell space space 2 end cell row cell space 11 end cell end table close square brackets
space rightwards double arrow space space space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 over 67 open square brackets table row cell 24 plus 34 plus 143 end cell row cell negative 56 plus 10 minus 38 end cell row cell 60 plus 18 minus 11 end cell end table close square brackets space space space rightwards double arrow space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 over 67 open square brackets table row cell space space space space 201 end cell row cell negative 134 end cell row cell space space space space 67 end cell end table close square brackets
therefore space space space space space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row cell space space space space 3 end cell row cell negative 2 end cell row cell space space space 1 end cell end table close square brackets
space space space therefore space space space space space space space space space space space straight x space equals space 3 comma space space space space space straight y space equals space minus 2 comma space space space straight z space equals space 1.

    Question 248
    CBSEENMA12034756

    Using matrices, solve the following system of equations:
    3x – y + z = 5
    2x – 2y + 3z = 7
    x + y – z = 1

    Solution
    The given equations are
    3x – y + z = 5
    2x – 2y + 3z = 7
    x + y – z = 1
    These equations can be written as   
     open square brackets table row 3 cell space space space minus 1 end cell cell space space space space space space 1 end cell row 2 cell space space space space minus 2 end cell cell space space space space space space 3 end cell row 1 cell space space space space 1 end cell cell space space minus 1 end cell end table close square brackets space space space open square brackets table row straight x row straight y row straight z end table close square brackets space space equals space open square brackets table row cell space space 5 end cell row cell space space space 7 end cell row cell negative 1 end cell end table close square brackets
or space space space AX space equals straight B space where space straight A space equals space open square brackets table row 3 cell space space minus 1 end cell cell space space space 1 end cell row 2 cell space space space minus 2 end cell cell space space space 3 end cell row cell 1 space end cell cell space space space space 1 end cell cell space space 1 end cell end table close square brackets comma space space straight X space equals open square brackets table row straight x row straight y row straight z end table close square brackets space space straight B space equals space open square brackets table row cell space space 5 end cell row cell space space 7 end cell row cell negative 1 end cell end table close square brackets
open vertical bar straight A close vertical bar space equals space open vertical bar table row 3 cell space space minus 1 end cell cell space space space 1 end cell row 2 cell space space minus 2 end cell cell space space space space 3 end cell row 1 cell space space space 1 end cell cell space minus 1 end cell end table close vertical bar space equals space 3 space open vertical bar table row cell negative 2 end cell cell space space space 3 end cell row 1 cell space minus 1 end cell end table close vertical bar minus left parenthesis negative 1 right parenthesis space open vertical bar table row 2 cell space space space space 3 end cell row 1 cell space minus 1 end cell end table close vertical bar space plus space 1 open vertical bar table row 2 cell space space minus 2 end cell row 1 cell space space space space 1 end cell end table close vertical bar
space space space space space space equals 3 left parenthesis 2 minus 3 right parenthesis plus 1 left parenthesis negative 2 minus 3 right parenthesis plus 1 left parenthesis 2 plus 2 right parenthesis
space space space space space space space equals 3 left parenthesis negative 1 right parenthesis space plus space 1 left parenthesis negative 5 right parenthesis plus space 1 left parenthesis 4 right parenthesis space equals space minus 3 minus 5 plus 4 space equals space minus 4 not equal to 0
therefore space space space space straight A to the power of negative 1 end exponent space exists.
    Co-factors of the elements of first row of | A | are
    open vertical bar table row cell negative 2 end cell cell space space space space space space 3 end cell row 1 cell space space minus 1 end cell end table close vertical bar comma space space minus space open vertical bar table row 2 cell space space space space space 3 end cell row 1 cell space minus 1 end cell end table close vertical bar comma space space open vertical bar table row 2 cell space space space minus 2 end cell row 1 cell space space space space space 1 end cell end table close vertical bar
    i.e. – 1, 5, 4 respectively
    Co-factors of the elements of second row of | A | are
    negative open vertical bar table row cell negative 1 end cell cell space space space 1 end cell row 1 cell negative 1 end cell end table close vertical bar comma space space open vertical bar table row 3 cell space space space space space 1 end cell row 1 cell space minus 1 end cell end table close vertical bar comma space space space minus open vertical bar table row 3 cell space space space minus 1 end cell row 1 cell space space space minus 1 end cell end table close vertical bar
    i.e.   0. – 4, – 4 respectively.
    Co-factors of the elements of third row of | A | are
    open vertical bar table row cell negative 1 end cell cell space space space space 1 end cell row cell negative 2 end cell cell space space space 3 end cell end table close vertical bar comma space space space minus open vertical bar table row 3 cell space space space space 1 end cell row 2 cell space space space space 3 end cell end table close vertical bar comma space space open vertical bar table row 3 cell space space minus 1 end cell row 2 cell space space minus 2 end cell end table close vertical bar
    therefore space space space adj space straight A space equals space open square brackets table row cell negative 1 end cell cell space space space space space space 5 end cell cell space space space space space space 4 end cell row cell space space 0 end cell cell space minus 4 end cell cell space space minus 4 end cell row cell negative 1 end cell cell space minus 7 end cell cell space space minus 4 end cell end table close square brackets space equals space open square brackets table row cell negative 1 end cell cell space space space space 0 end cell cell space space space minus 1 end cell row cell space space 5 end cell cell space minus 4 end cell cell space space minus 7 end cell row cell space 4 end cell cell negative 4 end cell cell space space minus 4 end cell end table close square brackets
              straight A to the power of negative 1 end exponent space equals space fraction numerator adj space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space minus 1 fourth open square brackets table row cell negative 1 end cell cell space space space 0 end cell cell space space space minus 1 end cell row cell space space 5 end cell cell space space minus 4 end cell cell space space space minus 7 end cell row 4 cell negative 4 end cell cell space space space minus 4 end cell end table close square brackets
    Now,     AX space equals space straight B space space space rightwards double arrow space space space space space space space straight X space equals space straight A to the power of negative 1 end exponent straight B
    therefore space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space minus 1 fourth open square brackets table row cell negative 1 end cell cell space space space 0 end cell cell space space minus 1 end cell row 5 cell space minus 4 end cell cell space space space minus 7 end cell row 4 cell negative 4 end cell cell space space minus 4 end cell end table close square brackets space space open square brackets table row cell space space 5 end cell row cell space space 7 end cell row cell negative 1 end cell end table close square brackets
rightwards double arrow space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space minus 1 fourth open square brackets table row cell negative 5 plus 0 plus 1 end cell row cell 25 minus 28 plus 7 end cell row cell 20 minus 28 plus 4 end cell end table close square brackets space space rightwards double arrow space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space minus 1 fourth open square brackets table row cell negative 4 end cell row cell space space 4 end cell row cell space minus 4 end cell end table close square brackets
rightwards double arrow space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row cell space space space space 1 end cell row cell negative 1 end cell row cell space space space space 1 space end cell end table close square brackets
    therefore space space space space straight x space equals space 1 comma space space space space straight y space equals space minus 1 comma space space space straight z space equals space 1 space is space required space solution space. space
                 
              
    Question 249
    CBSEENMA12034760

    Using matrices, solve the following system of equations:
    2x – y + z = 0
    x + y – z = 6
    3x – y – 4 z = 7

    Solution

    The given equations are
    2x – y + z = 0
    x + y – z = 6
    3x – y – 4z = 7
    These equations can be written as
                         open square brackets table row 2 cell space space minus 1 end cell cell space space space space space space 1 end cell row 1 cell space space space space space space 1 end cell cell space space minus 1 end cell row 3 cell space space space minus 1 end cell cell space space space minus 4 end cell end table close square brackets space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row 0 row 6 row 7 end table close square brackets
    or          space space AX space equals space straight B space where space straight A space equals space open square brackets table row 2 cell space space minus 1 end cell cell space space space 1 end cell row 1 cell space space space space space 1 end cell cell space minus 1 end cell row 3 cell space space minus 1 end cell cell space minus 4 end cell end table close square brackets comma space space straight X space equals space open square brackets table row straight x row straight y row straight z end table close square brackets comma space space space straight B space equals space open square brackets table row 0 row 6 row 7 end table close square brackets
    Now                         straight A space equals space open square brackets table row 2 cell space space minus 1 end cell cell space space space 1 end cell row 1 cell space space space space 1 end cell cell space minus 1 end cell row 3 cell space minus 1 end cell cell space minus 4 end cell end table close square brackets
    therefore space space space space open vertical bar straight A close vertical bar space equals space open vertical bar table row 2 cell space space minus 1 end cell cell space space space space space 1 end cell row 1 cell space space space space space 1 end cell cell space minus 1 end cell row 3 cell space space minus 1 end cell cell space space minus 4 end cell end table close vertical bar space space equals space 2 space open vertical bar table row 1 cell space space minus 1 end cell row cell negative 1 end cell cell space space space minus 4 end cell end table close vertical bar minus left parenthesis negative 1 right parenthesis space open vertical bar table row 1 cell space space minus 1 end cell row 3 cell space space minus 4 end cell end table close vertical bar plus open vertical bar table row 1 cell space space space space space 1 end cell row 3 cell space minus 1 end cell end table close vertical bar
space space space space space space space space space space space space space space space equals 2 left parenthesis negative 4 minus 1 right parenthesis space plus space 1 left parenthesis negative 4 plus 3 right parenthesis space plus space 1 left parenthesis negative 1 minus 3 right parenthesis
space space space space space space space space space space space space space space space space space equals 2 left parenthesis negative 5 right parenthesis space plus space 1 left parenthesis negative 1 right parenthesis space plus space 1 left parenthesis negative 4 right parenthesis space equals space minus 10 minus 1 minus 4 space equals space minus 15 not equal to space 0
therefore space space space space straight A to the power of negative 1 end exponent space space exists.
    Co-factors of the elements of first row of | A | are
    open vertical bar table row cell space space 1 end cell cell space space space minus 1 end cell row cell negative 1 end cell cell space space minus 4 end cell end table close vertical bar comma space space space minus open vertical bar table row 1 cell space space minus 1 end cell row 3 cell space space minus 4 end cell end table close vertical bar space space comma space space open vertical bar table row 1 cell space space space space space 1 end cell row 3 cell space minus 1 end cell end table close vertical bar
    i.e. – 5, 1, – 4 respectively.
    Co-factors of the elements of second row of | A | are
    negative open vertical bar table row cell negative 1 end cell cell space space space 1 end cell row cell negative 1 end cell cell space minus 4 end cell end table close vertical bar comma space space space open vertical bar table row 2 cell space space space space space space space 1 end cell row 3 cell space space minus 4 end cell end table close vertical bar comma space space space minus open vertical bar table row 2 cell space space space minus 1 end cell row 3 cell space space minus 1 end cell end table close vertical bar

    i.e. – 5, – 11, – 1 respectively.
    Co-factors of the elements of third row of | A | are
    open vertical bar table row cell negative 1 end cell cell space space space space 1 end cell row 1 cell negative 1 end cell end table close vertical bar comma space space space minus open vertical bar table row 2 cell space space space space space 1 end cell row 1 cell space minus 1 end cell end table close vertical bar comma space space open vertical bar table row 2 cell space space minus 1 end cell row 1 cell space space space space 1 end cell end table close vertical bar
    i.e. 0, 3, 3 respectively.
    adj space straight A space equals space open square brackets table row cell negative 5 end cell cell space space space 1 end cell cell space space minus 4 end cell row cell negative 5 end cell cell space space minus 11 end cell cell space space space minus 1 end cell row 0 3 cell space space space space space space 3 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row cell negative 5 end cell cell space space space minus 5 end cell cell space space space 0 end cell row 1 cell space minus 11 end cell cell space space 3 end cell row cell negative 4 end cell cell space minus 1 end cell cell space space 3 end cell end table close square brackets
therefore space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space minus 1 over 15 open square brackets table row cell negative 5 end cell cell space space minus 5 end cell cell space space space 0 end cell row cell space space 1 end cell cell space space minus 11 end cell cell space space 3 end cell row cell negative 4 end cell cell space space minus 1 end cell cell space space 3 end cell end table close square brackets
Now space space space space space space space AX space equals space straight B space space space space space rightwards double arrow space space space straight X space equals space straight A to the power of negative 1 end exponent straight B
therefore space space space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space minus 1 over 15 open square brackets table row cell negative 5 end cell cell space space space minus 5 end cell cell space space space 0 end cell row 1 cell space space minus 11 end cell cell space space 3 end cell row cell negative 4 end cell cell space minus 1 end cell cell space 3 end cell end table close square brackets space open square brackets table row 0 row 6 row 7 end table close square brackets
rightwards double arrow space space space space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space minus 1 over 15 open square brackets table row cell 0 minus 30 plus 0 end cell row cell 0 minus 66 plus 21 end cell row cell 0 minus 6 plus 21 end cell end table close square brackets space space space space rightwards double arrow space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space minus 1 over 15 open square brackets table row cell negative 30 end cell row cell negative 45 end cell row 15 end table close square brackets space space
rightwards double arrow space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row cell space space space 2 end cell row cell space space space 3 end cell row cell negative 1 end cell end table close square brackets
therefore space space space space straight x space equals space 2 comma space space space straight y space equals space 3 comma space space space straight z space equals space minus 1 space space is space the space solution.

     

    Question 250
    CBSEENMA12034763

    Using matrices, solve the following system of equations:
    x + 2y + z =1
    2x – y + z = 5
    3x + y – z = 0 

    Solution

    The given equations are
    x + 2y + z = 1
    2x – y + z = 5
    3x + y – z = 0
    These equations can be written as
        open square brackets table row 1 cell space space space space space space space 2 end cell cell space space space space space space 1 end cell row 2 cell space space space minus 1 end cell cell space space space space space space 1 end cell row 3 cell space space space space space 1 end cell cell space space minus 1 end cell end table close square brackets space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row 1 row 5 row 0 end table close square brackets
or space space space AX space equals space straight B space where space straight A space equals space open square brackets table row 1 cell space space space space space 2 end cell cell space space space space space 1 end cell row 2 cell space minus 1 end cell cell space space space space space 1 end cell row 3 cell space space space 1 end cell cell space space minus 1 end cell end table close square brackets comma space space straight X space equals space open square brackets table row straight x row straight y row straight z end table close square brackets comma space space space straight B space equals space open square brackets table row 1 row 5 row 0 end table close square brackets
therefore space space space space space space space open vertical bar straight A close vertical bar space equals space open vertical bar table row 1 cell space space space space 2 end cell cell space space 1 end cell row 2 cell space minus 1 end cell cell space 1 end cell row 3 cell space space 1 end cell cell space minus 1 end cell end table close vertical bar space equals space 1 space open vertical bar table row cell negative 1 end cell cell space space space space 1 end cell row 1 cell space minus 1 end cell end table close vertical bar space minus space 2 open vertical bar table row 2 cell space space space space 1 end cell row 3 cell space minus 1 end cell end table close vertical bar plus 1 open vertical bar table row 2 cell space space minus 1 end cell row 3 cell space space space space 1 end cell end table close vertical bar
space space space space space space space space space space space space space space space space space equals 1 left parenthesis 1 minus 1 right parenthesis minus 2 left parenthesis negative 2 minus 3 right parenthesis plus 1 left parenthesis 2 plus 3 right parenthesis
space space space space space space space space space space space space space space space space space space equals space 1 left parenthesis 0 right parenthesis minus 2 left parenthesis negative 5 right parenthesis plus 1 left parenthesis 5 right parenthesis space equals space 0 plus 10 plus 5 space equals space 15 not equal to 0
therefore space space space space space space space straight A to the power of negative 1 end exponent space exists.
    Co-factors of the elements of first row of | A | are
    open vertical bar table row cell negative 1 end cell cell space space space space space 1 end cell row 1 cell space minus 1 end cell end table close vertical bar comma space space space minus open vertical bar table row 2 cell space space space space space 1 end cell row 3 cell space minus 1 end cell end table close vertical bar comma space space space open vertical bar table row 2 cell space space minus 1 end cell row 3 cell space space space space 1 end cell end table close vertical bar

    i.e. 0, 5, 5 respectively.
    Co-factors of the elements of second row of | A | are
    negative open vertical bar table row 2 cell space space space space space space space space 1 end cell row 1 cell space space minus 1 end cell end table close vertical bar comma space space open vertical bar table row 1 cell space space space space space 1 end cell row 3 cell space minus 1 end cell end table close vertical bar comma space space minus open vertical bar table row 1 cell space space space 2 end cell row 3 cell space space 1 end cell end table close vertical bar

    i.e. 3, – 4, 5 respectively.
    Co-factors of the elements of third row of | A | are
    open vertical bar table row 2 cell space space space 1 end cell row cell negative 1 end cell cell space space space 1 end cell end table close vertical bar comma space space minus open vertical bar table row 1 cell space space space 1 end cell row 2 cell space space space 1 end cell end table close vertical bar comma space space open vertical bar table row 1 cell space space space space space space 2 end cell row 2 cell space space minus 1 end cell end table close vertical bar
    i.e.    3, 1, – 5 respectively.
    therefore space space space adj space straight A space equals space open square brackets table row 0 cell space space space space 5 end cell cell space space space space space 5 end cell row 3 cell space space minus 4 end cell cell space space space space space 5 end cell row 3 cell space space 1 end cell cell space minus 5 end cell end table close square brackets to the power of apostrophe space equals space space open square brackets table row 0 cell space space space space space space 3 end cell cell space space space space space space 3 end cell row 5 cell space space minus 4 end cell cell space space space space space space 1 end cell row 5 cell space space space space space space 5 end cell cell space space minus 5 end cell end table close square brackets
therefore space space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space 1 over 15 open square brackets table row 0 cell space space space space 3 end cell cell space space space 3 end cell row 5 cell space minus 4 end cell cell space space space space 1 end cell row 5 cell space space space space 5 end cell cell space minus 5 end cell end table close square brackets
Now space space space AX space equals space straight B space space space space space rightwards double arrow space space space space straight X space equals space straight A to the power of negative 1 end exponent straight B
therefore space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 over 15 open square brackets table row 0 cell space space space 3 end cell cell space space space space 3 end cell row 5 cell space minus 4 end cell cell space space space space 1 end cell row 5 cell space space space space 5 end cell cell space minus 5 end cell end table close square brackets space space space space open square brackets table row 1 row 5 row 0 end table close square brackets
rightwards double arrow space space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 over 15 open square brackets table row cell 0 plus 15 plus 0 end cell row cell 5 minus 20 plus 0 end cell row cell 5 plus 25 plus 0 end cell end table close square brackets space space space space rightwards double arrow space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 over 15 open square brackets table row cell space space space 15 end cell row cell negative 15 end cell row cell space space space space space 30 end cell end table close square brackets
rightwards double arrow space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row cell space space space space 1 end cell row cell negative 1 end cell row cell space space space 2 end cell end table close square brackets
therefore space space space space space straight x space equals space 1 comma space space space straight y space equals space minus 1 comma space space space straight z space equals space 2 space is space the space required space solution. space

    Question 251
    CBSEENMA12034766

    Using matrices, solve the following system of equations:
    2x + y – 3r = 13
    x + y – z = 6
    2x – y + 4z = – 12

    Solution

    The given equations are
    2x + y – 3 z = 13
    x + y – z – 6
    2x – y + 4 z = – 12
    These equations can be written as
                         open square brackets table row 2 cell space space space 1 end cell cell space space space minus 3 end cell row 1 cell space space space space 1 end cell cell space space minus 1 end cell row 2 cell space minus 1 end cell cell space space space space 4 end cell end table close square brackets space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row cell space space 13 end cell row cell space space 6 end cell row cell negative 12 end cell end table close square brackets
       
         or space space AX space equals space straight B space where space straight A space equals space open square brackets table row 2 cell space space space space space space 1 end cell cell space space space minus 3 end cell row 1 cell space space space space space 1 end cell cell space space minus 1 end cell row 2 cell space minus 1 end cell cell space space space space space 4 end cell end table close square brackets comma space space space straight X space equals space open square brackets table row straight x row straight y row straight z end table close square brackets comma space space straight B space equals space open square brackets table row cell space space space 13 end cell row cell space space 6 end cell row cell negative 12 end cell end table close square brackets
Now space space space space open vertical bar straight A close vertical bar space equals space open vertical bar table row 2 cell space space space space space 1 end cell cell space space space space minus 3 end cell row 1 cell space space space space space space 1 end cell cell space space space minus 1 end cell row 2 cell space minus 1 end cell cell space space space space space 4 end cell end table close vertical bar space equals space 2 open vertical bar table row cell space space 1 end cell cell space space space minus 1 end cell row cell negative 1 end cell cell space space space space space space 4 end cell end table close vertical bar space minus 1 space open vertical bar table row 1 cell space space minus 1 end cell row 2 cell space space space space space space 4 end cell end table close vertical bar plus left parenthesis negative 3 right parenthesis space open vertical bar table row 1 cell space space space space space 1 end cell row 2 cell space minus 1 end cell end table close vertical bar
space space space space space space space space space space space space space space space space space space equals space 2 left parenthesis 4 minus 1 right parenthesis minus 1 left parenthesis 4 plus 2 right parenthesis minus 3 left parenthesis negative 1 minus 2 right parenthesis space equals space 6 minus 6 plus 9 space equals space 9 space not equal to space 0
therefore space space space space space space space space straight A to the power of negative 1 end exponent space exists.
    Co-factors of the elements of first row of | A | are
    open vertical bar table row 1 cell space space space minus 1 end cell row cell negative 1 end cell cell space space space space 4 end cell end table close vertical bar comma space space space minus open vertical bar table row 1 cell space space space minus 1 end cell row 2 cell space space space space space 4 end cell end table close vertical bar comma space space space open vertical bar table row 1 cell space space space space space space space 1 end cell row 2 cell space space space minus 1 end cell end table close vertical bar

    i.e. 3, – 6, – 3 respectively.
    Co-factors of the elements of second row of | A | are
    negative open vertical bar table row cell space space 1 end cell cell space space minus 3 end cell row cell negative 1 end cell cell space space space space 4 end cell end table close vertical bar comma space space space space open vertical bar table row 2 cell space space space minus 3 end cell row 2 cell space space space space space 4 end cell end table close vertical bar comma space space space minus open vertical bar table row 2 cell space space space space space 1 end cell row 2 cell space minus 1 end cell end table close vertical bar
    i.e. – 1,  14,  4 respectively.
    Co-factors of the elements of third row of | A | are
    open vertical bar table row 1 cell space space minus 3 end cell row 1 cell space space minus 1 end cell end table close vertical bar comma space space space minus open vertical bar table row 2 cell space space space minus 3 end cell row 1 cell space space space minus 1 end cell end table close vertical bar comma space space space open vertical bar table row 2 cell space space space 1 end cell row 1 cell space space space 1 end cell end table close vertical bar
    i.e.   2, – 1, 1 respectively.
    therefore space space space space space adj. space straight A space equals space open square brackets table row 3 cell space space space minus 6 end cell cell space space minus 3 end cell row cell negative 1 end cell cell space space space space 14 end cell cell space space space 4 end cell row 2 cell space minus 1 end cell cell space space 1 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row cell space space 3 end cell cell space space minus 1 end cell cell space space space space space 2 end cell row cell negative 6 end cell cell space space space 14 end cell cell space space minus 1 end cell row cell negative 3 end cell cell space space 4 end cell cell space space space space 1 end cell end table close square brackets
therefore space space space space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space 1 over 9 open square brackets table row 3 cell space space minus 1 end cell cell space space space space 2 end cell row cell negative 6 end cell cell space space space 14 end cell cell space minus 1 end cell row cell negative 3 end cell cell space space 4 end cell cell space 1 end cell end table close square brackets
Now space space space AX space equals space straight B space space space space rightwards double arrow space space space space space straight X space equals space straight A to the power of negative 1 end exponent straight B
therefore space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 over 9 open square brackets table row cell space space space space 3 end cell cell space space space space space space minus 1 end cell cell space space space space space 2 end cell row cell negative 6 end cell cell space space space space 14 end cell cell space space minus 1 end cell row cell negative 3 end cell cell space space space space 4 end cell cell space space space space 1 end cell end table close square brackets space space open square brackets table row cell space space 13 end cell row cell space space 6 end cell row cell negative 12 end cell end table close square brackets
rightwards double arrow space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 over 9 open square brackets table row cell 39 minus 6 minus 24 end cell row cell negative 78 plus 84 plus 12 end cell row cell negative 39 plus 24 minus 12 end cell end table close square brackets space space space space space space space space space space space space space space space space rightwards double arrow space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 over 9 open square brackets table row 9 row 18 row 27 end table close square brackets
rightwards double arrow space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row cell space space space space 1 end cell row cell space space space 2 end cell row cell negative 3 end cell end table close square brackets
therefore space space space space space space straight x space equals space 1 comma space space straight y space equals space 2 comma space space space straight z space equals space minus 3 space is space the space required space solution. space

    Question 252
    CBSEENMA12034770

    Using matrices, solve the following system of linear equations.
    3x + 4y + 2z = 8
    2y –3z = 3
    x – 2y + 6z = –2  

    Solution

    The given equations are
    3x + 4y + 2z = 8
    2y – 3z = 3
    x – 2y + 6z = –2
    There equations can be written as
          open square brackets table row 3 cell space space space space space 4 end cell cell space space space space space space 2 end cell row 0 cell space space space space space space 2 end cell cell space space minus 3 end cell row 1 cell space space space minus 2 end cell cell space space space space 6 end cell end table close square brackets space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row cell space space 8 end cell row cell space space 3 end cell row cell negative 2 end cell end table close square brackets
or space space space AX space equals space straight B space where space straight A space equals space open square brackets table row 3 cell space space space space 4 end cell cell space space space space 2 end cell row 0 cell space space space space space 2 end cell cell space minus 3 end cell row 1 cell space minus 2 end cell cell space space space space 6 end cell end table close square brackets comma space space space space straight X space equals space open square brackets table row straight x row straight y row straight z end table close square brackets comma space space straight B space equals space open square brackets table row cell space space space space 8 end cell row cell space space space 3 end cell row cell negative 2 end cell end table close square brackets
space space space space space space space space space open vertical bar straight A close vertical bar space equals space open vertical bar table row 3 cell space space space 4 end cell cell space space space space 2 end cell row 0 cell space space space 2 end cell cell space minus 3 end cell row 1 cell space minus 2 end cell cell space space space space space 6 end cell end table close vertical bar space equals space 3 space open vertical bar table row 2 cell space space minus 3 end cell row cell negative 2 end cell cell space space space space 6 end cell end table close vertical bar minus space 4 open vertical bar table row 0 cell space space minus 3 end cell row 1 cell space space 6 end cell end table close vertical bar plus 2 space open vertical bar table row 0 cell space space space space space 2 end cell row 1 cell space minus 2 end cell end table close vertical bar
space space space space space space space space space space space space space space space space equals space 3 space left parenthesis 12 minus 6 right parenthesis space minus space 4 left parenthesis 0 plus 3 right parenthesis space plus space 2 left parenthesis 0 minus 2 right parenthesis
space space space space space space space space space space space space space space space space space equals 3 left parenthesis 6 right parenthesis minus 4 left parenthesis 3 right parenthesis space plus 2 space left parenthesis negative 2 right parenthesis space equals space 18 minus 12 minus 4 space equals space 2 space not equal to 0
therefore space space space space space space straight A to the power of negative 1 end exponent space exists.
    Co-factors of the elements of first row of | A | are
              open vertical bar table row cell space space 2 end cell cell space space space minus 3 end cell row cell negative 2 end cell cell space space space space space 6 end cell end table close vertical bar comma space space space minus open vertical bar table row 0 cell space space space minus 3 end cell row 1 cell space space space space space space 6 end cell end table close vertical bar comma space space open vertical bar table row 0 cell space space space space space 2 end cell row 1 cell space minus 2 end cell end table close vertical bar
    i.e. 6, –3, –2 respectively.
    Co-factors of the elements of second row of | A | are
    negative open vertical bar table row cell space 4 end cell cell space space space 2 end cell row cell negative 2 end cell cell space space space 6 end cell end table close vertical bar comma space space space open vertical bar table row 3 cell space space space 2 end cell row 1 cell space space space 6 end cell end table close vertical bar comma space space space minus open vertical bar table row 3 cell space space space space 4 end cell row 1 cell space minus 2 end cell end table close vertical bar
    i.e. – 28, 16, 10 respectively
    Co-factors of the elements of third row of | A | are
    open vertical bar table row 4 cell space space space space space 2 end cell row 2 cell space space minus 3 end cell end table close vertical bar comma space space space minus open vertical bar table row 3 cell space space space space space 2 end cell row 0 cell space minus 3 end cell end table close vertical bar comma space space space open vertical bar table row 3 cell space space 4 end cell row 0 cell space space 2 end cell end table close vertical bar
    i.e.    – 16, 9, 6 respectively.
    therefore space space space space space adj. space straight A space equals space open square brackets table row 6 cell space space space minus 3 end cell cell space space minus 2 end cell row cell negative 28 end cell cell space space space space 16 end cell cell space space space 10 end cell row cell negative 16 end cell cell space space space space 9 end cell cell space space 6 end cell end table close square brackets to the power of 1 space equals space open square brackets table row cell space space 6 end cell cell space space minus 28 end cell cell space space minus 16 end cell row cell negative 3 end cell cell space space space space 16 end cell cell space space space space 9 end cell row cell negative 2 end cell cell space space space space 10 end cell cell space space space 6 end cell end table close square brackets
space space space space space space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space 1 half open square brackets table row cell space space space space 6 end cell cell space space space minus 28 end cell cell space space minus 16 end cell row cell negative 3 end cell cell space space space space space 16 end cell cell space space space 9 end cell row cell negative 2 end cell cell space space space space 10 end cell cell space space space 6 end cell end table close square brackets
Now space space space space space space space space space space space space AX space equals space straight B space space space space rightwards double arrow space space space straight X space equals space straight A to the power of negative 1 end exponent straight B
therefore space space space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 half open square brackets table row cell space space 6 end cell cell space space minus 28 end cell cell space space minus 16 end cell row cell negative 3 end cell cell space space space space 16 end cell cell space space space space 9 end cell row cell negative 2 end cell cell space space space space 10 end cell cell space space space 6 end cell end table close square brackets space space space open square brackets table row cell space space 8 end cell row cell space space space 3 end cell row cell negative 2 end cell end table close square brackets space space space rightwards double arrow space space space space space open square brackets table row straight x row straight y row 2 end table close square brackets space equals space 1 half open square brackets table row cell 48 minus 84 plus 32 end cell row cell negative 24 space plus space 48 minus 18 end cell row cell negative 16 plus 30 minus 12 end cell end table close square brackets
rightwards double arrow space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 half open square brackets table row cell negative 4 end cell row cell space space 6 end cell row cell space 2 end cell end table close square brackets space space space space rightwards double arrow space space space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row cell negative 2 end cell row cell space space 3 end cell row cell space 1 end cell end table close square brackets
therefore space space space space space space straight x space equals space minus 2 comma space space space space straight y space equals space 3 comma space space space straight z space equals space 1 space is space the space required space solution. space

    Question 253
    CBSEENMA12034771

    Using matrices, solve the following system of linear equations:
    x – y + z = 1
    2x –  yz = 2
    x – 2y – z

    Solution

    The given equations are
    x – y + z = 1
    2x+ y – z = 2
    x 2 y – z = 4
    These equations can be written as

    Question 254
    CBSEENMA12034777

    Using matrices, solve the following system of linear equations:
    x – y = 3
    2x + 3y + 4z = 17
    y + 2 z = 7

    Solution

    The given equations are
    x – y = 3
    2x + 3y + 4z = 17
    y + 2z = 7
    These equations can be written as
                    open square brackets table row 1 cell negative 1 end cell cell space space 0 end cell row 2 cell space space 3 end cell cell space 4 end cell row 0 1 cell space 2 end cell end table close square brackets space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row 3 row 17 row 7 end table close square brackets
    or    AX equals space straight B space where space straight A space equals space open square brackets table row 1 cell space minus 1 end cell cell space space 0 end cell row 2 cell space space 3 end cell 4 row 0 1 cell space 2 end cell end table close square brackets comma space space space straight X space equals space open square brackets table row straight x row straight y row straight z end table close square brackets comma space space straight B space equals space open square brackets table row 3 row 17 row 7 end table close square brackets
    space Now space open vertical bar straight A close vertical bar space equals open vertical bar table row 1 cell space space minus 1 end cell cell space space 0 end cell row 2 cell space space space space 3 end cell cell space 4 end cell row 0 cell space space 1 end cell cell space 2 end cell end table close vertical bar space equals space 1 open vertical bar table row 3 cell space space 4 end cell row 1 cell space 2 end cell end table close vertical bar space minus space left parenthesis negative 1 right parenthesis space open vertical bar table row 2 cell space space 4 end cell row 0 cell space space 2 end cell end table close vertical bar space plus space 0 space open vertical bar table row 2 cell space space 3 end cell row 0 cell space space 1 end cell end table close vertical bar
space space space space space space space equals 1 left parenthesis 6 minus 4 right parenthesis space plus space 1 thin space left parenthesis 4 minus 0 right parenthesis space plus space 0 space equals space 2 plus 4 plus 0 space equals space 6 space not equal to 0
therefore space space space straight A to the power of negative 1 end exponent space exists.
    Co-factors of elements of first row of | A | are
    open vertical bar table row 3 cell space space 4 end cell row 1 cell space space space 2 end cell end table close vertical bar comma space space minus open vertical bar table row 2 cell space space space 4 end cell row 0 cell space space 2 end cell end table close vertical bar comma space space space open vertical bar table row 2 cell space space space 3 end cell row 0 cell space space space 1 end cell end table close vertical bar
    i.e. 2, – 4,   2 respectively.
    Co-factors of the elements of second row of | A | are
    negative open vertical bar table row cell negative 1 end cell cell space space 0 end cell row 1 cell space space 2 end cell end table close vertical bar comma space space space space open vertical bar table row 1 cell space space space 0 end cell row 0 cell space space space 2 end cell end table close vertical bar comma space space space minus open vertical bar table row 1 cell space space minus 1 end cell row 0 cell space space space space space 1 end cell end table close vertical bar
    i.e.   2,   2, – 1 respectively.
    Co-factors of the elements of third row of | A | are
    open vertical bar table row cell negative 1 end cell cell space space 0 end cell row cell space space 3 end cell cell space space 4 end cell end table close vertical bar comma space space space space space space minus open vertical bar table row 1 cell space space space space 0 end cell row 2 cell space space space space 4 end cell end table close vertical bar comma space space space open vertical bar table row 1 cell space space space minus 1 end cell row 2 cell space space space space space 3 end cell end table close vertical bar
    i.e. – 4, – 4, 5 respectively.
    therefore space space space space adj space straight A space equals space open square brackets table row cell space 2 end cell cell space space space minus 4 end cell cell space space space space space 2 end cell row cell space 2 end cell cell space space space space space space space 2 end cell cell space minus 1 end cell row cell negative 4 end cell cell space space space minus 4 end cell cell space space space space 5 end cell end table close square brackets to the power of apostrophe space space open square brackets table row 2 cell space space space space space 2 end cell cell space space minus 4 end cell row cell negative 4 end cell cell space space space space space 2 end cell cell space space minus 4 end cell row 2 cell space space minus 1 end cell cell space space space space space 5 end cell end table close square brackets
Now space AX space equals space straight B space space space space space space space rightwards double arrow space space space space straight X space equals space straight A to the power of negative 1 end exponent straight B
therefore space space space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 over 6 open square brackets table row cell space space 2 end cell cell space space space space space space 2 end cell cell space space minus 4 end cell row cell negative 4 end cell cell space space space space space space 2 end cell cell space space minus 4 end cell row cell space space space 2 end cell cell space space minus 1 end cell cell space space space space space space space 5 end cell end table close square brackets space space open square brackets table row 3 row 17 row 7 end table close square brackets

rightwards double arrow space space space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 over 6 open square brackets table row cell space space 6 plus 34 minus 28 end cell row cell negative 12 plus 34 minus 28 end cell row cell 6 minus 17 plus 35 end cell end table close square brackets space space space space space rightwards double arrow space space space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 over 6 open square brackets table row cell space 12 end cell row cell negative 6 end cell row 24 end table close square brackets

therefore space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space space open square brackets table row cell space space space space 2 end cell row cell negative 1 end cell row cell space space space 4 end cell end table close square brackets
therefore space space space space space straight x space equals space 2 comma space space space straight y space equals space minus 1 comma space space space straight z space equals space 4 space is space the space required space solution.

    Question 255
    CBSEENMA12034782

    Solve by matrix method:
    y + 2z = – 8
    x + 2y + 3z = – 14
    3x + y + z = – 8

    Solution

    The given equations are
    y + 2z = – 8
    x + 2y + 3z = – 14
    3x + y + z = – 8
    These equations can be written as
                                open square brackets table row 0 cell space space 1 end cell cell space space 2 end cell row 1 cell space space 2 end cell cell space 3 end cell row 3 cell space 1 end cell cell space 1 end cell end table close square brackets space equals space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row cell negative 8 end cell row cell negative 14 end cell row cell negative 8 end cell end table close square brackets
    or     AX space equals space straight B space where space straight A space equals space open square brackets table row 0 cell space space 1 end cell cell space space 2 end cell row 1 cell space space 2 end cell cell space space 3 end cell row 3 cell space space 1 end cell cell space space 1 end cell end table close square brackets comma space space space straight X space equals space open square brackets table row straight x row straight y row straight z end table close square brackets comma space space straight B space equals space open square brackets table row cell negative 8 end cell row cell negative 14 end cell row cell negative 8 end cell end table close square brackets space space
         open vertical bar straight A close vertical bar space equals space open vertical bar table row 0 cell space space space 1 end cell cell space space 2 end cell row 1 cell space space 2 end cell cell space space 3 end cell row 3 cell space space 1 end cell cell space space 1 end cell end table close vertical bar space equals space 0 open vertical bar table row 2 cell space space space space 3 end cell row 1 cell space space space 1 end cell end table close vertical bar minus 1 open vertical bar table row 1 cell space space space space 3 end cell row 3 cell space space space space 1 end cell end table close vertical bar plus space 2 open vertical bar table row 1 cell space space space 2 end cell row 3 cell space space 1 end cell end table close vertical bar
space space space space space space equals 0 left parenthesis 2 minus 3 right parenthesis space minus space 1 left parenthesis 1 minus 9 right parenthesis space plus space 2 left parenthesis 1 minus 6 right parenthesis space equals space 0 plus 8 minus 10 space equals space minus 2 space not equal to space 0
space therefore space space space straight A to the power of negative 1 end exponent space exists.
    Co-factors of the elements of first row of | A | are
    open vertical bar table row 2 cell space space space 3 end cell row 1 cell space space 1 end cell end table close vertical bar comma space space space minus open vertical bar table row 1 cell space space space 3 end cell row 3 cell space space space 1 end cell end table close vertical bar comma space space space space open vertical bar table row 1 cell space space space space 2 end cell row 3 cell space space space 1 end cell end table close vertical bar
    i.e. –1, 8, –5 respectively.
    Co-factors of the elements of second row of | A | are
    negative open vertical bar table row 1 cell space space space 2 end cell row 1 cell space space 1 end cell end table close vertical bar comma space space space space open vertical bar table row 0 cell space space 2 end cell row 3 cell space space 1 end cell end table close vertical bar comma space space space minus open vertical bar table row 0 cell space space space 1 end cell row 3 cell space space 1 end cell end table close vertical bar
    i.e. 1, –6, 3 respectively.
    Co-factors of the elements of third row of | A | are
    open vertical bar table row 1 cell space space space 2 end cell row 2 cell space space space 3 end cell end table close vertical bar comma space space space space minus open vertical bar table row 0 cell space space space space 2 end cell row 1 cell space space space 3 end cell end table close vertical bar comma space space open vertical bar table row 0 cell space space space 1 end cell row 1 cell space space 2 end cell end table close vertical bar
    i.e.   –1,   2, –1 respectively.
    therefore space space space space adj. space straight A space equals space open square brackets table row cell negative 1 end cell cell space space space space 8 end cell cell space space minus 5 end cell row cell space space 1 end cell cell space space minus 6 end cell cell space space space space space space 3 end cell row cell negative 1 end cell cell space space space space space 2 end cell cell space space minus 1 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row cell negative 1 end cell cell space space space space space 1 end cell cell space space space minus 1 end cell row cell space space space space 8 end cell cell space space minus 6 end cell cell space space space space space space space 2 end cell row cell space space minus 5 end cell cell space space space space space 3 end cell cell space space minus 1 end cell end table close square brackets
therefore space space space space straight A to the power of negative 1 end exponent equals space fraction numerator adj space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space minus 1 half open square brackets table row cell negative 1 end cell cell space space space space space 1 end cell cell space space space minus 1 end cell row cell space space space 8 end cell cell space space minus 6 end cell cell space space space space space space 2 end cell row cell negative 5 end cell cell space space space space 3 end cell cell space space minus 1 end cell end table close square brackets
Now space AX space equals space straight B space space space space rightwards double arrow space space space space space space space space space space space straight X space equals space straight A to the power of negative 1 end exponent straight B
therefore space space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space minus 1 half open square brackets table row cell negative 1 end cell cell space space space space space 1 end cell cell space space space minus 1 end cell row cell space space space space 8 end cell cell space space minus 6 end cell cell space space space space space space 2 end cell row cell space minus 5 end cell cell space space space space 3 end cell cell space space minus 1 end cell end table close square brackets space open square brackets table row cell negative 8 end cell row cell negative 14 end cell row cell negative 8 end cell end table close square brackets
rightwards double arrow space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space minus 1 half open square brackets table row cell 8 minus 14 plus 8 end cell row cell negative 64 plus 84 minus 16 end cell row cell 40 minus 42 plus 8 end cell end table close square brackets
rightwards double arrow space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space minus 1 half open square brackets table row 2 row 4 row 6 end table close square brackets space space space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row cell negative 1 end cell row cell negative 2 end cell row cell negative 3 end cell end table close square brackets
therefore space space space space straight x space equals space minus 1 comma space space space space space space straight y space equals space minus 2 comma space space space space space straight z space equals space minus 3 space is space required space solution.

    Question 256
    CBSEENMA12034784

    Solve the following system of equations by matrix method:
    3x – 2y + 3z = 8
    2x + y – z = 1
    4x – 3y + 2z = 4

    Solution
    The given equations are
    3x – 2y + 3z = 8
    2x + y – z = 1
    4x – 3y + 2z = 4
    These equations can be written as
                    open square brackets table row 3 cell space space minus 2 end cell cell space space space space space space 3 end cell row 2 cell space space space space space 1 end cell cell space minus 1 end cell row 4 cell space space minus 3 end cell cell space space space 2 end cell end table close square brackets space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row 8 row 1 row 4 end table close square brackets
    or     AX space equals space straight B space where space straight A space equals space open square brackets table row 3 cell space minus 2 end cell cell space space space space space 3 end cell row 2 cell space space space space space 1 end cell cell space space minus 1 end cell row 4 cell space minus 3 end cell cell space space space space space 2 end cell end table close square brackets comma space space space straight X space equals space open square brackets table row straight x row straight y row straight z end table close square brackets comma space space space straight B space equals space open square brackets table row 8 row 1 row 4 end table close square brackets
           open vertical bar straight A close vertical bar space equals space open vertical bar table row 3 cell space space space minus 2 end cell cell space space space space 3 end cell row 2 cell space space space space space 1 end cell cell negative 1 end cell row 4 cell space minus 3 end cell cell space space space 2 end cell end table close vertical bar space equals space 3 space open vertical bar table row cell space space 1 end cell cell space space space minus 1 end cell row cell negative 3 end cell cell space space space space space space 2 end cell end table close vertical bar minus left parenthesis negative 2 right parenthesis space open vertical bar table row 2 cell space space space minus 1 end cell row 4 cell space space space space space space 2 end cell end table close vertical bar plus 3 space open vertical bar table row 2 cell space space space space space space 1 end cell row 4 cell space space minus 3 end cell end table close vertical bar
space space space space equals 3 left parenthesis 2 minus 3 right parenthesis plus 2 left parenthesis 4 plus 4 right parenthesis plus 3 left parenthesis negative 6 minus 4 right parenthesis space equals negative 3 plus 16 minus 30 space equals 17 space not equal to 0
therefore space space space space space straight A to the power of negative 1 end exponent space exists.
space space space space space space straight A subscript 11 space equals space open vertical bar table row 1 cell space space space minus 1 end cell row cell negative 3 end cell cell space space space space space space 2 end cell end table close vertical bar space equals space 2 minus 3 space equals space minus 1
space space space space space space straight A subscript 12 space equals space minus open vertical bar table row 2 cell space space space minus 1 end cell row 4 cell space space space space space space 2 end cell end table close vertical bar space equals space minus left parenthesis 4 plus 4 right parenthesis space equals space minus 8
space space space space space straight A subscript 13 space equals space open vertical bar table row 2 cell space space space space space space space 1 end cell row 4 cell space space space minus 3 end cell end table close vertical bar space equals space minus 6 minus 4 space equals negative 10
space space space space space space straight A subscript 21 space equals space minus open vertical bar table row cell negative 2 end cell cell space space space space 3 end cell row cell negative 3 end cell cell space space space 2 end cell end table close vertical bar space equals space minus left parenthesis negative 4 plus 9 right parenthesis space equals space minus 5
space space space space space straight A subscript 22 space equals space open vertical bar table row 3 cell space space space 3 end cell row 4 cell space space space 2 end cell end table close vertical bar space equals space 6 minus 12 space equals space minus 6
space space space space space straight A subscript 23 space equals space minus open vertical bar table row 3 cell space space space minus 2 end cell row 4 cell space space space minus 3 end cell end table close vertical bar space equals space minus left parenthesis negative 9 plus 8 right parenthesis space equals space 1
space space space space straight A subscript 31 space equals space open vertical bar table row cell negative 2 end cell cell space space space space space space space 3 end cell row cell space 1 end cell cell space space minus 1 end cell end table close vertical bar space equals 2 minus 3 space equals space minus 1
space space space straight A subscript 32 space equals space minus open vertical bar table row 3 cell space space space space space space space space 3 end cell row 2 cell space space space minus 1 end cell end table close vertical bar space equals space minus left parenthesis negative 3 minus 6 right parenthesis space equals space 9
space space space straight A subscript 33 space equals space open vertical bar table row 3 cell space space space minus 2 end cell row 2 cell space space space space space 1 end cell end table close vertical bar space equals space 3 plus 4 space equals space 7

space space space space space
    therefore space space space space adj. space straight A space equals space open square brackets table row cell negative 1 end cell cell space space minus 8 end cell cell space space space minus 10 end cell row cell negative 5 end cell cell space space space minus 6 end cell cell space space space space space space 1 end cell row cell negative 1 end cell cell space space space space 9 end cell cell space space space space space space 7 end cell end table close square brackets space equals space open square brackets table row cell negative 1 end cell cell space space minus 5 end cell cell space space space minus 1 end cell row cell negative 8 end cell cell space space minus 6 end cell cell space space space space space 9 end cell row cell negative 10 end cell cell space space space 1 end cell cell space space space space 7 end cell end table close square brackets
space space therefore space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj. space straight A over denominator open vertical bar straight A close vertical bar end fraction equals negative 1 over 17 open square brackets table row cell negative 1 end cell cell space space space minus 5 end cell cell space space space minus 1 end cell row cell negative 8 end cell cell space space space minus 6 end cell cell space space space space space 9 end cell row cell negative 10 end cell cell space space space space 1 end cell cell space space space space 7 end cell end table close square brackets
Now comma space space space AB space equals space straight B space space space space space rightwards double arrow space space space straight X space space equals space straight A to the power of negative 1 end exponent straight B
therefore space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space minus 1 over 17 open square brackets table row cell negative 1 end cell cell space minus 5 end cell cell space space minus 1 end cell row cell negative 8 end cell cell space space minus 6 end cell cell space space space space 9 end cell row cell negative 10 end cell cell space space space space 1 end cell cell space space space 7 end cell end table close square brackets space space open square brackets table row 8 row 1 row 4 end table close square brackets space space space rightwards double arrow space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space minus 1 over 17 open square brackets table row cell negative 8 minus 5 minus 4 end cell row cell negative 64 minus 6 plus 36 end cell row cell negative 80 plus 1 plus 28 end cell end table close square brackets
space space rightwards double arrow space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space minus 1 over 17 open square brackets table row cell negative 17 end cell row cell negative 34 end cell row cell negative 51 end cell end table close square brackets space space space space space rightwards double arrow space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row 1 row 2 row 3 end table close square brackets
therefore space space space space space straight x space equals space 1 comma space space space space straight y space equals space 2 comma space space space straight z space equals space 3.
    Question 257
    CBSEENMA12034785

    Solve the following equation by matrix method:
    2 straight x plus straight y plus straight z space equals space 1
straight x minus 2 straight y minus straight z space equals 3 over 2
space space 3 straight y minus 5 straight z space space equals 9

    Solution

    The given equations are 
    2 straight x plus straight y plus straight z space equals space 1
straight x minus 2 straight y minus straight z space equals space 3 over 2
3 straight y minus 5 straight z space equals space 9
    These equations can be written as
               open square brackets table row 2 cell space space space space space space space 1 end cell cell space space space space space space 1 end cell row 2 cell space space space minus 4 end cell cell space space space minus 2 end cell row 0 cell space space space space space 3 end cell cell space space minus 5 end cell end table close square brackets space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row 1 row 3 row 9 end table close square brackets
     or space space space space space AX space equals space straight B space where space straight A space equals space open square brackets table row 2 cell space space space space space 1 end cell cell space space space space space space 1 end cell row 2 cell space space minus 4 end cell cell space space minus 2 end cell row 0 cell space space space space space space 3 end cell cell space space space minus 5 end cell end table close square brackets comma space space space straight X space equals space space open square brackets table row straight x row straight y row straight z end table close square brackets comma space space straight B space equals space open square brackets table row 1 row 3 row 9 end table close square brackets
open vertical bar straight A close vertical bar space equals space open vertical bar table row 2 cell space space space space space 1 end cell cell space space space space space space 1 end cell row 2 cell space space minus 4 end cell cell space space space minus 2 end cell row 0 cell space space space space space 3 end cell cell space space minus 5 end cell end table close vertical bar space equals space 2 open vertical bar table row cell negative 4 end cell cell space space space minus 2 end cell row 3 cell space space minus 5 end cell end table close vertical bar minus 1 open vertical bar table row 2 cell space space minus 2 end cell row 0 cell space space space minus 5 end cell end table close vertical bar space plus space 1 space open vertical bar table row 2 cell space space minus 4 end cell row 0 cell space space space space 3 end cell end table close vertical bar
space space space space space space space equals 2 left parenthesis 20 plus 6 right parenthesis space minus space 1 left parenthesis negative 10 minus 0 right parenthesis space plus space 1 left parenthesis 6 plus 0 right parenthesis space equals space 52 plus 10 plus 6 space equals space space 68 space not equal to 0
therefore space space space space space space space straight A to the power of negative 1 end exponent space exists.
space space space space space space space space space straight A subscript 11 space equals space open vertical bar table row cell negative 4 end cell cell space space space minus 2 end cell row 3 cell space minus 5 end cell end table close vertical bar space equals space 20 plus 6 space equals space 26
space space space space space space space space space straight A subscript 12 space equals space minus open vertical bar table row 2 cell space space space minus 2 end cell row 0 cell space space space minus 5 end cell end table close vertical bar space equals space minus left parenthesis negative 10 plus 0 right parenthesis space equals space 10
space space space space space space space space space space straight A subscript 13 space equals space open vertical bar table row 2 cell space space space minus 4 end cell row 0 cell space space space space space space 3 end cell end table close vertical bar space equals space 6 plus 0 space equals space 6
space space space space space space space space space straight A subscript 21 space equals space minus open vertical bar table row 1 cell space space space space 1 end cell row 3 cell space space space minus 5 end cell end table close vertical bar space equals space minus left parenthesis negative 5 minus 3 right parenthesis space equals space 8
space space space space space space space space space straight A subscript 22 space equals space space open vertical bar table row 2 cell space space space space space space 1 end cell row 0 cell space space space minus 5 end cell end table close vertical bar space equals space minus 10 minus 0 space equals space minus 10
space space space space space space
space space space space space space space space space space space space
             straight A subscript 23 space equals negative open vertical bar table row 2 cell space space space 1 end cell row 0 cell space space space 3 end cell end table close vertical bar space equals space minus left parenthesis 6 minus 0 right parenthesis space equals space minus 6
    straight A subscript 31 space equals space open vertical bar table row cell space space 1 end cell cell space space space space space space 1 end cell row cell negative 4 end cell cell space space minus 2 end cell end table close vertical bar space equals space minus 2 plus 4 space equals space 2
straight A subscript 32 space equals space minus open vertical bar table row 2 cell space space space space space space 1 end cell row 2 cell space space space minus 2 end cell end table close vertical bar space equals space minus left parenthesis negative 4 minus 2 right parenthesis space equals space 6
straight A subscript 33 space equals space open vertical bar table row 2 cell space space space space space space space 1 end cell row 2 cell space space space minus 4 end cell end table close vertical bar space equals space minus 8 minus 2 space equals space minus 10
space space space adj. space straight A space equals space open square brackets table row 26 cell space space space space space 10 end cell cell space space space space space 6 end cell row 8 cell space minus 10 end cell cell space space minus 6 end cell row 2 cell space space 6 end cell cell space space minus 10 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row 26 cell space space space 8 end cell cell space space space 2 space end cell row 10 cell space minus 10 end cell cell space space 6 end cell row 6 cell negative 6 end cell cell negative 10 end cell end table close square brackets
space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj. space straight A over denominator open vertical bar straight A close vertical bar end fraction equals space space 1 over 68 open square brackets table row 26 cell space space space space space space 8 end cell cell space space space space 2 end cell row 10 cell space space minus 10 end cell cell space space 6 end cell row 6 cell space space minus 6 end cell cell space minus 10 end cell end table close square brackets
Now space AX space equals space straight B space space space space rightwards double arrow space space space straight X space equals space straight A to the power of negative 1 end exponent straight B
rightwards double arrow space space space space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 over 68 open square brackets table row 26 cell space space space space 8 end cell cell space space space 2 end cell row 0 cell space minus 10 end cell cell space space space space 6 end cell row 6 cell negative 6 end cell cell negative 10 end cell end table close square brackets space space space space space open square brackets table row 1 row 3 row 9 end table close square brackets
rightwards double arrow space space space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 over 68 open square brackets table row cell 26 plus 24 plus 18 end cell row cell 10 minus 30 plus 54 end cell row cell 6 minus 18 minus 90 end cell end table close square brackets space space space space rightwards double arrow space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 over 68 open square brackets table row cell space space 68 end cell row cell space 34 end cell row cell negative 102 end cell end table close square brackets
rightwards double arrow space space space space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space space equals space open square brackets table row 1 row cell 1 half end cell row cell negative 3 over 2 end cell end table close square brackets
therefore space space space space space straight x space equals space 1 comma space space space space space space straight y space equals space 1 half comma space space space straight z space equals space minus 3 over 2.

    Question 258
    CBSEENMA12034790

    Solve system of linear equations, using matrix method:
    x – y + z = 4
    2x + y – 3z = 0
    x + y + z = 2 

    Solution

    The given equations are
    x– y + z = 4
    2x + y – 3z = 0
    x + y + z = 2
    These equations can be written as
                          open square brackets table row 1 cell space space space minus 1 end cell cell space space 1 end cell row 2 cell space space space space minus 3 end cell cell space space 1 end cell row 1 cell space space space space space 1 end cell cell space 1 end cell end table close square brackets space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row 4 row 0 row 2 end table close square brackets
    or      AX space equals space straight B space where space space space straight A space equals space open square brackets table row 1 cell space space minus 1 end cell cell space space minus 1 end cell row 2 cell space space space space 1 end cell cell space space space minus 3 end cell row 1 cell space space space 1 end cell cell space space space space 1 end cell end table close square brackets comma space space straight X space equals space open square brackets table row straight x row straight y row straight z end table close square brackets comma space space straight B space equals space open square brackets table row 4 row 0 row 2 end table close square brackets
    open vertical bar straight A close vertical bar space equals space open vertical bar table row 1 cell space space minus 1 end cell cell space space minus 1 end cell row 2 cell space space space space 1 end cell cell space space minus 3 end cell row 1 cell space space space space 1 end cell cell space space space space 1 end cell end table close vertical bar space equals space 1 open vertical bar table row 1 cell space space space minus 3 end cell row 1 cell space space space space space 1 end cell end table close vertical bar space minus left parenthesis negative 1 right parenthesis space open vertical bar table row 2 cell space space space minus 3 end cell row 1 cell space space space space space space space 1 space end cell end table close vertical bar plus 1 open vertical bar table row 2 cell space space space 1 end cell row 1 cell space space 1 end cell end table close vertical bar
space space space space space space equals 1 thin space left parenthesis 1 plus 3 right parenthesis space plus space 1 thin space left parenthesis 2 plus 3 right parenthesis space space plus space 1 left parenthesis 2 minus 1 right parenthesis space equals space 4 plus 5 plus 1 space equals space 10 not equal to 0
therefore space space space straight A to the power of negative 1 end exponent space exists.
    Co-factors of the elements of first row of | A | are
    open vertical bar table row 1 cell space space minus 3 end cell row 1 cell space space space space space 1 end cell end table close vertical bar comma space space minus open vertical bar table row 2 cell space space space space minus 3 end cell row 1 cell space space space space space 1 end cell end table close vertical bar comma space space space open vertical bar table row 2 cell space space space space space 1 end cell row 1 cell space space space space space 1 end cell end table close vertical bar
    i.e. 4,  –5,  1 respectively.
    Co-factors of the elements of second row of | A | are
    negative open vertical bar table row cell negative 1 end cell cell space space space space 1 end cell row 1 cell space space space 1 end cell end table close vertical bar comma space space space open vertical bar table row 1 cell space space space space 1 end cell row 1 cell space space space space 1 end cell end table close vertical bar comma space space minus open vertical bar table row 1 cell space space space space minus 1 end cell row 1 cell space space space space space space 1 end cell end table close vertical bar

    i.e. 2, 0, –2 respectively.
    Co-factors of the elements of third row of | A | are
    open vertical bar table row cell negative 1 end cell cell space space space space space space 1 end cell row 1 cell space space minus 3 end cell end table close vertical bar comma space space space space space minus open vertical bar table row 1 cell space space space space space space 1 end cell row 2 cell space space minus 3 end cell end table close vertical bar comma space space space open vertical bar table row 1 cell space space space minus 1 end cell row 2 cell space space space space space space 1 end cell end table close vertical bar
    i.e.  2, 5, 3 respectively
    therefore space space space space adj. space straight A space equals space open square brackets table row 4 cell space space minus 5 end cell cell space space space space space 1 end cell row 2 cell space space space 0 end cell cell space minus 2 end cell row 2 cell space space 5 end cell cell space space space 3 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row cell space space space 4 end cell cell space space space 2 end cell cell space space 2 end cell row cell negative 5 end cell cell space space space 0 end cell cell space space 5 end cell row cell space space 1 end cell cell space minus 2 end cell cell space space 3 end cell end table close square brackets space
Now space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space 1 over 10 open square brackets table row 4 cell space space space space 2 end cell cell space space space space 2 end cell row cell negative 5 end cell cell space space space 0 end cell cell space space space 5 end cell row 1 cell negative 2 end cell cell space space space 3 end cell end table close square brackets
Now space space space straight A space straight X space equals space straight B
rightwards double arrow space space space space space space space straight X space equals space straight A to the power of negative 1 end exponent straight B
rightwards double arrow space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 over 10 open square brackets table row cell space space 4 end cell cell space space space 2 end cell cell space space 2 end cell row cell negative 5 end cell cell space space 0 end cell cell space space 5 end cell row 1 cell negative 2 end cell cell space space 3 end cell end table close square brackets space open square brackets table row 4 row 0 row 2 end table close square brackets space space space rightwards double arrow space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 over 10 open square brackets table row cell 16 plus 0 plus 4 end cell row cell negative 20 plus 0 plus 10 end cell row cell 4 plus 0 plus 6 end cell end table close square brackets
rightwards double arrow space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 over 10 open square brackets table row cell space space space space 20 end cell row cell negative 10 end cell row cell space space space 10 end cell end table close square brackets space space space space space space rightwards double arrow space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row cell space space space space 2 end cell row cell negative 1 end cell row cell space space 1 end cell end table close square brackets
rightwards double arrow space space space space space straight x space equals space 2 comma space space space space straight y space space equals negative 1 comma space space space space straight z space equals space 1 space is space the space required space solution. space

    Question 259
    CBSEENMA12034796

    Solve the following system of equations by matrix method:
    x – y + z = 2
    2x – y = 0
    2y – z = 1 

    Solution

    The given equations are
    x – y + z = 2
    2x – y + 0z = 0
    0x + 2y– z = 1
    These equations can be written as
                open square brackets table row 1 cell space space space minus 1 end cell cell space space space space 1 end cell row 2 cell space space space minus 1 end cell cell space space space space 0 end cell row 0 cell space space space space space 2 end cell cell negative 1 end cell end table close square brackets space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row 2 row 0 row 1 end table close square brackets
    or      AX space equals space straight B space where space straight A space equals space open square brackets table row 1 cell space space space minus 1 end cell cell space space space 0 end cell row 2 cell space space minus 1 end cell cell space 0 end cell row 0 cell space space space space 0 end cell cell space minus 1 end cell end table close square brackets comma space space space space space straight X space equals open square brackets table row straight x row straight y row straight z end table close square brackets space space space space straight B space equals space open square brackets table row 2 row 0 row 1 end table close square brackets      
     Now,    
           open vertical bar straight A close vertical bar space equals space open vertical bar table row 1 cell space space space minus 1 end cell cell space space space space 0 end cell row 2 cell space space minus 1 end cell cell space space space space 0 end cell row 0 cell space space space space 2 end cell cell space minus 1 end cell end table close vertical bar space equals space 1 open vertical bar table row cell negative 1 end cell cell space space space space space space 0 end cell row 2 cell space space minus 1 end cell end table close vertical bar minus left parenthesis negative 1 right parenthesis space open vertical bar table row 2 cell space space space space space 0 end cell row 0 cell space minus 1 end cell end table close vertical bar plus 1 open vertical bar table row 2 cell space space space minus 1 end cell row 0 cell space space space space space 2 end cell end table close vertical bar
space space space space equals 1 left parenthesis 1 minus 0 right parenthesis space plus 1 left parenthesis negative 2 minus 0 right parenthesis plus 1 left parenthesis 4 minus 0 right parenthesis space equals space 1 minus 2 plus 4 space equals 3 space not equal to space 0
therefore space space space space straight A to the power of negative 1 end exponent space exists
space space space space space space space space space space straight A subscript 11 space equals space open vertical bar table row cell negative 1 end cell cell space space space 0 end cell row 2 cell negative 1 end cell end table close vertical bar space equals space 1 minus 0 space equals space 1
space space space space space space space space space space space straight A subscript 12 space equals space minus open vertical bar table row 2 cell space space space space space 0 end cell row 0 cell space minus 1 end cell end table close vertical bar space space equals negative left parenthesis negative 2 minus 0 right parenthesis space equals space 2
space space space space space space space space space space space straight A subscript 13 space equals space open vertical bar table row 2 cell space space space minus 1 end cell row 0 cell space space space space space 2 end cell end table close vertical bar space equals space 4 minus 0 space equals space 4
space space space space space space space space space space space space straight A subscript 21 space equals space minus open vertical bar table row cell negative 1 end cell cell space space space space space space space space 1 end cell row 2 cell space space space minus 1 end cell end table close vertical bar space equals space minus left parenthesis 1 minus 2 right parenthesis space equals space 1
space space space space space space space space space space space straight A subscript 22 space equals space open vertical bar table row 1 cell space space space space space space space 0 end cell row 0 cell space space space minus 1 end cell end table close vertical bar space equals space minus 1 minus 0 space equals space minus 1
space space space space space space space space space space space straight A subscript 23 space equals space minus open vertical bar table row 1 cell space space space minus 1 end cell row 0 cell space space space space 2 end cell end table close vertical bar space equals space minus left parenthesis 2 minus 0 right parenthesis space equals space minus 2
space space space space space space space space space space space straight A subscript 31 space equals space open vertical bar table row cell negative 1 end cell cell space space space space 1 end cell row cell negative 1 end cell cell space space space space 0 end cell end table close vertical bar space equals space 0 plus 1 space equals space 1
space space space space space space space space space space straight A subscript 32 space equals space minus open vertical bar table row 1 cell space space space space space 1 space space end cell row 2 cell space space 0 end cell end table close vertical bar space equals space minus left parenthesis 0 minus 2 right parenthesis space equals space 2
space space space space space space space space space space straight A subscript 33 space equals space open vertical bar table row 1 cell space space space minus 1 end cell row 2 cell space space space minus 1 end cell end table close vertical bar space equals space minus 1 plus 2 space equals space 1

space space space space space space space space space space space space space space
space space space space space space space space space space space space space space space space space space space space space space space    
    therefore space space space adj. space straight A space equals space open square brackets table row 1 cell space space space space space 2 end cell cell space space space space space space 4 end cell row 1 cell space space minus 1 end cell cell space minus 2 end cell row 1 cell space space space 2 end cell cell space space space space space 1 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row 1 cell space space space space space space 1 end cell cell space space space 1 end cell row 2 cell space space minus 1 end cell cell space space space 2 end cell row 4 cell space space minus 2 end cell cell space space space 1 end cell end table close square brackets
space space space space space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj. space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space 1 third open square brackets table row 1 cell space space space space space 1 end cell cell space space space 1 end cell row 2 cell space minus 1 end cell cell space space space 2 end cell row 4 cell negative 2 end cell cell space space space 1 end cell end table close square brackets
Now comma space space space space AX space equals space straight B space space space space space space space space space space space space space space space rightwards double arrow space space space straight X space equals space straight A to the power of negative 1 end exponent straight B
rightwards double arrow space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 third open square brackets table row 1 cell space space space space space space 1 end cell cell space space space space 1 end cell row 2 cell space space minus 1 end cell cell space space space space 2 end cell row 4 cell space space minus 2 end cell cell space space space space 1 end cell end table close square brackets space open square brackets table row 2 row 0 row 1 end table close square brackets space space space space space rightwards double arrow space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 third open square brackets table row cell 2 plus 0 plus 1 end cell row cell 4 plus 0 plus 2 end cell row cell 8 plus 0 plus 1 end cell end table close square brackets
rightwards double arrow space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 third open square brackets table row 3 row 6 row 9 end table close square brackets space space space space rightwards double arrow space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row 1 row 2 row 3 end table close square brackets
therefore space space space space space space space space space space space space space straight x space equals space 1 comma space space space space space straight y space equals space 2 comma space space space space straight z space equals space 3

    Question 260
    CBSEENMA12034800

    Solve the following system of equations by matrix method:
    2x – y + z = – 3
    3 x – z = – 8
    2x + 6y    = 2

    Solution

    The given equations are
    2x – y + z = –3    i.e.    2x – y + z = – 3
    3x – z = –8          i.e.    3x + 0y – z = –8
    2x + 6y = 2          i.e.    2x + 6 y + 0z = 2
    These equations can be written as
                     open square brackets table row 2 cell space space minus 1 end cell cell space space space space space space 1 end cell row 3 cell space space space space 0 end cell cell space minus 1 end cell row 2 cell space space space space 6 end cell cell space space space space 0 end cell end table close square brackets space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row cell negative 3 end cell row cell negative 8 end cell row cell space 2 end cell end table close square brackets
    or             AX space equals space straight B space where space straight A space equals space open square brackets table row 2 cell space space minus 1 end cell cell space space space space space 1 end cell row 3 cell space space space space 0 end cell cell space minus 1 end cell row 2 cell space space space space 6 end cell cell space space space 0 end cell end table close square brackets comma space space space straight X equals space open square brackets table row straight x row straight y row straight z end table close square brackets comma space space space straight B space equals space open square brackets table row cell negative 3 end cell row cell negative 8 end cell row cell space 2 end cell end table close square brackets
    Now comma space space space open vertical bar straight A close vertical bar space equals space open vertical bar table row 2 cell space space minus 1 end cell cell space space space space 1 end cell row 3 cell space space space space 0 end cell cell negative 1 end cell row 2 cell space space space 6 end cell cell space space 0 end cell end table close vertical bar space equals space 2 open vertical bar table row 0 cell space space minus 1 end cell row 6 cell space space space space 0 end cell end table close vertical bar minus left parenthesis negative 1 right parenthesis space open vertical bar table row 3 cell space space minus 1 end cell row 2 cell space space space space 0 end cell end table close vertical bar plus 1 space open vertical bar table row 3 cell space space 0 end cell row 2 cell space space 6 end cell end table close vertical bar
space space space space space space space space space space space space space space space space equals 2 left parenthesis 0 plus 6 right parenthesis space plus space 1 space left parenthesis 0 plus 2 right parenthesis space plus space 1 space left parenthesis 18 minus 0 right parenthesis space equals space 12 plus 2 plus 18 space equals space 32 space not equal to space 0
therefore space space space straight A to the power of negative 1 end exponent space exists.
space space space space space space straight A subscript 11 space equals space open vertical bar table row 0 cell space space minus 1 end cell row 6 cell space space space space space 0 end cell end table close vertical bar space equals space 0 plus 6 space equals space 6
space space space space space space space straight A subscript 12 space equals space minus open vertical bar table row 3 cell space space space minus 1 end cell row 2 cell space space space space space space 0 end cell end table close vertical bar space equals space minus left parenthesis 0 plus 2 right parenthesis space equals space minus 2
space space space space space space space straight A subscript 13 space equals space open vertical bar table row 3 cell space space space 0 end cell row 2 cell space space space 6 end cell end table close vertical bar space equals space 18 minus 0 space equals space 18
space space space space space space straight A subscript 21 space equals space minus open vertical bar table row cell negative 1 end cell cell space space space 1 end cell row 6 cell space space 0 end cell end table close vertical bar space equals space minus left parenthesis 0 minus 6 right parenthesis space space equals space 6
space space space space space straight A subscript 22 space equals space open vertical bar table row 2 cell space space space space space space space 1 space space end cell row 2 cell space space space space 0 end cell end table close vertical bar space equals 0 minus 2 space equals space minus 2
space space space space space straight A subscript 23 space equals space minus open vertical bar table row 2 cell space space space minus 1 end cell row 2 cell space space space space 6 end cell end table close vertical bar space equals negative space left parenthesis 12 plus 12 right parenthesis space equals space minus 14
    straight A subscript 31 space equals space open vertical bar table row cell negative 1 end cell cell space space space space 1 end cell row 0 cell negative 1 end cell end table close vertical bar space equals space 1 minus 0 space space equals 1
straight A subscript 32 space equals space minus open vertical bar table row 2 cell space space space space space space 1 end cell row 3 cell space space minus 1 end cell end table close vertical bar space equals space minus left parenthesis negative 2 minus 3 right parenthesis space equals space 5
straight A subscript 33 space equals space open vertical bar table row 2 cell space space space minus 1 end cell row 3 cell space space space space space 0 end cell end table close vertical bar space equals space 0 plus 3 space equals space 3
    therefore space space space adj. space straight A space equals space open square brackets table row 6 cell space space minus 2 end cell cell space space space space space 18 end cell row 6 cell space space minus 2 end cell cell space minus 14 end cell row 1 cell space space 5 end cell cell space space space space space 3 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row cell space 6 end cell cell space space space space 6 end cell cell space space space 1 end cell row cell negative 2 end cell cell space minus 2 end cell cell space space space 5 end cell row 18 cell negative 14 end cell cell space space space 3 end cell end table close square brackets
space space space space space space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space 1 over 32 open square brackets table row 6 cell space space space 6 end cell cell space space 1 end cell row cell negative 2 end cell cell space minus 2 end cell cell space space 5 end cell row 18 cell space minus 14 end cell cell space space 3 end cell end table close square brackets
Now comma space space space space space space space AX space equals space straight B space space space space space space space space rightwards double arrow space space space straight X space equals space straight A to the power of negative 1 end exponent straight B
space space space space space space space space space rightwards double arrow space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 over 32 open square brackets table row cell space space space 6 end cell cell space space space space 6 end cell cell space space space space 1 end cell row cell negative 2 end cell cell space space minus 2 end cell cell space space space 5 end cell row 18 cell space space space minus 14 end cell cell space space 3 end cell end table close square brackets space space open square brackets table row cell negative 3 end cell row cell negative 8 end cell row cell space 2 end cell end table close square brackets space rightwards double arrow space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 over 32 open square brackets table row cell negative 18 minus 48 plus 2 end cell row cell 6 plus 16 plus 10 end cell row cell negative 54 plus 112 plus 6 end cell end table close square brackets
space space space space space space space space rightwards double arrow space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 over 32 open square brackets table row cell negative 64 end cell row 32 row 64 end table close square brackets space space space space space space space rightwards double arrow space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space space open square brackets table row cell negative 2 end cell row cell space 1 end cell row 2 end table close square brackets
therefore space space space space space space space space space space straight x space equals space minus 2 comma space space space space space space straight y space equals 1 comma space space space space straight z space equals space 2
        

    Question 261
    CBSEENMA12034806

    Solve the following system of equations by matrix method:
    2x – 3y + 5z =11
    3 x + 2y – 4 z = – 5
    x + y – 2 z = –3

    Solution

    The given equations are
    2x – 3 y + 5 z =11
    3x + 2 y – 4 z = – 5
    x + y – 2 z = –3
    These equations can be written as
                                  open square brackets table row 2 cell space space minus 3 end cell cell space space space space space space 5 end cell row 3 cell space space space space space 2 end cell cell space minus 4 end cell row 1 cell space space 1 end cell cell space space minus 2 end cell end table close square brackets space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row cell space space space 11 end cell row cell negative 5 end cell row cell negative 3 end cell end table close square brackets
    or space space space AX space equals space straight B space where space straight A space equals space open square brackets table row 2 cell space space minus 3 end cell cell space space space space space space 5 end cell row 3 cell space space space 2 end cell cell space space minus 4 end cell row 1 cell space space 1 end cell cell space space minus 2 end cell end table close square brackets comma space space space space straight X equals space open square brackets table row straight x row straight y row straight z end table close square brackets comma space space straight B space equals space open square brackets table row cell space space 11 end cell row cell negative 5 end cell row cell negative 3 end cell end table close square brackets
space space space space space space open vertical bar straight A close vertical bar space equals space open vertical bar table row 2 cell space space minus 3 end cell cell space space space space 5 end cell row 3 cell space space space 2 end cell cell space minus 4 end cell row 1 cell space space 1 end cell cell space space minus 2 end cell end table close vertical bar space equals space 2 open vertical bar table row 2 cell space space space minus 4 end cell row 1 cell space space minus 2 end cell end table close vertical bar minus left parenthesis negative 3 right parenthesis open vertical bar table row 3 cell space space minus 4 end cell row 1 cell space space minus 2 end cell end table close vertical bar plus 5 open vertical bar table row 3 cell space space 2 end cell row 1 cell space space 1 end cell end table close vertical bar
space space space space space space space space space space space space space space equals space 2 left parenthesis negative 4 plus 4 right parenthesis plus 3 left parenthesis negative 6 plus 4 right parenthesis plus 5 left parenthesis 3 minus 2 right parenthesis space equals space 0 minus 6 plus 5 space equals space minus 1 not equal to space 0
therefore space space space space space straight A to the power of negative 1 end exponent space exists
space space space space space space space space space space space space space space space space space space space space space space space space space space space space straight A subscript 11 space equals space open vertical bar table row 2 cell space space space minus 4 end cell row 1 cell space space minus 2 end cell end table close vertical bar space equals space minus 4 plus 4 space equals space 0
space space space space space space space space space space space space space space space space space space space space space space space space space space space space straight A subscript 12 space equals space minus open vertical bar table row 3 cell space space space minus 4 end cell row 1 cell space space minus 2 end cell end table close vertical bar space equals space minus left parenthesis negative 6 plus 4 right parenthesis space equals space 2
space space space space space space space space space space space space space space space space space space space space space space space space space space straight A subscript 13 space equals space open vertical bar table row 3 cell space space space space 2 end cell row 1 cell space space space space 1 end cell end table close vertical bar space equals space 3 minus 2 space equals space 1
space space space
                         straight A subscript 21 space equals space minus open vertical bar table row cell negative 3 end cell cell space space space space 5 end cell row 1 cell space minus 2 end cell end table close vertical bar space equals space minus left parenthesis 6 minus 5 right parenthesis space equals space minus 1
straight A subscript 22 space equals space open vertical bar table row 2 cell space space space space 5 end cell row 1 cell space space minus 2 end cell end table close vertical bar space equals space minus 4 minus 5 space equals space minus 9
straight A subscript 23 space equals space minus open vertical bar table row 2 cell space space space minus 3 end cell row 1 cell space space space space space 1 end cell end table close vertical bar space equals space minus left parenthesis 2 plus 3 right parenthesis space equals space minus 5
straight A subscript 31 space equals space open vertical bar table row cell negative 3 end cell cell space space space space 5 end cell row 2 cell space space minus 4 end cell end table close vertical bar space equals space 12 minus 10 space equals space 2
straight A subscript 32 space equals space minus open vertical bar table row 2 cell space space space space space 5 end cell row 3 cell space space minus 4 end cell end table close vertical bar space equals space minus left parenthesis negative 8 minus 15 right parenthesis space equals space 23
straight A subscript 33 space equals space open vertical bar table row 2 cell space space space space minus 3 end cell row 3 cell space space space space space space 2 end cell end table close vertical bar space equals space 4 plus 9 space equals space 13
    therefore space space space space adj. space straight A space equals space open square brackets table row 0 cell space space space 2 end cell cell space space space space space 1 end cell row cell negative 1 end cell cell space minus 9 end cell cell space space minus 5 end cell row 2 cell space space space 23 end cell cell space space space 13 end cell end table close square brackets to the power of apostrophe space space space equals open square brackets table row 0 cell space space minus 1 end cell cell space space 2 end cell row 2 cell space minus 9 end cell cell space 23 end cell row 1 cell negative 5 end cell cell space 13 end cell end table close square brackets
space space space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space minus open square brackets table row 0 cell space space minus 1 end cell cell space space space space 2 end cell row 2 cell space space minus 9 end cell cell space space 23 end cell row 1 cell space space minus 5 end cell cell space space space 13 end cell end table close square brackets
Now space space space space AX space equals space straight B space space space space space space space space rightwards double arrow space space space space space straight X space equals space straight A to the power of negative 1 end exponent straight B
space space rightwards double arrow space space space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals negative open square brackets table row 0 cell space space minus 1 end cell cell space space space space 2 end cell row 2 cell space minus 9 end cell cell space space 23 end cell row 1 cell space space minus 5 end cell cell space 13 end cell end table close square brackets space open square brackets table row 11 row cell negative 5 end cell row cell negative 3 end cell end table close square brackets
rightwards double arrow space space space space space space space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space minus open square brackets table row cell 0 plus 5 minus 6 end cell row cell 24 plus 45 minus 69 end cell row cell 11 plus 25 minus 39 end cell end table close square brackets space equals space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space minus open square brackets table row cell negative 1 end cell row cell negative 2 end cell row cell negative 3 end cell end table close square brackets
rightwards double arrow space space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row 1 row 2 row 3 end table close square brackets
therefore space space space space space space space space space space space space straight x space equals space 1 comma space space space straight y space equals space 2 comma space space space straight z space equals space 3

    Question 262
    CBSEENMA12034809

    Use matrix method to solve the equations:
    x + y + z = 3
    2x – y + z = 2
    x – 2y + 3z = 2

    Solution

    The given equations are
    x + y + z = 3
    2x – y + r = 2
    x – 2y + 3z = 2
    These equations can be written as
                       open square brackets table row 1 cell space space 1 end cell cell space space space 1 end cell row 2 cell negative 1 end cell cell space space space 1 end cell row 1 cell negative 2 end cell cell space space 3 end cell end table close square brackets space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row 3 row 2 row 2 end table close square brackets
         or space space space space AX space equals space straight B space space space space where space space space straight A space equals space open square brackets table row 1 cell space space space 1 end cell cell space space 1 end cell row 2 cell negative 1 end cell cell space space 1 end cell row 1 cell space space minus 2 end cell cell space space 3 end cell end table close square brackets comma space space straight X space equals space open square brackets table row straight x row straight y row straight z end table close square brackets comma space space straight B space equals space open square brackets table row 3 row 2 row 2 end table close square brackets
space space space space space space open vertical bar straight A close vertical bar space equals space open vertical bar table row 1 cell space space space space space space 1 end cell cell space space space 1 end cell row 2 cell space space minus 1 end cell cell space space 1 end cell row 1 cell space space minus 2 end cell cell space space 3 end cell end table close vertical bar space equals space 1 open vertical bar table row cell negative 1 end cell cell space space space 1 end cell row cell negative 2 end cell cell space space 3 end cell end table close vertical bar minus 1 open vertical bar table row 2 cell space space space space 1 end cell row 1 cell space space space 3 end cell end table close vertical bar plus 1 open vertical bar table row 2 cell space space space minus 1 end cell row 1 cell space space space minus 2 end cell end table close vertical bar
space space space space space space space space space space space space equals 1 left parenthesis negative 3 plus 2 right parenthesis space minus space 1 left parenthesis 6 minus 1 right parenthesis plus 1 left parenthesis negative 4 plus 1 right parenthesis space equals space minus 1 minus 5 minus 3 space equals space minus 9 space not equal to space 0

therefore space space space space space space straight A to the power of negative 1 end exponent space exists.
space space space space space space space space space space space space straight A subscript 11 space equals space open vertical bar table row cell negative 1 end cell cell space space space 1 end cell row cell negative 2 end cell cell space space space 3 end cell end table close vertical bar space equals space minus 3 plus 2 space equals space minus 1
space space space space space space space space space space space straight A subscript 12 space equals space minus open vertical bar table row 2 cell space space 1 end cell row 1 cell space space space 3 end cell end table close vertical bar space equals space minus left parenthesis 6 minus 1 right parenthesis space equals space minus 5
space space space space space space space space space space space straight A subscript 13 space equals space open vertical bar table row 2 cell space space space minus 1 end cell row 1 cell space space minus 2 end cell end table close vertical bar space equals space minus 4 plus 1 space equals space minus 3
              straight A subscript 21 space equals space minus open vertical bar table row 1 cell space space space 1 end cell row cell negative 2 end cell cell space space space 3 end cell end table close vertical bar space equals space minus left parenthesis 3 plus 2 right parenthesis space equals space minus 5
straight A subscript 22 space equals space open vertical bar table row 1 cell space space space space 1 end cell row 1 cell space space space 3 end cell end table close vertical bar space equals space 3 minus 1 space equals space 2
straight A subscript 23 space equals space minus open vertical bar table row 1 cell space space space space space space 1 end cell row 1 cell space space minus 2 end cell end table close vertical bar space equals space minus left parenthesis 2 minus 1 right parenthesis space equals space 3
straight A subscript 31 space equals space open vertical bar table row 1 cell space space space space 1 end cell row cell negative 1 end cell cell space space space 1 end cell end table close vertical bar space equals space 1 plus 1 space equals space 2
straight A subscript 32 space equals space minus open vertical bar table row 1 cell space space space space space 1 end cell row 2 cell space space space space space 1 end cell end table close vertical bar space equals space minus left parenthesis 1 minus 2 right parenthesis space equals space 1
straight A subscript 33 space equals space open vertical bar table row 1 cell space space space space space 1 end cell row 2 cell space space minus 1 end cell end table close vertical bar space equals space minus 1 minus 2 space equals space minus 3
    therefore space space space adj. space straight A space equals space open square brackets table row cell negative 1 end cell cell space space space minus 5 end cell cell space space space minus 3 end cell row cell negative 5 end cell cell space space space space space 2 end cell cell space space space space space space space 3 end cell row cell space 2 end cell cell space space space space 1 end cell cell space space space minus 3 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row cell negative 1 end cell cell space space minus 5 end cell cell space space space space space space 2 end cell row cell negative 5 end cell cell space space space space space 2 end cell cell space space space space space space 1 end cell row cell negative 3 end cell cell space space space space 3 end cell cell space space minus 3 end cell end table close square brackets
space space space space space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space 1 over 9 open square brackets table row cell negative 1 end cell cell space space minus 5 end cell cell space space space 2 end cell row cell negative 5 end cell cell space space space space 2 end cell cell space space 1 end cell row cell negative 3 end cell cell space space 3 end cell cell negative 3 end cell end table close square brackets
Now comma space space space AX space equals space straight B space space space space space space space space space space space space space space space space space space space rightwards double arrow space space space space space straight X space equals space straight A to the power of negative 1 end exponent straight B
space space rightwards double arrow space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space minus 1 over 9 open square brackets table row cell negative 1 end cell cell space space minus 5 end cell cell space space space space space space space 2 end cell row cell negative 5 end cell cell space space space space space 2 end cell cell space space space space space space 1 end cell row cell negative 3 end cell cell space space space 3 end cell cell space space minus 3 end cell end table close square brackets space space open square brackets table row 3 row 2 row 2 end table close square brackets
space space rightwards double arrow space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space minus 1 over 9 open square brackets table row cell negative 3 minus 10 plus 4 end cell row cell negative 15 plus 4 plus 2 end cell row cell negative 9 plus 6 minus 6 end cell end table close square brackets space space space space space space rightwards double arrow space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space minus 1 over 9 open square brackets table row cell negative 9 end cell row cell negative 9 end cell row cell negative 9 end cell end table close square brackets
rightwards double arrow space space space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row 1 row 1 row 1 end table close square brackets
therefore space space space space space space straight x space equals space 1 comma space space space space straight y space equals space 1 comma space space space space straight z space equals space 1.

    Question 263
    CBSEENMA12034810

    Solve (Use matrix method):
    x + y = 0
    y + z = 1
    z + x = 3   

    Solution

    The given equations are
    x + y + Oz =0
    Ox + y + z = 1
    x + 0y + z = 3
    These equations can be written as
    open square brackets table row 1 cell space space 1 end cell cell space space 0 end cell row 0 cell space space 1 end cell cell space space 1 end cell row 1 cell space space 0 end cell cell space space 1 end cell end table close square brackets space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row 0 row 1 row 3 end table close square brackets
    or  AX space equals space straight B space where space straight A space equals space open square brackets table row 1 cell space space space 1 end cell cell space space 0 end cell row 0 cell space space 1 end cell cell space space 1 end cell row 1 cell space space 0 end cell cell space space 1 end cell end table close square brackets comma space space space straight X space equals space open square brackets table row straight x row straight y row straight z end table close square brackets comma space thin space space straight B space equals space open square brackets table row 0 row 1 row 3 end table close square brackets
    open vertical bar straight A close vertical bar space equals space open vertical bar table row 1 cell space space space 1 end cell cell space space 0 end cell row 0 cell space space 1 end cell cell space 1 end cell row 1 cell space space 0 end cell cell space 1 end cell end table close vertical bar space equals space 1 open vertical bar table row 1 cell space space 1 end cell row 0 cell space space 1 end cell end table close vertical bar space minus space 1 open vertical bar table row 0 cell space space space 1 end cell row 1 cell space space space 1 end cell end table close vertical bar plus 0 open vertical bar table row 0 cell space space space 1 end cell row 1 cell space space space 0 end cell end table close vertical bar
space space space space space space space equals 1 space left parenthesis 1 minus 0 right parenthesis space minus space 1 left parenthesis 0 minus 1 right parenthesis space plus space 0 left parenthesis 0 minus 1 right parenthesis space equals space 1 left parenthesis 1 right parenthesis space minus space 1 left parenthesis negative 1 right parenthesis space plus space 0 left parenthesis negative 1 right parenthesis
space space space space space space space equals 1 plus 1 plus 0 space equals space 2 not equal to 0
space space space space therefore space space space space straight A to the power of negative 1 end exponent space exists.
    Co-factors of the elements of first row of | A | are
    open vertical bar table row 1 cell space space space 1 end cell row 0 cell space space 1 end cell end table close vertical bar comma space space space minus open vertical bar table row 0 cell space space space 1 end cell row 1 cell space space space 1 end cell end table close vertical bar comma space space space open vertical bar table row 0 cell space space space 1 end cell row 1 cell space space space space 0 end cell end table close vertical bar
    i.e.   1, 1 1 respectively.
    Co-factors of the elements of second row of | A | are
    therefore space space space space space space space adj. space straight A space equals space open square brackets table row cell space space 1 end cell cell space space space 1 end cell cell space space space minus 1 end cell row cell negative 1 end cell cell space space space space 1 end cell cell space space space space space space space 1 end cell row cell space space 1 end cell cell space minus 1 end cell cell space space minus 1 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row 1 cell space space minus 1 end cell cell space space space space 1 end cell row 1 cell space space space space 1 end cell cell space minus 1 end cell row cell negative 1 end cell cell space space space 1 end cell cell space space space space space 1 end cell end table close square brackets
    i.e. -1, 1, 1 respectively.
    Co-factors of the elements of third row of | A | are
    open vertical bar table row 1 cell space space 0 end cell row 1 1 end table close vertical bar comma space space space minus open vertical bar table row 1 cell space space space 0 end cell row 0 cell space space 1 end cell end table close vertical bar comma space space space open vertical bar table row 1 cell space space 1 end cell row 0 cell space space 1 end cell end table close vertical bar
    i.e. 1,  -1,  1 respectively.

        or    AX space equals space straight B space space space where space straight A space equals open square brackets table row 1 cell space space space 1 end cell cell space space 0 end cell row 0 cell space space 1 end cell cell space space 1 end cell row 1 cell space space 0 end cell cell space space 1 end cell end table close square brackets comma space space straight X space equals space open square brackets table row straight x row straight y row straight z end table close square brackets comma space space space straight B space equals space open square brackets table row 0 row 1 row 3 end table close square brackets
    Co-factors of the elements of first row of | A | are

    Question 264
    CBSEENMA12034812

    Using matrices, solve the following system of linear equations:
    2x + y + z = 7
    x – y – z = – 4
    3x + 2y + z = 10  

    Solution

    The given equations are
    2x + y + z = 7
    x – y – z = – 4
    3x + 2y + z = 10
    These equations can by written as
                               open square brackets table row 2 cell space space space space 1 end cell cell space space space space space 1 end cell row 1 cell space minus 1 end cell cell space minus 1 end cell row 3 cell space space space space 2 end cell cell space space space space space 1 end cell end table close square brackets space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row cell space space space space 7 end cell row cell negative 4 end cell row cell space space 10 end cell end table close square brackets
    or space space space AX space equals space straight B space where space straight A space equals space open square brackets table row 2 cell space space 1 end cell cell space space space space 1 end cell row 1 cell negative 1 end cell cell negative 1 end cell row 3 cell space space space 2 end cell cell space space 1 end cell end table close square brackets comma space space space straight X space equals space open square brackets table row straight x row straight y row straight z end table close square brackets comma space space space straight B space equals space open square brackets table row cell space space space space 7 end cell row cell negative 4 end cell row cell space space 10 end cell end table close square brackets
open vertical bar straight A close vertical bar space equals space open vertical bar table row 2 cell space space space space space 1 end cell cell space space space space space space space 1 end cell row 1 cell space minus 1 end cell cell space space space minus 1 end cell row 3 cell space space space 2 end cell cell space space space space space 1 end cell end table close vertical bar space equals space 2 space open vertical bar table row cell negative 1 end cell cell space space space minus 1 end cell row 2 cell space space space space space space 1 end cell end table close vertical bar minus space 1 open vertical bar table row 1 cell space space space minus 1 end cell row 3 cell space space space space space 1 end cell end table close vertical bar plus 1 open vertical bar table row 1 cell space space minus 1 end cell row 3 cell space space space space space 2 end cell end table close vertical bar
space space space space space space equals 2 space left parenthesis negative 1 plus 2 right parenthesis minus 1 left parenthesis 1 plus 3 right parenthesis space plus space 1 left parenthesis 2 plus 3 right parenthesis space equals space 2 left parenthesis 1 right parenthesis space minus space 1 left parenthesis 4 right parenthesis space plus space 1 left parenthesis 5 right parenthesis
space space space space space space space equals space 2 space minus 4 plus 5 space equals space 3 space not equal to 0
therefore space space space space straight A to the power of negative 1 end exponent space exists.
    Co-factors of the elements of first row of | A | are
    open vertical bar table row cell negative 1 end cell cell space space minus 1 end cell row 2 cell space space space space space 1 end cell end table close vertical bar comma space space space space space minus open vertical bar table row 1 cell space space minus 1 end cell row 3 cell space space space space space space 1 end cell end table close vertical bar comma space space space space open vertical bar table row 1 cell space space space space minus 1 end cell row 3 cell space space space space space space 2 end cell end table close vertical bar
    i.e.    – 1 + 2, – (1 + 3), 2 + 3  i.e. 1, – 4, 5 respectively.
    Co-factors of the elements of second row of | A | are
    negative open vertical bar table row 1 cell space space space 1 end cell row 2 cell space space space 1 end cell end table close vertical bar comma space space space open vertical bar table row 2 cell space space space 1 end cell row 3 cell space space 1 end cell end table close vertical bar comma space space space minus open vertical bar table row 2 cell space space space 1 end cell row 3 cell space space 2 end cell end table close vertical bar
    i.e. – (1 – 2), 2 – 3, – (4 – 3) i.e. 1, – 1, –1 respectively.
    Co-factors of the elements of third row of | A | are
    open vertical bar table row cell space space 1 end cell cell space space space space space 1 end cell row cell negative 1 end cell cell space minus 1 end cell end table close vertical bar comma space space space minus open vertical bar table row 2 cell space space space space space space 1 end cell row 1 cell space space minus 1 end cell end table close vertical bar comma space space space open vertical bar table row 2 cell space space space space space space 1 end cell row 1 cell space space minus 1 end cell end table close vertical bar
    i.e. – 1 + 1, – (2 – 1), – 2 – 1 i.e. 0, 3, – 3 respectively.
    therefore space space adj. space straight A space equals space open square brackets table row 1 cell space space space minus 4 end cell cell space space space space space 5 end cell row 1 cell space space minus 1 end cell cell space minus 1 end cell row 0 cell space space 3 end cell cell space minus 3 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row 1 cell space space space space 1 end cell cell space space space space 0 end cell row cell negative 4 end cell cell space minus 1 end cell cell space space space space space 3 end cell row 5 cell negative 1 end cell cell space minus 3 end cell end table close square brackets
therefore space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space 1 third open square brackets table row 1 cell space space space space space 1 end cell cell space space space space 0 end cell row cell negative 4 end cell cell space space minus 1 end cell cell space space space space space 3 end cell row 5 cell space minus 1 end cell cell space minus 3 end cell end table close square brackets

Now comma space space space space space space space space space space space space space space AX space space equals space straight B space space space space space space space rightwards double arrow space space space space straight X space equals space straight A to the power of negative 1 end exponent straight B
space therefore space space space space space space space space space space space space space space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 third open square brackets table row 1 cell space space space space space 1 end cell cell space space space 0 end cell row cell negative 4 end cell cell space space minus 1 end cell cell space space space space 3 end cell row 5 cell space space minus 1 end cell cell space minus 3 end cell end table close square brackets space space open square brackets table row cell space space space 7 end cell row cell negative 4 end cell row 10 end table close square brackets
therefore space space space space space space space space space space space space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 third open square brackets table row cell 7 minus 4 plus 0 end cell row cell negative 28 plus 4 plus 30 end cell row cell 35 plus 4 minus 30 end cell end table close square brackets space space space space space rightwards double arrow space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 third open square brackets table row 3 row 6 row 9 end table close square brackets
therefore space space space space space space space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row 1 row 2 row 3 end table close square brackets
therefore space space space space space straight x space equals space 1 comma space space space straight y space equals space 2 comma space space space straight z space equals space 3. space space space space space space space space space space space space space space space

    Question 265
    CBSEENMA12034814

    Using matrices,  following system of linear equations:
    x – y + 2 z = 1
    2 y – 3z = 1
    3x – 2y + 4z = 2  

    Solution

    The given equations are
    x - y + 2z = 1
    2y – 3z = 1
    3x – 2y + 4z = 2
    These equations can be written as
    open square brackets table row 1 cell space space minus 1 end cell cell space space space space space space 2 end cell row 0 cell space space space space space space 2 end cell cell space minus 3 end cell row 3 cell space minus 2 end cell cell space space space space 4 end cell end table close square brackets space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row 1 row 1 row 2 end table close square brackets
    or     AX space space equals space straight B space space space space where space straight A space equals space open square brackets table row 1 cell space space minus 1 end cell cell space space space space space 2 end cell row 0 cell space space space space space 2 end cell cell space space minus 3 end cell row 3 cell space space space minus 2 end cell cell space space space space space 4 end cell end table close square brackets comma space space space straight X space equals space open square brackets table row straight x row straight y row straight z end table close square brackets comma space space straight B space equals space open square brackets table row 1 row 1 row 2 end table close square brackets
    open vertical bar straight A close vertical bar space equals space open vertical bar table row 1 cell space space minus 1 end cell cell space space space space space 2 end cell row 0 cell space space space space space 2 end cell cell space space minus 3 end cell row 3 cell space space minus 2 end cell cell space space space 4 end cell end table close vertical bar space equals space 1 open vertical bar table row 2 cell space space space minus 3 end cell row cell negative 2 end cell cell space space space space space space space 4 end cell end table close vertical bar minus left parenthesis negative 1 right parenthesis space open vertical bar table row 0 cell space space space minus 3 end cell row 3 cell space space space space space 4 end cell end table close vertical bar plus 2 space open vertical bar table row 0 cell space space space space space 2 end cell row 3 cell space minus 2 end cell end table close vertical bar
space space space space space equals 1 space left parenthesis 8 minus 6 right parenthesis space plus space 1 left parenthesis 0 plus 9 right parenthesis space plus space 2 left parenthesis 0 minus 6 right parenthesis space equals space 1 left parenthesis 2 right parenthesis space plus space 1 left parenthesis 9 right parenthesis space plus space 2 space left parenthesis negative 6 right parenthesis
space space space space space equals space 2 plus 9 minus 12 space equals space minus 1 space not equal to space 0
space space therefore space space space space straight A to the power of negative 1 end exponent space exists.
    Co-factors of the elements of first row of | A | are
    open vertical bar table row cell space 2 end cell cell space space space minus 3 end cell row cell negative 2 end cell cell space space space space space 4 end cell end table close vertical bar comma space space space space minus open vertical bar table row 0 cell space space space minus 3 end cell row 3 cell space space space space space space space 4 end cell end table close vertical bar comma space space open vertical bar table row 0 cell space space space space space space 2 end cell row 3 cell space space minus 2 end cell end table close vertical bar

    i.e. 8 – 6, – (0 + 9), 0 – 6 i.e. 2, – 9, – 6 respectively.
    Co-factors of the elements of second row of | A | are
    negative open vertical bar table row cell negative 1 end cell cell space space space space 2 end cell row cell negative 2 end cell cell space space space space 4 end cell end table close vertical bar comma space space space space open vertical bar table row 1 cell space space space 2 end cell row 3 cell space space 4 end cell end table close vertical bar comma space space space space minus open vertical bar table row 1 cell space space minus 1 end cell row 3 cell space minus 2 end cell end table close vertical bar
    i.e.   – (– 4 + 4), 4 – 6, – (– 2 + 7) i.e. 0, – 2, – 1 respectively.
    Co-factors of the elements of third row of | A | are
    open vertical bar table row cell negative 1 end cell cell space space space space 2 end cell row 2 cell space minus 3 end cell end table close vertical bar comma space space minus open vertical bar table row 1 cell space space space space 2 end cell row 0 cell space minus 3 end cell end table close vertical bar comma space space space open vertical bar table row 1 cell space minus 1 end cell row 0 cell space space space 2 end cell end table close vertical bar
    i.e. 3 – 4, – (– 3 – 0), 2+ 0 i.e. – 1, 3, 2 respectively.
    therefore space space space space space space space space space space space adj. space straight A space equals space open square brackets table row 2 cell space space minus 9 end cell cell space space space minus 6 end cell row 0 cell space space minus 2 end cell cell space space minus 1 end cell row cell negative 1 end cell cell space space space space 3 end cell cell space space space space 2 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row cell space 2 end cell cell space space space space 0 end cell cell space space minus 1 end cell row cell negative 9 end cell cell space space minus 2 end cell cell space space space space space 3 end cell row cell negative 6 end cell cell space space minus 1 end cell cell space space space space space 2 end cell end table close square brackets
therefore space space space space space space space space space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space open square brackets table row cell space space space space 2 end cell cell space space space space space 0 end cell cell space space space minus 1 end cell row cell negative 9 end cell cell space space space minus 2 end cell cell space space space space space 3 end cell row cell negative 6 end cell cell space space space minus 1 end cell cell space space space space 2 end cell end table close square brackets space equals space open square brackets table row 2 cell space space space 0 end cell cell space space space space space 1 end cell row 9 cell space space 2 end cell cell space space minus 3 end cell row 6 cell space space 1 end cell cell space space minus 2 end cell end table close square brackets
Now comma space space space space space space space AX space equals space straight B space space space space space space space space space space space space space rightwards double arrow space space space space space straight A to the power of negative 1 end exponent straight B
therefore space space space space space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row cell negative 2 end cell cell space space space 0 end cell cell space space space space space 1 end cell row 9 cell space 2 end cell cell space minus 3 end cell row 6 1 cell space minus 2 end cell end table close square brackets space open square brackets table row 1 row 1 row 2 end table close square brackets
therefore space space space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row cell negative 2 plus 0 plus 2 end cell row cell 9 plus 2 minus 6 end cell row cell 6 plus 1 minus 4 end cell end table close square brackets space space space space space rightwards double arrow space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row 0 row 5 row 3 end table close square brackets
therefore space space space space space straight x space equals space 0 comma space space space space straight y space equals space 5 comma space space space space straight z space equals space 3.

    Question 266
    CBSEENMA12034815

    Use matrix method to solve the following system of equations:
    x – y + 2z = 7  
    3x + 4 y – 5 z = – 5
    2x – y + 3z = 12

    Solution

    The given equations are
    x – y + 2z  = 7
    3x + 4y – 5z= – 5
    2 x – y + 3z = 12
    These equations can be written as
                           open square brackets table row 1 cell space space space minus 1 end cell cell space space space space 2 end cell row 3 cell space space space space space 4 end cell cell space minus 5 end cell row 2 cell space space minus 1 end cell cell space space space 3 end cell end table close square brackets space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row cell space space 7 end cell row cell negative 5 end cell row cell space 12 end cell end table close square brackets
    or space space AX space equals space straight B space space space space where space space space straight A space equals space open square brackets table row 1 cell space space minus 1 end cell cell space space space space space space 2 end cell row 3 cell space space space space space space 4 end cell cell space space minus 5 end cell row 2 cell space space space minus 1 end cell cell space space space space 3 end cell end table close square brackets comma space space space space straight X space equals space open square brackets table row straight x row straight y row straight z end table close square brackets comma space space space straight B equals space open square brackets table row cell space space 7 end cell row cell negative 5 end cell row cell space space 12 end cell end table close square brackets
space space space space space space space space space open vertical bar straight A close vertical bar space equals space open vertical bar table row 1 cell space space space minus 1 end cell cell space space space 2 end cell row 3 cell space space space space space 4 end cell cell space minus 5 end cell row 2 cell space space minus 1 end cell cell space space space space 3 end cell end table close vertical bar space equals space 1 left parenthesis 12 minus 5 right parenthesis space minus space left parenthesis negative 1 right parenthesis thin space left parenthesis 9 plus 10 right parenthesis space plus space 2 left parenthesis negative 3 minus 8 right parenthesis
space space space space space space space space space space space space space space space space space equals space 7 plus 19 minus 22 space equals space 4 space not equal to space 0 space space space space space space space rightwards double arrow space space space space straight A to the power of negative 1 end exponent space exists. space space space space space space space space space space space space space space space space space space       
      
     Co-factors of the elements of first row of | A | are
                 open vertical bar table row 4 cell space space space minus 5 end cell row cell negative 1 end cell cell space space space space space 3 end cell end table close vertical bar comma space space minus open vertical bar table row 3 cell space space space minus 5 end cell row 2 cell space space space space space space 3 end cell end table close vertical bar comma space space space space space open vertical bar table row 3 cell space space space space space space 4 end cell row 2 cell space space minus 1 end cell end table close vertical bar
    or   7, 19, – 11 respectively.
    Co-factors of the elements of second row of | A | are
    negative open vertical bar table row cell negative 1 end cell cell space space space 2 end cell row cell negative 1 end cell cell space space 3 end cell end table close vertical bar comma space space space space space open vertical bar table row 1 cell space space space space 2 end cell row 2 cell space space space space 3 end cell end table close vertical bar comma space space minus open vertical bar table row 1 cell space space space minus 1 end cell row 2 cell space space minus 1 end cell end table close vertical bar
    or    1, – 1, – 1 respectively.
    Co-factors of the elements of third row of | A | are
    open vertical bar table row cell negative 1 end cell cell space space space 2 end cell row 4 cell space minus 5 end cell end table close vertical bar comma space space space space space minus open vertical bar table row 1 cell space space space space space space 2 end cell row 3 cell space space minus 5 end cell end table close vertical bar comma space space space open vertical bar table row 1 cell space space minus 1 end cell row 3 cell space space space space space 4 end cell end table close vertical bar
    or    – 3, 11, 7 respectively.
    therefore space space space adj. space straight A space equals space open square brackets table row 7 cell space space space minus 19 end cell cell space space space space minus 11 end cell row 1 cell space space minus 1 end cell cell space space space space minus 1 end cell row cell negative 3 end cell cell space space space 11 end cell cell space space space space space 7 end cell end table close square brackets space equals space open square brackets table row cell space space space 7 end cell cell space space space space space 1 end cell cell space space space minus 3 end cell row cell negative 19 end cell cell space minus 1 end cell cell space space space space space 11 end cell row cell negative 11 end cell cell space space space minus 1 end cell cell space space space space 7 end cell end table close square brackets
space space space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj. space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space 1 fourth open square brackets table row 7 cell space space space space space 1 end cell cell space space space minus 3 end cell row cell negative 19 end cell cell space space minus 1 end cell cell space space space space 11 end cell row cell negative 11 end cell cell space minus 1 end cell cell space space space space 7 end cell end table close square brackets
Now space space space space AX space equals space straight B space space space space space rightwards double arrow space space space space straight X equals space straight A to the power of negative 1 end exponent straight B space space space space space rightwards double arrow space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 fourth open square brackets table row 7 cell space space space space 1 end cell cell space space minus 3 end cell row cell negative 19 end cell cell space space space minus 1 end cell cell space space space 11 end cell row cell negative 11 end cell cell space space minus 1 end cell cell space space space 7 end cell end table close square brackets space open square brackets table row cell space 7 end cell row cell negative 5 end cell row 12 end table close square brackets
rightwards double arrow space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 fourth open square brackets table row cell 49 minus 5 minus 36 end cell row cell negative 133 plus 5 plus 132 end cell row cell negative 77 plus 5 plus 84 end cell end table close square brackets space space space space space space space space space space space space space space space rightwards double arrow space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row 2 row 1 row 3 end table close square brackets
rightwards double arrow space space space space space straight x space equals space 2 comma space space space space straight y space equals space 1 comma space space space straight z space equals space 3

    Question 267
    CBSEENMA12034816

    Use matrix method to solve the following system of equations:
    x – y + 2z = 7  
    3x + 4 y – 5 z = – 5
    2x – y + 3z = 12

    Solution

    The given equations are
    x – y + 2z  = 7
    3x + 4y – 5z= – 5
    2 x – y + 3z = 12
    These equations can be written as
                           open square brackets table row 1 cell space space space minus 1 end cell cell space space space space 2 end cell row 3 cell space space space space space 4 end cell cell space minus 5 end cell row 2 cell space space minus 1 end cell cell space space space 3 end cell end table close square brackets space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row cell space space 7 end cell row cell negative 5 end cell row cell space 12 end cell end table close square brackets
    or space space AX space equals space straight B space space space space where space space space straight A space equals space open square brackets table row 1 cell space space minus 1 end cell cell space space space space space space 2 end cell row 3 cell space space space space space space 4 end cell cell space space minus 5 end cell row 2 cell space space space minus 1 end cell cell space space space space 3 end cell end table close square brackets comma space space space space straight X space equals space open square brackets table row straight x row straight y row straight z end table close square brackets comma space space space straight B equals space open square brackets table row cell space space 7 end cell row cell negative 5 end cell row cell space space 12 end cell end table close square brackets
space space space space space space space space space open vertical bar straight A close vertical bar space equals space open vertical bar table row 1 cell space space space minus 1 end cell cell space space space 2 end cell row 3 cell space space space space space 4 end cell cell space minus 5 end cell row 2 cell space space minus 1 end cell cell space space space space 3 end cell end table close vertical bar space equals space 1 left parenthesis 12 minus 5 right parenthesis space minus space left parenthesis negative 1 right parenthesis thin space left parenthesis 9 plus 10 right parenthesis space plus space 2 left parenthesis negative 3 minus 8 right parenthesis
space space space space space space space space space space space space space space space space space equals space 7 plus 19 minus 22 space equals space 4 space not equal to space 0 space space space space space space space rightwards double arrow space space space space straight A to the power of negative 1 end exponent space exists. space space space space space space space space space space space space space space space space space space       
      
     Co-factors of the elements of first row of | A | are
                 open vertical bar table row 4 cell space space space minus 5 end cell row cell negative 1 end cell cell space space space space space 3 end cell end table close vertical bar comma space space minus open vertical bar table row 3 cell space space space minus 5 end cell row 2 cell space space space space space space 3 end cell end table close vertical bar comma space space space space space open vertical bar table row 3 cell space space space space space space 4 end cell row 2 cell space space minus 1 end cell end table close vertical bar
    or   7, 19, – 11 respectively.
    Co-factors of the elements of second row of | A | are
    negative open vertical bar table row cell negative 1 end cell cell space space space 2 end cell row cell negative 1 end cell cell space space 3 end cell end table close vertical bar comma space space space space space open vertical bar table row 1 cell space space space space 2 end cell row 2 cell space space space space 3 end cell end table close vertical bar comma space space minus open vertical bar table row 1 cell space space space minus 1 end cell row 2 cell space space minus 1 end cell end table close vertical bar
    or    1, – 1, – 1 respectively.
    Co-factors of the elements of third row of | A | are
    open vertical bar table row cell negative 1 end cell cell space space space 2 end cell row 4 cell space minus 5 end cell end table close vertical bar comma space space space space space minus open vertical bar table row 1 cell space space space space space space 2 end cell row 3 cell space space minus 5 end cell end table close vertical bar comma space space space open vertical bar table row 1 cell space space minus 1 end cell row 3 cell space space space space space 4 end cell end table close vertical bar
    or    – 3, 11, 7 respectively.
    therefore space space space adj. space straight A space equals space open square brackets table row 7 cell space space space minus 19 end cell cell space space space space minus 11 end cell row 1 cell space space minus 1 end cell cell space space space space minus 1 end cell row cell negative 3 end cell cell space space space 11 end cell cell space space space space space 7 end cell end table close square brackets space equals space open square brackets table row cell space space space 7 end cell cell space space space space space 1 end cell cell space space space minus 3 end cell row cell negative 19 end cell cell space minus 1 end cell cell space space space space space 11 end cell row cell negative 11 end cell cell space space space minus 1 end cell cell space space space space 7 end cell end table close square brackets
space space space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj. space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space 1 fourth open square brackets table row 7 cell space space space space space 1 end cell cell space space space minus 3 end cell row cell negative 19 end cell cell space space minus 1 end cell cell space space space space 11 end cell row cell negative 11 end cell cell space minus 1 end cell cell space space space space 7 end cell end table close square brackets
Now space space space space AX space equals space straight B space space space space space rightwards double arrow space space space space straight X equals space straight A to the power of negative 1 end exponent straight B space space space space space rightwards double arrow space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 fourth open square brackets table row 7 cell space space space space 1 end cell cell space space minus 3 end cell row cell negative 19 end cell cell space space space minus 1 end cell cell space space space 11 end cell row cell negative 11 end cell cell space space minus 1 end cell cell space space space 7 end cell end table close square brackets space open square brackets table row cell space 7 end cell row cell negative 5 end cell row 12 end table close square brackets
rightwards double arrow space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 fourth open square brackets table row cell 49 minus 5 minus 36 end cell row cell negative 133 plus 5 plus 132 end cell row cell negative 77 plus 5 plus 84 end cell end table close square brackets space space space space space space space space space space space space space space space rightwards double arrow space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row 2 row 1 row 3 end table close square brackets
rightwards double arrow space space space space space straight x space equals space 2 comma space space space space straight y space equals space 1 comma space space space straight z space equals space 3

    Question 268
    CBSEENMA12034822

    Use matrix method to solve the following system of equations:
    5x – y + z = 4
    3x + 2y – 5z = 2
    x + 3 y – 2 z = 5

    Solution

    The given equations are
    5x – y + z = 4
    3x + 2y – 5z = 2
    x + 3y – 2z = 5
    These equations can be written as
                    open square brackets table row 5 cell space space space minus 1 end cell cell space space space 1 end cell row 3 cell space space space space space space 2 end cell cell space minus 5 end cell row 1 cell space space space space space 3 end cell cell space minus 2 end cell end table close square brackets space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row 4 row 2 row 5 end table close square brackets
    or   AX = B  where A = straight A space equals space open square brackets table row 5 cell space space minus 1 end cell cell space space space space space space 1 end cell row 3 cell space space space space space 2 end cell cell space space space minus 5 end cell row 1 cell space space space space 3 end cell cell space space minus 2 end cell end table close square brackets comma space space space space straight X space equals space open square brackets table row straight x row straight y row straight z end table close square brackets comma space space straight B space equals space open square brackets table row 4 row 2 row 5 end table close square brackets
                   open vertical bar straight A close vertical bar space equals space open vertical bar table row 5 cell space space minus 1 end cell cell space space space space space space 1 end cell row 3 cell space space space space 2 end cell cell space space minus 5 end cell row 1 cell space space space space 3 end cell cell negative 2 end cell end table close vertical bar space equals space 5 left parenthesis negative 4 plus 15 right parenthesis space minus left parenthesis negative 1 right parenthesis space left parenthesis negative 6 plus 5 right parenthesis space plus space left parenthesis 9 minus 2 right parenthesis
space space space space space space space equals 5 left parenthesis 11 right parenthesis plus 1 left parenthesis negative 1 right parenthesis plus 1 left parenthesis 7 right parenthesis space equals space 55 minus 1 plus 7 space equals space 61 space not equal to 0 space space space space space space space rightwards double arrow space space space space straight A to the power of negative 1 end exponent space exists
    Co-factors of the elements of first row of | A | are
    open vertical bar table row 2 cell space space minus 5 end cell row 3 cell space space minus 2 end cell end table close vertical bar comma space space space space minus open vertical bar table row 3 cell space space space minus 5 end cell row 1 cell space space minus 2 end cell end table close vertical bar comma space space space open vertical bar table row 3 cell space space space 2 end cell row 1 cell space space space 3 end cell end table close vertical bar
     or  11, 1, 7 respectively.
    Co-factors of the elements of second row of | A | are
    negative open vertical bar table row cell negative 1 end cell cell space space space space space 1 end cell row 3 cell space minus 2 end cell end table close vertical bar comma space space space space open vertical bar table row 5 cell space space space space space space space space space 1 end cell row 1 cell space space space space space minus 2 end cell end table close vertical bar comma space space space space minus open vertical bar table row 5 cell space space space minus 1 end cell row 1 cell space space space space 3 end cell end table close vertical bar
or space space 1 comma space – space 11 comma space – space 16 space respectively.
    Co-factors of the elements of third row of | A | are
    open vertical bar table row cell negative 1 end cell cell space space space space space space space 1 end cell row cell space 2 end cell cell space space minus 5 end cell end table close vertical bar comma space space space space minus open vertical bar table row 5 cell space space space space 1 end cell row 3 cell space space minus 5 end cell end table close vertical bar comma space space open vertical bar table row 5 cell space space minus 1 end cell row 3 cell space space space space space space 2 end cell end table close vertical bar
    or   3, 28, 13 respectively.
    therefore space space space space adj. space straight A space equals space open square brackets table row 11 cell space space 1 end cell cell space space 7 end cell row 1 cell negative 11 end cell cell negative 16 end cell row 3 28 cell space 13 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row 11 cell space space space space 1 end cell cell space space 3 end cell row 1 cell negative 11 end cell cell space space 28 end cell row 7 cell negative 16 end cell cell space 13 end cell end table close square brackets
space space space space space space space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj. space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space 1 over 61 open square brackets table row 11 cell space space space 1 end cell cell space space 3 end cell row 1 cell space minus 11 end cell cell space space 28 end cell row 7 cell negative 16 end cell cell space space 13 end cell end table close square brackets
    Now,   
           AX space equals space straight B space space space space rightwards double arrow space space space straight X space equals space straight A to the power of negative 1 end exponent straight B space space space space space space rightwards double arrow space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 over 61 open square brackets table row 11 cell space space space 1 end cell cell space space 3 end cell row 1 cell negative 11 end cell cell space space 28 end cell row 7 cell negative 16 end cell cell space space 13 end cell end table close square brackets space space open square brackets table row 4 row 2 row 5 end table close square brackets
rightwards double arrow space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 over 61 open square brackets table row cell 44 plus 2 plus 15 end cell row cell 4 minus 22 plus 140 end cell row cell 28 minus 38 plus 65 end cell end table close square brackets space space space space space rightwards double arrow space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row 1 row 2 row 1 end table close square brackets
rightwards double arrow space space space space space space space space straight x space equals space 1 comma space space space space space straight y space space equals space 2 comma space space space space straight z space equals space 1

    Question 269
    CBSEENMA12034825

    Use matrix method to solve the following system of equations:
    4x + 2y + 3z = 2
    x + y + z = 1
    3x + y – 2z = 5

    Solution

    The given equations are
    4x + 2y + 3z = 2
    x + y + 2 = 1
    3x + y – 2z = 5
    These equations can be written as
                     open square brackets table row 4 cell space space space space 2 end cell cell space space space space space space 3 end cell row 1 cell space space space space 1 end cell cell space space space space space space 1 end cell row 3 cell space space space 1 end cell cell space space minus 2 end cell end table close square brackets space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row 2 row 1 row 5 end table close square brackets   
    or space space space AX space equals space straight B space space space where space straight A space equals space open square brackets table row 4 cell space space space 2 end cell cell space space space space 3 end cell row 1 cell space space 1 end cell cell space space space 1 end cell row 3 cell space space 1 end cell cell space minus 2 end cell end table close square brackets comma space space space straight X space equals space open square brackets table row straight x row straight y row straight z end table close square brackets comma space space space straight B space equals space open square brackets table row 2 row 1 row 5 end table close square brackets
space space space space space space space space space space space space space space open vertical bar straight A close vertical bar space equals space open vertical bar table row 4 cell space space space space 2 end cell cell space space space space 3 end cell row 1 cell space space space 1 end cell cell space space space space 1 end cell row 3 cell space space space 1 end cell cell space minus 2 end cell end table close vertical bar space equals space 4 left parenthesis negative 2 minus 1 right parenthesis space minus space 2 left parenthesis negative 2 minus 3 right parenthesis space plus space 3 left parenthesis 1 minus 3 right parenthesis
space space space space space space space space space space space space space space space space space space space space equals negative 12 plus 10 minus 6 space equals space minus 8 space not equal to 0 space space space space rightwards double arrow space space space space space space straight A to the power of negative 1 end exponent space exists.
    Co-factors of the elements of first row of | A | are
    open vertical bar table row 1 cell space space space space space space 1 end cell row 1 cell space space minus 2 end cell end table close vertical bar comma space space space minus open vertical bar table row 1 cell space space space space space space 1 end cell row 3 cell space space minus 2 end cell end table close vertical bar comma space space open vertical bar table row 1 cell space space space space 1 end cell row 3 cell space space space space 1 end cell end table close vertical bar
    or – 3, 5, – 2 respectively.
    Co-factors of the elements of second row of | A | are
    negative open vertical bar table row 2 cell space space space space space 3 end cell row 1 cell space minus 3 end cell end table close vertical bar comma space space space space open vertical bar table row 4 cell space space space space space space 3 end cell row 3 cell space space minus 2 end cell end table close vertical bar comma space space space minus open vertical bar table row 4 cell space space space space 2 end cell row 3 cell space space space 1 end cell end table close vertical bar
    or   7, – 17, 2 respectively.
    Co-factors of the elements of third row of | A | are
    open vertical bar table row 2 cell space space space 3 end cell row 1 cell space space space 1 end cell end table close vertical bar comma space space minus open vertical bar table row 4 cell space space space 3 end cell row 1 cell space space 1 end cell end table close vertical bar comma space space open vertical bar table row 4 cell space space space 2 end cell row 1 cell space space space 1 end cell end table close vertical bar
    or  – 1, – 1, 2 respectively.
    adj space straight A space equals space open square brackets table row cell negative 3 end cell cell space space space space space 5 end cell cell space space space minus 2 end cell row cell space space space 7 end cell cell space space minus 17 end cell cell space space space space space 2 end cell row cell negative 1 end cell cell space space minus 1 end cell cell space space space space space 2 end cell end table close square brackets to the power of apostrophe space equals space space open square brackets table row cell negative 3 end cell cell space space space space space space 7 end cell cell space space space space minus 1 end cell row cell space space space 5 end cell cell space space minus 17 end cell cell space space minus 1 end cell row cell negative 2 end cell cell space space space space 2 end cell cell space space space space space 2 end cell end table close square brackets
space space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj. space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space 1 over 8 open square brackets table row cell negative 3 end cell cell space space space 7 end cell cell space space minus 1 end cell row cell space space 5 end cell cell space minus 17 end cell cell space space minus 1 end cell row cell negative 2 end cell cell space space 2 end cell cell space space space space space space 2 end cell end table close square brackets
Now comma space space space AX space equals space straight B space space space rightwards double arrow space space space straight X space equals space straight A to the power of negative 1 end exponent straight B space space space space space space space space rightwards double arrow space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space minus 1 over 8 open square brackets table row cell negative 3 end cell cell space space space 7 end cell cell space space minus 1 end cell row cell space space 5 end cell cell negative 17 end cell cell space minus 1 end cell row cell negative 2 end cell cell space space 2 end cell cell space space 2 end cell end table close square brackets space open square brackets table row 2 row 1 row 5 end table close square brackets
rightwards double arrow space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space minus 1 over 8 open square brackets table row cell negative 6 plus 7 minus 5 end cell row cell 10 minus 17 minus 5 end cell row cell negative 4 plus 2 plus 10 end cell end table close square brackets space space space space space rightwards double arrow space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row cell 1 half end cell row cell 3 over 2 end cell row cell negative 1 end cell end table close square brackets
therefore space space space space space space space straight x space equals space 1 half comma space space space space space straight y space equals space 3 over 2 comma space space space straight z space equals space minus 1

    Question 270
    CBSEENMA12034829

    Use matrix method to solve the following system of equations:
    2x + 3y + 3z = 5
    x – 2 y + z = – 4
    3x – y – 2z = 3

    Solution

    The given equations are
    2x + 3y + 3z = 5
    x – 2 y + z = – 4
    3x – y – 2z = 3
    These equations can be written as
             open square brackets table row 2 cell space space space space 3 end cell cell space space space 3 end cell row 1 cell space minus 2 end cell cell space space space 1 end cell row 3 cell space minus 1 end cell cell negative 2 end cell end table close square brackets space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row cell space space space 5 end cell row cell negative 4 end cell row cell space space space 3 end cell end table close square brackets
    or     AX space equals space straight B space space space space space space space space where space straight A space equals space open square brackets table row 2 cell space space space space space space 3 end cell cell space space space space space 3 end cell row 1 cell space space minus 2 end cell cell space space space space space 1 end cell row 3 cell space space space space minus 1 end cell cell space minus 2 end cell end table close square brackets comma space space space straight X space equals space open square brackets table row straight x row straight y row straight z end table close square brackets comma space space straight B space equals space open square brackets table row cell space space space 5 end cell row cell negative 4 end cell row cell space space space 3 end cell end table close square brackets space space space space
             open vertical bar straight A close vertical bar space equals space open vertical bar table row 2 cell space space space space space space space 3 end cell cell space space space space space space space 3 end cell row 1 cell space space minus 2 end cell cell space space space space space space 1 end cell row 3 cell space space minus 1 end cell cell space space minus 2 end cell end table close vertical bar space equals space 2 left parenthesis 4 plus 1 right parenthesis minus 3 left parenthesis negative 2 minus 3 right parenthesis plus 3 left parenthesis negative 1 plus 6 right parenthesis
space space space space equals space 10 plus 15 plus 15 space equals space 40 space not equal to space 0 space space space space space space space rightwards double arrow space space space straight A to the power of negative 1 end exponent space exists.
    
    Co-factors of the elements of first row of | A | are
      open vertical bar table row cell negative 2 end cell cell space space space space space space 1 end cell row cell negative 1 end cell cell space space minus 2 end cell end table close vertical bar comma space space space minus open vertical bar table row 1 cell space space space space space 1 end cell row 3 cell space space minus 2 end cell end table close vertical bar comma space space space open vertical bar table row 1 cell space space space space space minus 2 end cell row 3 cell space space space space space minus 1 end cell end table close vertical bar
    or  5, 5, 5 respectively.
    Co-factors of the elements of second row of | A | are
    open vertical bar table row cell space space space 3 end cell cell space space space space space space 3 end cell row cell negative 1 end cell cell space space minus 2 end cell end table close vertical bar comma space space space space open vertical bar table row 2 cell space space space space space 3 end cell row 3 cell space minus 2 end cell end table close vertical bar comma space space space minus open vertical bar table row 2 cell space space space space 3 end cell row 3 cell space minus 1 end cell end table close vertical bar
    or  3, – 13, 11 respectively.
    Co-factors of the elements of third row of | A | are
    open vertical bar table row cell space 3 end cell cell space space space 3 end cell row cell negative 2 end cell cell space space space 1 end cell end table close vertical bar comma space space minus open vertical bar table row 2 cell space space space space 3 end cell row 1 cell space space space 1 end cell end table close vertical bar comma space space space open vertical bar table row 2 cell space space space space space 3 end cell row 1 cell space space minus 2 end cell end table close vertical bar
    or  9, 1, – 7 respectively.
    therefore space space adj. space straight A space equals space open square brackets table row 5 cell space space space space space 5 end cell cell space space space space space space 5 end cell row 3 cell space space minus 13 end cell cell space space space space space 11 end cell row 3 cell space space space space space space 1 end cell cell space space minus 7 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row 5 cell space space space space 3 end cell cell space space space 9 end cell row 5 cell negative 13 end cell cell space space space 1 end cell row 5 cell space space 11 end cell cell negative 7 end cell end table close square brackets
space space space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj. space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space 1 over 40 open square brackets table row 5 cell space space space space space 3 end cell cell space space space space 9 end cell row 5 cell space minus 13 end cell cell space space space 1 end cell row 5 cell space space space 11 end cell cell negative 7 end cell end table close square brackets
Now comma space space straight A space straight X space equals space straight B space space space space space rightwards double arrow space space space space straight X space equals space straight A to the power of negative 1 end exponent straight B space space space space rightwards double arrow space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals 1 over 40 open square brackets table row 5 cell space space space space 3 end cell cell space space space 9 end cell row 5 cell space minus 13 end cell cell space space 1 end cell row 5 cell space space space 11 end cell cell space space minus 7 end cell end table close square brackets space space open square brackets table row cell space space space space 5 end cell row cell negative 4 end cell row cell space space 3 end cell end table close square brackets
rightwards double arrow space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 over 40 open square brackets table row cell 25 minus 12 plus 27 end cell row cell 25 plus 52 plus 3 end cell row cell 25 minus 44 minus 21 end cell end table close square brackets space space space space space rightwards double arrow space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row cell space space 1 end cell row cell space space space 2 end cell row cell negative 1 end cell end table close square brackets
rightwards double arrow space space space space straight x space equals space 1 comma space space space straight y space equals space 2 comma space space space straight z space equals space minus 1

    Question 271
    CBSEENMA12034834

    Use matrix method to solve the following system of equations:
    2x – 3y + 3z = 1
    2x+ 2y+ 3z = 2
    3x – 2y + 2z = 3

    Solution

    The given equations are
    2x – 3y + 3z = 1
    2x+ 2y+ 3z = 2
    3x – 2y + 2z = 3
    These equations can be written as
                           open square brackets table row 2 cell space space minus 3 end cell cell space space space 3 end cell row 2 cell space space space space 2 end cell cell space space 3 end cell row 3 cell space minus 2 end cell cell space space 2 end cell end table close square brackets space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row 1 row 2 row 3 end table close square brackets
    or    AX = B where straight A space equals space open square brackets table row 2 cell space space minus 3 end cell cell space space 3 end cell row 2 cell space space space space space 2 end cell cell space space 3 end cell row 3 cell space space minus 2 end cell cell space space 2 end cell end table close square brackets comma space space space straight X space equals space open square brackets table row straight x row straight y row straight z end table close square brackets comma space space space space straight B space equals space open square brackets table row 1 row 2 row 3 end table close square brackets
     
       open vertical bar straight A close vertical bar space equals space open vertical bar table row 2 cell space space space minus 3 end cell cell space space 3 end cell row 2 cell space space space space 2 end cell cell space space 3 end cell row 3 cell space minus 2 end cell cell space space 2 end cell end table close vertical bar space equals space 2 open vertical bar table row cell space space 2 end cell cell space space space 3 end cell row cell negative 2 end cell cell space space space space 2 space end cell end table close vertical bar minus left parenthesis negative 3 right parenthesis space open vertical bar table row 2 cell space space 3 end cell row 3 cell space space 2 end cell end table close vertical bar plus 3 space open vertical bar table row 2 cell space space space space space 2 end cell row 3 cell space space minus 2 end cell end table close vertical bar
space space space space space space space equals 2 space left parenthesis 4 plus 6 right parenthesis space plus space 3 space left parenthesis 4 minus 9 right parenthesis space plus space 3 space left parenthesis negative 4 minus 6 right parenthesis
space space space space space space space space equals 20 minus 15 minus 30 space equals space minus 25 space not equal to space 0
space therefore space space space space straight A to the power of negative 1 end exponent space exists.
    Co-factors of the elements of first row of | A | are
    open vertical bar table row 2 cell space space space space 3 end cell row cell negative 2 end cell cell space space space space 2 end cell end table close vertical bar comma space space space space space minus open vertical bar table row 2 cell space space space space 3 end cell row 3 cell space space space space 2 end cell end table close vertical bar comma space space open vertical bar table row 2 cell space space space space space 2 end cell row 3 cell space minus 2 end cell end table close vertical bar

    i.e., 10, 5, – 10 respectively
    Co-factors of the elements of second row of | A | are
    negative open vertical bar table row cell negative 3 end cell cell space space space 3 end cell row cell negative 2 end cell cell space space space 2 end cell end table close vertical bar comma space space space space open vertical bar table row 2 cell space space space 3 end cell row 3 cell space space 2 end cell end table close vertical bar comma space space space minus open vertical bar table row 2 cell space space space minus 3 end cell row 3 cell space space minus 2 end cell end table close vertical bar
    i.e., 0, – 5, – 5 respectively
     Co-factors of the elements of third row of | A | are
    open vertical bar table row cell negative 3 end cell cell space space space 3 end cell row 2 cell space space space 3 end cell end table close vertical bar comma space space space space minus open vertical bar table row 2 cell space space space 3 end cell row 2 cell space space space 3 end cell end table close vertical bar comma space space space open vertical bar table row 2 cell space space minus 3 end cell row 2 cell space space space space 2 end cell end table close vertical bar

    i.e., 15, 0, 10 respectively
    therefore space space space adj space straight A space equals space open square brackets table row 10 cell space space space space space space 5 space end cell cell space space minus 10 end cell row 0 cell space minus 5 end cell cell space minus 5 end cell row cell negative 15 end cell cell space space space 0 end cell cell space space 10 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row 10 cell space space space 0 end cell cell space space minus 15 end cell row 5 cell space minus 5 end cell cell space space space space space 0 end cell row cell negative 10 end cell cell space minus 5 end cell cell space space space space 10 end cell end table close square brackets
space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj. space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space minus 1 over 25 open square brackets table row 10 cell space space space 0 end cell cell space space minus 15 end cell row 5 cell space minus 5 end cell cell space space space space space space 0 end cell row cell negative 10 end cell cell space minus 5 end cell cell space space space space 10 end cell end table close square brackets
Now space space space AX space equals space straight B space space space space rightwards double arrow space space space straight X space equals space straight A to the power of negative 1 end exponent straight B space space space space rightwards double arrow space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space minus 1 over 25 open square brackets table row 10 cell space space space space space 0 end cell cell space space space minus 15 end cell row 5 cell space space minus 5 end cell cell space space space space space 0 end cell row cell negative 10 end cell cell space space minus 5 end cell cell space space space space space 10 end cell end table close square brackets space open square brackets table row 1 row 2 row 3 end table close square brackets
rightwards double arrow space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space minus 1 over 25 open square brackets table row cell 10 plus 0 minus 45 end cell row cell 5 minus 10 plus 0 end cell row cell negative 10 minus 10 plus 30 end cell end table close square brackets space space space space rightwards double arrow space space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space minus 1 over 25 open square brackets table row cell negative 35 end cell row cell negative 5 end cell row cell space 10 end cell end table close square brackets
rightwards double arrow space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row cell 7 over 5 end cell row cell 1 fifth end cell row cell fraction numerator negative 2 over denominator 5 end fraction end cell end table close square brackets space space space space rightwards double arrow space space space straight x space equals space 7 over 5 comma space space space space space straight y space equals space 1 fifth comma space space space straight z space equals space minus 2 over 5

    Question 272
    CBSEENMA12034835

    Use matrix method to solve the following system of equations:
    2x – 3y + 3z = 1
    2x+ 2y+ 3z = 2
    3x – 2y + 2z = 3

    Solution

    The given equations are
    2x – 3y + 3z = 1
    2x+ 2y+ 3z = 2
    3x – 2y + 2z = 3
    These equations can be written as
                           open square brackets table row 2 cell space space minus 3 end cell cell space space space 3 end cell row 2 cell space space space space 2 end cell cell space space 3 end cell row 3 cell space minus 2 end cell cell space space 2 end cell end table close square brackets space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row 1 row 2 row 3 end table close square brackets
    or    AX = B where straight A space equals space open square brackets table row 2 cell space space minus 3 end cell cell space space 3 end cell row 2 cell space space space space space 2 end cell cell space space 3 end cell row 3 cell space space minus 2 end cell cell space space 2 end cell end table close square brackets comma space space space straight X space equals space open square brackets table row straight x row straight y row straight z end table close square brackets comma space space space space straight B space equals space open square brackets table row 1 row 2 row 3 end table close square brackets
     
       open vertical bar straight A close vertical bar space equals space open vertical bar table row 2 cell space space space minus 3 end cell cell space space 3 end cell row 2 cell space space space space 2 end cell cell space space 3 end cell row 3 cell space minus 2 end cell cell space space 2 end cell end table close vertical bar space equals space 2 open vertical bar table row cell space space 2 end cell cell space space space 3 end cell row cell negative 2 end cell cell space space space space 2 space end cell end table close vertical bar minus left parenthesis negative 3 right parenthesis space open vertical bar table row 2 cell space space 3 end cell row 3 cell space space 2 end cell end table close vertical bar plus 3 space open vertical bar table row 2 cell space space space space space 2 end cell row 3 cell space space minus 2 end cell end table close vertical bar
space space space space space space space equals 2 space left parenthesis 4 plus 6 right parenthesis space plus space 3 space left parenthesis 4 minus 9 right parenthesis space plus space 3 space left parenthesis negative 4 minus 6 right parenthesis
space space space space space space space space equals 20 minus 15 minus 30 space equals space minus 25 space not equal to space 0
space therefore space space space space straight A to the power of negative 1 end exponent space exists.
    Co-factors of the elements of first row of | A | are
    open vertical bar table row 2 cell space space space space 3 end cell row cell negative 2 end cell cell space space space space 2 end cell end table close vertical bar comma space space space space space minus open vertical bar table row 2 cell space space space space 3 end cell row 3 cell space space space space 2 end cell end table close vertical bar comma space space open vertical bar table row 2 cell space space space space space 2 end cell row 3 cell space minus 2 end cell end table close vertical bar

    i.e., 10, 5, – 10 respectively
    Co-factors of the elements of second row of | A | are
    negative open vertical bar table row cell negative 3 end cell cell space space space 3 end cell row cell negative 2 end cell cell space space space 2 end cell end table close vertical bar comma space space space space open vertical bar table row 2 cell space space space 3 end cell row 3 cell space space 2 end cell end table close vertical bar comma space space space minus open vertical bar table row 2 cell space space space minus 3 end cell row 3 cell space space minus 2 end cell end table close vertical bar
    i.e., 0, – 5, – 5 respectively
     Co-factors of the elements of third row of | A | are
    open vertical bar table row cell negative 3 end cell cell space space space 3 end cell row 2 cell space space space 3 end cell end table close vertical bar comma space space space space minus open vertical bar table row 2 cell space space space 3 end cell row 2 cell space space space 3 end cell end table close vertical bar comma space space space open vertical bar table row 2 cell space space minus 3 end cell row 2 cell space space space space 2 end cell end table close vertical bar

    i.e., 15, 0, 10 respectively
    therefore space space space adj space straight A space equals space open square brackets table row 10 cell space space space space space 5 end cell cell space space space space space minus 10 end cell row 0 cell space minus 5 end cell cell space space space space minus 5 end cell row cell negative 15 end cell cell space space space space 0 end cell cell space space space space space space space 10 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row 10 cell space space space space 0 end cell cell space space space minus 15 end cell row 5 cell space space minus 5 end cell cell space space space space space 0 end cell row cell negative 10 end cell cell space space minus 5 end cell cell space space space space space 10 end cell end table close square brackets
space space space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj. space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space minus 1 over 25 open square brackets table row 10 cell space space space space 0 end cell cell space space space minus 15 end cell row cell space space 5 end cell cell space space minus 5 end cell cell space space space space space space 0 end cell row cell negative 10 end cell cell space minus 5 end cell cell space space space space space space 10 end cell end table close square brackets
Now comma space space AX space equals space straight B space space space space space space rightwards double arrow space space space space straight X space equals space space straight A to the power of negative 1 end exponent straight B space space space rightwards double arrow space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets equals space minus 1 over 25 open square brackets table row 10 cell space space space 0 end cell cell space space minus 15 end cell row cell space 5 end cell cell negative 5 end cell cell space space space space 0 end cell row cell negative 10 end cell cell negative 5 end cell cell space space 10 end cell end table close square brackets space open square brackets table row 1 row 2 row 3 end table close square brackets
rightwards double arrow space space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space minus 1 over 25 open square brackets table row cell 10 plus 0 minus 45 end cell row cell 5 minus 10 plus 0 end cell row cell negative 10 minus 10 plus 30 end cell end table close square brackets space space space rightwards double arrow space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space minus 1 over 25 open square brackets table row cell negative 35 end cell row cell negative 5 end cell row 10 end table close square brackets
rightwards double arrow space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space space equals space open square brackets table row cell 7 over 5 end cell row cell 1 fifth end cell row cell fraction numerator negative 2 over denominator 5 end fraction end cell end table close square brackets space space space space space rightwards double arrow space space space straight x space equals space 7 over 5 comma space space space straight y space equals space 1 fifth comma space space space straight z space equals space minus 2 over 5 space

    Question 273
    CBSEENMA12034836

    Use matrix method to solve the following system of equations:
    2x – 3y + 3z = 1
    2x+ 2y+ 3z = 2
    3x – 2y + 2z = 3

    Solution

    The given equations are
    2x – 3y + 3z = 1
    2x+ 2y+ 3z = 2
    3x – 2y + 2z = 3
    These equations can be written as
                           open square brackets table row 2 cell space space minus 3 end cell cell space space space 3 end cell row 2 cell space space space space 2 end cell cell space space 3 end cell row 3 cell space minus 2 end cell cell space space 2 end cell end table close square brackets space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row 1 row 2 row 3 end table close square brackets
    or    AX = B where straight A space equals space open square brackets table row 2 cell space space minus 3 end cell cell space space 3 end cell row 2 cell space space space space space 2 end cell cell space space 3 end cell row 3 cell space space minus 2 end cell cell space space 2 end cell end table close square brackets comma space space space straight X space equals space open square brackets table row straight x row straight y row straight z end table close square brackets comma space space space space straight B space equals space open square brackets table row 1 row 2 row 3 end table close square brackets
     
       open vertical bar straight A close vertical bar space equals space open vertical bar table row 2 cell space space space minus 3 end cell cell space space 3 end cell row 2 cell space space space space 2 end cell cell space space 3 end cell row 3 cell space minus 2 end cell cell space space 2 end cell end table close vertical bar space equals space 2 open vertical bar table row cell space space 2 end cell cell space space space 3 end cell row cell negative 2 end cell cell space space space space 2 space end cell end table close vertical bar minus left parenthesis negative 3 right parenthesis space open vertical bar table row 2 cell space space 3 end cell row 3 cell space space 2 end cell end table close vertical bar plus 3 space open vertical bar table row 2 cell space space space space space 2 end cell row 3 cell space space minus 2 end cell end table close vertical bar
space space space space space space space equals 2 space left parenthesis 4 plus 6 right parenthesis space plus space 3 space left parenthesis 4 minus 9 right parenthesis space plus space 3 space left parenthesis negative 4 minus 6 right parenthesis
space space space space space space space space equals 20 minus 15 minus 30 space equals space minus 25 space not equal to space 0
space therefore space space space space straight A to the power of negative 1 end exponent space exists.
    Co-factors of the elements of first row of | A | are
    open vertical bar table row 2 cell space space space space 3 end cell row cell negative 2 end cell cell space space space space 2 end cell end table close vertical bar comma space space space space space minus open vertical bar table row 2 cell space space space space 3 end cell row 3 cell space space space space 2 end cell end table close vertical bar comma space space open vertical bar table row 2 cell space space space space space 2 end cell row 3 cell space minus 2 end cell end table close vertical bar

    i.e., 10, 5, – 10 respectively
    Co-factors of the elements of second row of | A | are
    negative open vertical bar table row cell negative 3 end cell cell space space space 3 end cell row cell negative 2 end cell cell space space space 2 end cell end table close vertical bar comma space space space space open vertical bar table row 2 cell space space space 3 end cell row 3 cell space space 2 end cell end table close vertical bar comma space space space minus open vertical bar table row 2 cell space space space minus 3 end cell row 3 cell space space minus 2 end cell end table close vertical bar
    i.e., 0, – 5, – 5 respectively
     Co-factors of the elements of third row of | A | are
    open vertical bar table row cell negative 3 end cell cell space space space 3 end cell row 2 cell space space space 3 end cell end table close vertical bar comma space space space space minus open vertical bar table row 2 cell space space space 3 end cell row 2 cell space space space 3 end cell end table close vertical bar comma space space space open vertical bar table row 2 cell space space minus 3 end cell row 2 cell space space space space 2 end cell end table close vertical bar

    i.e., 15, 0, 10 respectively
    therefore space space space adj space straight A space equals space open square brackets table row 10 cell space space space space space 5 end cell cell space space space space space minus 10 end cell row 0 cell space minus 5 end cell cell space space space space minus 5 end cell row cell negative 15 end cell cell space space space space 0 end cell cell space space space space space space space 10 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row 10 cell space space space space 0 end cell cell space space space minus 15 end cell row 5 cell space space minus 5 end cell cell space space space space space 0 end cell row cell negative 10 end cell cell space space minus 5 end cell cell space space space space space 10 end cell end table close square brackets
space space space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj. space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space minus 1 over 25 open square brackets table row 10 cell space space space space 0 end cell cell space space space minus 15 end cell row cell space space 5 end cell cell space space minus 5 end cell cell space space space space space space 0 end cell row cell negative 10 end cell cell space minus 5 end cell cell space space space space space space 10 end cell end table close square brackets
Now comma space space AX space equals space straight B space space space space space space rightwards double arrow space space space space straight X space equals space space straight A to the power of negative 1 end exponent straight B space space space rightwards double arrow space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets equals space minus 1 over 25 open square brackets table row 10 cell space space space 0 end cell cell space space minus 15 end cell row cell space 5 end cell cell negative 5 end cell cell space space space space 0 end cell row cell negative 10 end cell cell negative 5 end cell cell space space 10 end cell end table close square brackets space open square brackets table row 1 row 2 row 3 end table close square brackets
rightwards double arrow space space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space minus 1 over 25 open square brackets table row cell 10 plus 0 minus 45 end cell row cell 5 minus 10 plus 0 end cell row cell negative 10 minus 10 plus 30 end cell end table close square brackets space space space rightwards double arrow space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space minus 1 over 25 open square brackets table row cell negative 35 end cell row cell negative 5 end cell row 10 end table close square brackets
rightwards double arrow space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space space equals space open square brackets table row cell 7 over 5 end cell row cell 1 fifth end cell row cell fraction numerator negative 2 over denominator 5 end fraction end cell end table close square brackets space space space space space rightwards double arrow space space space straight x space equals space 7 over 5 comma space space space straight y space equals space 1 fifth comma space space space straight z space equals space minus 2 over 5 space

    Question 274
    CBSEENMA12034838

    Use matrix method to solve the following system of equations:
    y + 2z = 4
    2z + x = 5
    x + 2y = 7

    Solution

    The given equations are
    y + 2z = 4   or    0x + y + 2 = z = 4
    2z + x = 5   or     x + 0y + 2z = 5
    x + 2y = 7   or      x + 2y + 0z = 7 
    These equations can be written as
    open square brackets table row 0 cell space space 1 end cell cell space space space 2 end cell row 1 cell space 0 end cell cell space space space 2 end cell row cell space 1 end cell cell space space 2 end cell cell space space 0 end cell end table close square brackets space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row 4 row 5 row 7 end table close square brackets
       or      AX space equals space straight B space where space straight A space equals space open square brackets table row 0 cell space space 1 end cell cell space space 2 end cell row 1 cell space 0 end cell cell space space 2 end cell row 1 cell space 2 end cell cell space space 0 end cell end table close square brackets comma space space straight X space equals space open square brackets table row straight x row straight y row straight z end table close square brackets comma space space space straight B space equals open square brackets table row 4 row 5 row 7 end table close square brackets
                    open vertical bar straight A close vertical bar equals space open vertical bar table row 0 cell space space 1 end cell cell space space 2 end cell row 1 cell space 0 end cell cell space 2 end cell row 1 2 cell space 0 end cell end table close vertical bar space equals space 0 open vertical bar table row 0 cell space space 2 end cell row 2 cell space space 0 end cell end table close vertical bar minus 1 open vertical bar table row 1 cell space space 2 end cell row 1 cell space space 0 end cell end table close vertical bar plus 2 open vertical bar table row 1 cell space space space 0 end cell row 1 cell space space space 2 end cell end table close vertical bar
space space space space space space equals 0 left parenthesis 0 minus 4 right parenthesis space minus 1 space left parenthesis 0 minus 2 right parenthesis space plus space 2 space left parenthesis 2 minus 0 right parenthesis
space space space space space space space equals 0 plus 2 plus 4 space equals space 6
    Co-factors of elements of first row of | A | are
    open vertical bar table row 0 cell space space space 2 end cell row 2 cell space space 0 end cell end table close vertical bar comma space space minus open vertical bar table row 1 cell space space space 2 end cell row 1 cell space space space 0 end cell end table close vertical bar comma space space open vertical bar table row 1 cell space space 0 end cell row 1 cell space space 2 end cell end table close vertical bar

    i.e., – 4, 2, 2 respectively
    Co-factors of the elements of second row of | A | are
    negative open vertical bar table row 1 cell space space 2 end cell row 2 cell space space 0 end cell end table close vertical bar comma space space open vertical bar table row 0 cell space space space space 2 end cell row 1 cell space space space 0 end cell end table close vertical bar comma space space minus open vertical bar table row 0 cell space space space 1 end cell row 1 cell space space space 2 end cell end table close vertical bar
    i.e., 4, – 2, 1 respectively
    Co-factors of the elements of third row of | A | are
    open vertical bar table row 1 cell space space space 2 end cell row 0 cell space space space 2 end cell end table close vertical bar comma space space space minus open vertical bar table row 0 cell space space space 2 end cell row 1 cell space space 2 end cell end table close vertical bar comma space space space open vertical bar table row 0 cell space space space 1 end cell row 1 cell space space space 0 end cell end table close vertical bar
    i.e.,   2,   2, – 1 respectively
    therefore space space space adj. space straight A space equals space open square brackets table row cell negative 4 end cell cell space space space space 2 end cell cell space space space 2 end cell row 4 cell negative 2 end cell cell space space 1 end cell row 2 cell space space 2 end cell cell space space 1 end cell end table close square brackets to the power of apostrophe space equals space space open square brackets table row cell negative 4 end cell cell space space space space space 4 end cell cell space space space space space space 2 end cell row 2 cell space space minus 2 end cell cell space space space space space space 2 end cell row 2 cell space space space space 1 end cell cell space space minus 1 end cell end table close square brackets
space space space space space space space space space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj. space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space 1 over 6 open square brackets table row cell negative 4 end cell cell space space space space 4 end cell cell space space space space 2 end cell row 2 cell space minus 2 end cell cell space space space 2 end cell row 2 cell space space space 1 end cell cell space minus 1 end cell end table close square brackets
Now space space space space AX space equals space straight B space space space rightwards double arrow space space space straight X space equals space straight A to the power of negative 1 end exponent straight B space space rightwards double arrow space space space space open square brackets table row straight x row straight y row straight z end table close square brackets to the power of apostrophe space equals space 1 over 6 open square brackets table row cell negative 4 end cell cell space space space 4 end cell cell space space space space space 2 end cell row 2 cell negative 2 end cell cell space space space space space space 2 end cell row 2 1 cell space minus 1 end cell end table close square brackets space space space open square brackets table row 4 row 5 row 7 end table close square brackets
rightwards double arrow space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 over 6 open square brackets table row cell negative 16 plus 20 plus 14 end cell row cell 8 minus 10 plus 14 end cell row cell 8 plus 5 minus 7 end cell end table close square brackets space space space space space rightwards double arrow space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 over 6 open square brackets table row 8 row 12 row 6 end table close square brackets
rightwards double arrow space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row 3 row 2 row 1 end table close square brackets space space space rightwards double arrow space space space space straight x space equals space 3 comma space space space straight y space equals space 2 comma space space space straight z space equals space 1

    Question 275
    CBSEENMA12034842

    Use matrix method to solve the following system of equations:
    3x – 4y + 2z = – 1
    2x + 3y + 5z = 7
    x + z = 2 

    Solution

    The given equations are
    3x – 4y + 2z = – 1
    2x + 3y + 5z = 7
    x + 0y + z = 2
    These equations can be written as
                    open square brackets table row 3 cell space space minus 4 end cell cell space space space 2 end cell row 2 cell space space space space space 3 end cell cell space space 5 end cell row 1 cell space space space space 0 end cell cell space space 1 end cell end table close square brackets space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row cell negative 1 end cell row cell space 7 end cell row cell space 2 end cell end table close square brackets
    or      AX space equals space straight B space space where space straight A space equals space open square brackets table row 3 cell space space space minus 4 end cell cell space space space 2 end cell row 2 cell space space space space space 3 end cell cell space space 5 end cell row 1 cell space space space space 0 end cell cell space space space 1 end cell end table close square brackets comma space space space space space straight X space equals space open square brackets table row straight x row straight y row straight z end table close square brackets comma space space straight B space equals space open square brackets table row cell negative 1 end cell row cell space 7 end cell row cell space 2 end cell end table close square brackets
              open vertical bar straight A close vertical bar space equals space open vertical bar table row 3 cell space space space minus 4 end cell cell space space space 2 end cell row 2 cell space space space space 3 end cell cell space space 5 end cell row 1 cell space space 0 end cell cell space space 1 end cell end table close vertical bar space equals space 3 open vertical bar table row 3 cell space space space 5 end cell row 0 cell space space 1 end cell end table close vertical bar minus left parenthesis negative 4 right parenthesis space open vertical bar table row 2 cell space space space 5 end cell row 1 cell space space 1 end cell end table close vertical bar plus 2 open vertical bar table row 2 cell space space space 3 end cell row 1 cell space space 0 end cell end table close vertical bar
space space space space space space space equals 3 space left parenthesis 3 minus 0 right parenthesis plus 4 space left parenthesis 2 minus 5 right parenthesis space plus space 2 space left parenthesis 0 minus 3 right parenthesis space equals space 9 minus 12 minus 6 space equals space minus 9
    Co-factors of the elements of first row of | A | are
    open vertical bar table row 3 cell space space 5 end cell row 0 cell space space 1 end cell end table close vertical bar comma space space space minus open vertical bar table row 2 cell space space 5 end cell row 1 cell space space 1 end cell end table close vertical bar comma space open vertical bar table row 2 cell space space 3 end cell row 1 cell space space 0 end cell end table close vertical bar

    i.e., 3, 3, – 3 respectively
    Co-factors of the elements of second row of | A | are
    negative open vertical bar table row cell negative 4 end cell cell space space space space 2 end cell row 0 cell space space space 1 end cell end table close vertical bar comma space space space space open vertical bar table row 3 cell space space space space 2 end cell row 1 cell space space space 1 end cell end table close vertical bar comma space space minus open vertical bar table row 3 cell space space space space minus 4 end cell row 1 cell space space space space space space space 0 end cell end table close vertical bar

    i.e., 4, 1, – 4 respectively
    Co-factors of the elements of third row of | A | are
                        open vertical bar table row cell negative 4 end cell cell space space space 2 end cell row 3 cell space space 5 end cell end table close vertical bar comma space space minus open vertical bar table row 3 cell space space space space space 2 end cell row 2 cell space space space space 5 end cell end table close vertical bar comma space space space open vertical bar table row 3 cell space space space space minus 4 end cell row 2 cell space space space space space space 3 end cell end table close vertical bar
    i.e., – 26, – 11, 17 respectively
                         adj space straight A space equals space open square brackets table row 3 cell space space space space space 3 end cell cell space space space minus 3 end cell row 4 cell space space space space 1 end cell cell space minus 4 end cell row cell negative 26 end cell cell space minus 11 end cell cell space space 17 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row cell space 3 end cell cell space space space space 4 end cell cell space space space minus 26 end cell row cell space space 3 end cell cell space space space space 1 end cell cell space minus 11 end cell row cell negative 3 end cell cell space space minus 4 end cell cell space space space 17 end cell end table close square brackets
space space space space straight A to the power of negative 1 end exponent space equals space space fraction numerator adj. space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space minus 1 over 9 open square brackets table row 3 cell space space space space space 4 end cell cell space space space space minus 26 end cell row 3 cell space space space space 1 end cell cell space minus 11 end cell row cell negative 3 end cell cell space space minus 4 end cell cell space space space 17 end cell end table close square brackets
Now space space space AX space equals space straight B space space space space space space space rightwards double arrow space space space space straight X space equals space straight A to the power of negative 1 end exponent straight B space rightwards double arrow space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space minus 1 over 9 open square brackets table row 3 cell space space space space 4 end cell cell negative 26 end cell row 3 cell space space space space 1 end cell cell negative 11 end cell row cell negative 3 end cell cell negative 4 end cell cell space space space 17 end cell end table close square brackets space open square brackets table row cell negative 1 end cell row cell space 7 end cell row cell space 2 end cell end table close square brackets
rightwards double arrow space space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space minus 1 over 9 open square brackets table row cell negative 3 plus 28 minus 52 end cell row cell negative 3 plus 7 minus 22 end cell row cell 3 minus 28 plus 34 end cell end table close square brackets space space space rightwards double arrow space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space minus 1 over 9 open square brackets table row cell negative 27 end cell row cell negative 18 end cell row cell space space space 9 space end cell end table close square brackets
rightwards double arrow space space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row cell space space space 3 end cell row cell space space space 2 end cell row cell negative 1 end cell end table close square brackets space space space space space space space rightwards double arrow space space space space straight x space equals space 3 comma space space space straight y space equals space 2 comma space space space straight z space equals space minus 1

    Question 276
    CBSEENMA12034845

    Use matrix method to solve the following system of equations:
    x – y = 5
    y + z = 3
    z + x = 4

    Solution

    The given equations are
    x + y + 0z = 5
    0x + y + z = 3
    x + 0y + z = 4
    These equations can be written as
    open square brackets table row 1 cell space space 1 end cell cell space space 0 end cell row 0 cell space space 1 end cell cell space space 1 end cell row 1 cell space space 0 end cell cell space space 1 end cell end table close square brackets space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row 5 row 3 row 4 end table close square brackets
    or     AX space equals straight B space where space straight A space equals space open square brackets table row 1 cell space space space 1 end cell cell space space space 0 end cell row 0 cell space space space 1 end cell cell space space space 1 end cell row 1 cell space space space 0 end cell cell space space space 1 end cell end table close square brackets comma space space space straight X space equals space open square brackets table row straight x row straight y row straight z end table close square brackets comma space space straight B space equals space open square brackets table row 5 row 3 row 4 end table close square brackets
                open vertical bar straight A close vertical bar space equals space open vertical bar table row 1 cell space space space 1 end cell cell space space 0 end cell row 0 cell space space 1 end cell cell space space 1 end cell row 1 cell space space 0 end cell cell space space 1 end cell end table close vertical bar space equals space 1 open vertical bar table row 1 cell space space 1 end cell row 0 cell space space 1 end cell end table close vertical bar minus 1 open vertical bar table row 0 cell space space space space 1 end cell row 1 cell space space space space 1 end cell end table close vertical bar plus 0 open vertical bar table row 0 cell space space 1 end cell row 1 cell space space 0 end cell end table close vertical bar
space space space space space space equals space 1 left parenthesis 1 minus 0 right parenthesis space minus space 1 space left parenthesis 0 minus 1 right parenthesis space plus space 0 left parenthesis 0 minus 1 right parenthesis space equals space 1 plus 1 plus 0 space equals space 2
    Co-factors of the elements of first row of |A| are
    open vertical bar table row 1 cell space space space 1 end cell row 0 cell space space space 1 end cell end table close vertical bar comma space space space minus open vertical bar table row 0 cell space space space space 1 end cell row 1 cell space space space space 1 end cell end table close vertical bar comma space space space space open vertical bar table row 0 cell space space space space 1 end cell row 1 cell space space space space 0 end cell end table close vertical bar

    i.e., 1, 1, – 1 respectively
    Co-factors of the elements of second row of |A| are
    negative open vertical bar table row 1 cell space space space space space 0 end cell row 0 cell space space space space 1 end cell end table close vertical bar comma space space space space space open vertical bar table row 1 cell space space space 0 end cell row 1 cell space space space 1 end cell end table close vertical bar comma space space minus open vertical bar table row 1 cell space space space 1 end cell row 1 cell space space space 0 end cell end table close vertical bar
    i.e.    – 1, 1, 1 respectively
    Co-factors of the elements of third row of | A | are
    open vertical bar table row 1 cell space space space 0 end cell row 1 cell space space 1 end cell end table close vertical bar comma space space minus open vertical bar table row 1 cell space space space space 0 end cell row 0 cell space space space space 1 end cell end table close vertical bar comma space space space open vertical bar table row 1 cell space space 1 end cell row 0 cell space space 1 end cell end table close vertical bar
    i.e., 1, – 1, 1 respectively
    therefore space space space adj space straight A space equals space open square brackets table row 1 cell space space space 1 end cell cell space space minus 1 end cell row cell negative 1 end cell cell space space space space space 1 end cell cell space space space space space 1 end cell row 1 cell space minus 1 end cell cell space space space space space 1 end cell end table close square brackets to the power of apostrophe space space equals space open square brackets table row 1 cell space minus 1 end cell cell space space space space space 1 end cell row 1 cell space space space space 1 end cell cell space minus 1 end cell row cell negative 1 end cell cell space space space 1 end cell cell space space space space 1 end cell end table close square brackets
space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj. space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals 1 half open square brackets table row 1 cell space space space minus 1 end cell cell space space space space space 1 end cell row 1 cell space space space space space 1 end cell cell space minus 1 end cell row cell negative 1 end cell cell space space space space space space 1 end cell cell space space space space 1 end cell end table close square brackets
Now comma space space AX space equals space straight B space space space space rightwards double arrow space space space space space space straight X space equals space straight A to the power of negative 1 end exponent straight B space space space space rightwards double arrow space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 half open square brackets table row 1 cell space space minus 1 end cell cell space space space space 1 end cell row cell space 1 end cell cell space space space space space space 1 end cell cell space space minus 1 end cell row cell negative 1 end cell cell space space space space space space 1 end cell cell space space space space 1 end cell end table close square brackets space open square brackets table row 5 row 3 row 4 end table close square brackets
rightwards double arrow space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space space equals space 1 half open square brackets table row cell 5 minus 3 plus 4 end cell row cell 5 plus 3 minus 4 end cell row cell negative 5 plus 3 plus 4 end cell end table close square brackets space space rightwards double arrow space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 half open square brackets table row 6 row 4 row 2 end table close square brackets space space rightwards double arrow space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row 3 row 2 row 1 end table close square brackets
therefore space space space space space space space space straight x space equals space 3 comma space space space space straight y space equals space 2 comma space space space straight z space equals space 1

     

    Question 277
    CBSEENMA12034847

    Use matrix method to solve the following system of equations:
    x + y + z = 3
    x + 2y + 3z = 4
    x + 4y + 9z = 6

    Solution
    These equations can be written as
                       open square brackets table row 1 cell space space space 1 end cell cell space space space 1 end cell row 1 cell space space space 2 end cell cell space space space 3 end cell row 1 cell space space 4 end cell cell space space space 9 end cell end table close square brackets space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row 3 row 4 row 6 end table close square brackets
    or space space space AX space equals space straight B space where space straight A space equals space open square brackets table row 1 cell space space space 1 end cell cell space space space 1 end cell row 1 cell space space space 2 end cell cell space space space 3 end cell row 1 cell space space space 4 end cell cell space space space 9 end cell end table close square brackets comma space space space straight X space equals space open square brackets table row straight x row straight y row straight z end table close square brackets comma space space straight B space equals space open square brackets table row 3 row 4 row 6 end table close square brackets
space space space space space open vertical bar straight A close vertical bar space equals space open vertical bar table row 1 cell space space space 1 end cell cell space space space space 1 end cell row 1 cell space space space 2 end cell cell space space space space 3 end cell row 1 cell space space space space 4 end cell cell space space space space 9 end cell end table close vertical bar space equals space 1 open vertical bar table row 2 cell space space space 3 end cell row 4 cell space space space 9 end cell end table close vertical bar comma space space space minus 1 space open vertical bar table row 1 cell space space space 3 end cell row 1 cell space space space 9 end cell end table close vertical bar space plus space 1 space open vertical bar table row 1 cell space space space 2 end cell row 1 cell space space space 4 end cell end table close vertical bar
space space space space space space space space space space space equals space 1 left parenthesis 18 minus 12 right parenthesis minus 1 left parenthesis 9 minus 3 right parenthesis space plus space 1 space left parenthesis 4 minus 2 right parenthesis space equals space 6 minus 6 plus 2 space equals space 2
    Co-factors of the elements of first row of | A | are
    open vertical bar table row 2 cell space space space 3 end cell row 4 cell space space space 9 end cell end table close vertical bar comma space space minus open vertical bar table row 1 cell space space space 3 end cell row 1 cell space space 9 end cell end table close vertical bar comma space space space open vertical bar table row 1 cell space space space space 2 end cell row 1 cell space space space 4 end cell end table close vertical bar
    i.e., 6, – 6, 2 respectively
    Co-factors of the elements of second row of | A | are
    negative open vertical bar table row 1 cell space space space 1 end cell row 4 cell space space 9 end cell end table close vertical bar comma space space space space open vertical bar table row 1 cell space space space 1 end cell row 1 cell space space 9 end cell end table close vertical bar comma space space minus open vertical bar table row 1 cell space space space 1 end cell row 1 cell space space space 4 end cell end table close vertical bar
    i.e.,   – 5, 8, – 3 respectively
    Co-factors of the elements of third row of |A| are
        open vertical bar table row 1 cell space space space 1 end cell row 2 cell space space space 3 end cell end table close vertical bar comma space space space minus open vertical bar table row 1 cell space space space space space 1 end cell row 1 cell space space space space 3 end cell end table close vertical bar comma space space space open vertical bar table row 1 cell space space space 1 end cell row 1 cell space space space 2 end cell end table close vertical bar
straight i. straight e. space space 1 comma space – space 2 comma space space 1 space space space respectively.
    adj space straight A space equals space space open square brackets table row 6 cell space space minus 6 end cell cell space space space space 2 end cell row cell negative 5 end cell cell space space space space 8 end cell cell space minus 3 end cell row 1 cell space space minus 2 end cell cell space space space 1 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row cell space space space 6 end cell cell space space minus 5 end cell cell space space space space 1 end cell row cell negative 6 end cell cell space space space space space 8 end cell cell space minus 2 end cell row cell space space 2 end cell cell space minus 3 end cell cell space space space 1 end cell end table close square brackets
        straight A to the power of negative 1 end exponent space equals space fraction numerator adj. space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space 1 half open square brackets table row cell space space space 6 end cell cell space space minus 5 end cell cell space space space 1 end cell row cell negative 6 end cell cell space space space space 8 end cell cell negative 2 end cell row cell space space 2 end cell cell space minus 3 end cell cell space space space 1 end cell end table close square brackets
Now space space AX space equals space straight B space space rightwards double arrow space space space space straight X space equals straight A to the power of negative 1 end exponent straight B
rightwards double arrow space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 half open square brackets table row cell space space space 6 end cell cell space space space minus 5 end cell cell space space space space 1 end cell row cell negative 6 end cell cell space space space space space 8 end cell cell space minus 2 end cell row cell space space space 2 end cell cell space space minus 3 end cell cell space space 1 end cell end table close square brackets space open square brackets table row 3 row 4 row 6 end table close square brackets
rightwards double arrow space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 half open square brackets table row cell 18 minus 20 plus 6 end cell row cell negative 18 plus 32 minus 12 end cell row cell 6 minus 12 plus 6 end cell end table close square brackets space space rightwards double arrow space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 half open square brackets table row 4 row 2 row 0 end table close square brackets space space space rightwards double arrow space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row 2 row 1 row 0 end table close square brackets
therefore space space space space space straight x space equals 2 comma space space space straight y space equals space 1 comma space space space straight z space space equals 0
     
    Question 278
    CBSEENMA12034850

    Use matrix method to solve the following system of equations:
    3x + y + z = 3
    2x – y –z = 2
    –x –y + z = 1

    Solution

    The given equations are
    3x + y + z + 3
    2x – y – z = 2
    – x – y + z = 1
    The given equation can be written as
                         open square brackets table row 3 cell space space space space 1 end cell cell space space space 1 end cell row 2 cell space minus 1 end cell cell space minus 1 end cell row cell negative 1 end cell cell space minus 1 end cell cell space space space space 1 end cell end table close square brackets space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row 3 row 2 row 1 end table close square brackets
    or    AX space equals space straight B space where space straight A space equals space open square brackets table row 3 cell space space space space 1 end cell cell space space space space space 1 end cell row 2 cell space minus 1 end cell cell space minus 1 end cell row cell negative 1 end cell cell negative 1 end cell cell space space space space 1 end cell end table close square brackets comma space space space straight X space equals space open square brackets table row straight x row straight y row straight z end table close square brackets comma space space space straight B space equals space open square brackets table row 3 row 2 row 1 end table close square brackets
    Now space straight A space equals space open vertical bar table row 3 cell space space space space 1 end cell cell space space space space 1 end cell row 2 cell space minus 1 end cell cell space minus 1 end cell row cell negative 1 end cell cell space minus 1 end cell cell space space space 1 end cell end table close vertical bar space equals space 3 open vertical bar table row cell negative 1 end cell cell space space minus 1 end cell row cell negative 1 end cell cell space space space space space space 1 end cell end table close vertical bar minus 1 open vertical bar table row 2 cell space space space minus 1 end cell row cell negative 1 end cell cell space space space space space space space 1 end cell end table close vertical bar plus 1 space open vertical bar table row 2 cell space space space minus 1 end cell row cell negative 1 end cell cell space space space minus 1 end cell end table close vertical bar
space space space space space equals 3 left parenthesis negative 1 minus 1 right parenthesis minus left parenthesis 2 minus 1 right parenthesis plus left parenthesis negative 2 minus 1 right parenthesis space equals space minus 6 minus 1 minus 3 space equals space minus 10 space not equal to 0
therefore space space space space straight A to the power of negative 1 end exponent space space exists.
    Co-factors of the elements of first low of | A | are
    open vertical bar table row cell negative 1 end cell cell space space minus 1 end cell row cell negative 1 end cell cell space space space space space space 1 end cell end table close vertical bar comma space space minus open vertical bar table row 2 cell space space minus 1 end cell row cell negative 1 end cell cell space space space space 1 end cell end table close vertical bar comma space space space space open vertical bar table row cell space 2 end cell cell space space space minus 1 end cell row cell negative 1 end cell cell space space space minus 1 end cell end table close vertical bar

    i.e. – 2, – 1, – 3 respectively
    Co-factors of the elements of second row of | A | are
    negative open vertical bar table row 1 cell space space space 1 end cell row cell negative 1 end cell cell space space 1 end cell end table close vertical bar comma space space open vertical bar table row cell space space 3 end cell cell space space space 1 end cell row cell negative 1 end cell cell space space space 1 end cell end table close vertical bar comma space space space minus open vertical bar table row 3 cell space space space space space space 1 end cell row 1 cell space space minus 1 end cell end table close vertical bar
    i.e.  –2, 4, 2 respectively
    Co-factors of the elements of third row of | A | are
    open vertical bar table row cell space space 1 end cell cell space space space space space space 1 end cell row cell negative 1 end cell cell space space minus 1 end cell end table close vertical bar space minus space open vertical bar table row 3 cell space space space 1 end cell row 2 cell space minus 1 end cell end table close vertical bar comma space space space space open vertical bar table row 3 cell space space space space space 1 end cell row 2 cell space minus 1 end cell end table close vertical bar
    i.e. 0, 5, 5 respectively
    therefore space space space adj. space straight A space equals space open square brackets table row cell negative 2 end cell cell space space minus 1 end cell cell space space minus 3 end cell row cell negative 2 end cell cell space space space space 4 end cell cell space space space space space 2 end cell row cell space space 0 end cell cell space space space space 5 end cell cell space minus 5 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row cell negative 2 end cell cell space space space minus 2 end cell cell space space space 0 end cell row cell negative 1 end cell cell space space space space 4 end cell cell space space space space 5 end cell row cell negative 3 end cell cell space space space 2 end cell cell space minus 5 end cell end table close square brackets
space space space space space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space minus 1 over 10 open square brackets table row cell negative 2 end cell cell space minus 2 end cell cell space space 0 end cell row cell negative 1 end cell cell space space 4 end cell cell space space 5 end cell row 3 cell space space 2 end cell cell space minus 5 end cell end table close square brackets
Now space space space AX space equals space straight B space space space space space space space space space rightwards double arrow space space space space space straight X space equals space straight A to the power of negative 1 end exponent straight B
rightwards double arrow space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space minus 1 over 10 open square brackets table row cell negative 2 end cell cell space space minus 2 end cell cell space space space 0 end cell row cell negative 1 end cell cell space space space 4 end cell cell space space space 5 end cell row cell negative 3 end cell cell space space space 2 end cell cell negative 5 end cell end table close square brackets space open square brackets table row 3 row 2 row 1 end table close square brackets space space space rightwards double arrow space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space minus 1 over 10 open square brackets table row cell negative 6 minus 4 plus 0 end cell row cell negative 3 plus 8 plus 5 end cell row cell negative 9 plus 4 minus 5 end cell end table close square brackets
rightwards double arrow space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space minus 1 over 10 open square brackets table row cell negative 10 end cell row 10 row cell negative 10 end cell end table close square brackets space space space space space rightwards double arrow space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row cell space space space space 1 end cell row cell negative 1 end cell row cell space space 1 end cell end table close square brackets
therefore space space space space space solution space is space straight x space equals space 1 comma space space space space straight y space equals space minus 1 comma space space space straight z space space equals 1

    Question 279
    CBSEENMA12034853

    Use matrix method to solve the following system of equations:
    x + 2y – 3z = 6
    3x + 2y – 2z = 3
    2x – y + z = 2

    Solution

    The given equations are
    x + 2y – 3z = 6
    3x + 2y – 2z = 3
    2x – y + z = 2
    These equations can be written as
                     open square brackets table row 1 cell space space space space space 2 end cell cell space space space space minus 3 end cell row 3 cell space space space space space 2 end cell cell space space minus 2 end cell row 2 cell space space minus 1 end cell cell space space space space space 1 end cell end table close square brackets space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row 6 row 3 row 2 end table close square brackets
    or            AX = B  where A = open square brackets table row 1 cell space space space space space 2 end cell cell space space space minus 3 end cell row 3 cell space space space space space 2 end cell cell space space minus 2 end cell row 2 cell space space space minus 1 end cell cell space space space space space 1 end cell end table close square brackets comma space space space space space space straight X space equals open square brackets table row straight x row straight y row straight z end table close square brackets comma space space straight B space equals space open square brackets table row 6 row 3 row 2 end table close square brackets
    open vertical bar straight A close vertical bar space equals space open vertical bar table row 1 cell space space space space space 2 end cell cell space space space minus 3 end cell row 3 cell space space space space space 2 end cell cell space space space minus 2 end cell row 2 cell space minus 1 end cell cell space space space space 1 end cell end table close vertical bar space equals space 1 open vertical bar table row cell space space 2 end cell cell space space space space minus 2 end cell row cell negative 1 end cell cell space space space space space 1 end cell end table close vertical bar minus 2 open vertical bar table row 3 cell space space space minus 2 end cell row 2 cell space space space space 1 end cell end table close vertical bar plus left parenthesis negative 3 right parenthesis space open vertical bar table row 3 cell space space space space space 2 end cell row 2 cell space minus 1 end cell end table close vertical bar
space space space space space space equals 1 space left parenthesis 2 minus 2 right parenthesis minus 2 left parenthesis 3 plus 4 right parenthesis space minus space 3 left parenthesis negative 3 minus 4 right parenthesis space equals space 0 minus 14 plus 21 space equals space 7 space not equal to space 0
therefore space space space space straight A to the power of negative 1 end exponent space exists.
open vertical bar table row cell space 2 end cell cell space space space minus 2 end cell row cell negative 1 end cell cell space space space space space 1 end cell end table close vertical bar comma space space space space minus open vertical bar table row 3 cell space space space minus 2 end cell row 2 cell space space space space 1 end cell end table close vertical bar comma space space space space open vertical bar table row 3 cell space space space space space space space 2 end cell row 2 cell space space space space minus 1 end cell end table close vertical bar

    Co-factors of the elements of first row of | A | are
    i.e. 0, – 7, – 7 respectively
    Co-factors of the elements of second row of | A | are
    negative open vertical bar table row 2 cell space space minus 3 end cell row cell negative 1 end cell cell space space space space 1 end cell end table close vertical bar comma space space space space open vertical bar table row 1 cell space space space minus 3 end cell row 2 cell space space space space space 1 end cell end table close vertical bar comma space space space minus open vertical bar table row 1 cell space space space space space 2 end cell row 2 cell space space minus 1 end cell end table close vertical bar
    i.e. 1, 7, 5 respectively.
    Co-factors of the elements of third row of | A | are
    open vertical bar table row 2 cell space space minus 3 end cell row 2 cell space minus 2 end cell end table close vertical bar comma space space space minus open vertical bar table row 1 cell space space minus 3 end cell row 3 cell space space minus 2 end cell end table close vertical bar comma space space space open vertical bar table row 1 cell space space space 2 end cell row 3 cell space space space 2 end cell end table close vertical bar
    i.e. 2, – 7, – 4 respectively
    therefore space space space adj space straight A space equals space open square brackets table row 0 cell space space minus 7 end cell cell space space minus 7 end cell row 1 cell space space space space space 7 end cell cell space space space space space 5 end cell row 2 cell space minus 7 end cell cell negative 4 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row 0 cell space space space space 1 end cell cell space space space space 2 end cell row cell negative 7 end cell cell space space space space 7 end cell cell space space minus 7 end cell row cell negative 7 end cell cell space space space 5 end cell cell space space minus 4 end cell end table close square brackets
therefore space space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space 1 over 7 open square brackets table row cell space space 0 end cell cell space space space space space 1 end cell cell space space space space 2 end cell row cell negative 7 end cell cell space space space space space 7 end cell cell space space minus 7 end cell row cell negative 7 end cell cell space space space space 5 end cell cell space space minus 4 end cell end table close square brackets
Now comma space space space AX space equals space straight B
rightwards double arrow space space space space space space space space straight X space equals space straight A to the power of negative 1 end exponent straight B
rightwards double arrow space space space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 over 7 open square brackets table row cell space space space 0 end cell cell space space space space space 1 end cell cell space space space space space 2 end cell row cell negative 7 end cell cell space space space space space 7 end cell cell space space minus 7 end cell row cell negative 7 end cell cell space space space space 5 end cell cell space space minus 4 end cell end table close square brackets space space open square brackets table row 6 row 3 row 2 end table close square brackets space space space rightwards double arrow space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals 1 over 7 open square brackets table row cell 0 plus 3 plus 4 end cell row cell negative 42 plus 21 minus 14 end cell row cell negative 42 plus 15 minus 8 end cell end table close square brackets
rightwards double arrow space space space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 over 7 open square brackets table row cell space space space 7 end cell row cell negative 35 end cell row cell negative 35 end cell end table close square brackets space space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row cell space space space space 1 end cell row cell negative 5 end cell row cell negative 5 end cell end table close square brackets
therefore space space space space space space space solution space is space space straight x space equals space 1 comma space space space space space space straight y space equals space minus 5 comma space space space space space straight z equals negative 5

    Question 280
    CBSEENMA12034856

    Use matrix method to solve the following system of equations:
    x + y + z = 5         
    2 x + y – z = 2       
    2 x – y + z = 2 

    Solution
    These equations can be written as
    x + y + z = 5    ...(1)
    2x + y – z = 2    ...(2)
    2x – y + z = 2    ...(3)
    These equations can be written as
    open square brackets table row 1 cell space space 1 space space end cell cell space space space 1 end cell row 2 cell space 1 end cell cell negative 1 end cell row 2 cell negative 1 end cell cell space space 1 end cell end table close square brackets space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row 5 row 2 row 2 end table close square brackets
      or space space space AX space equals space straight B space space where space straight A space equals space open square brackets table row 1 cell space space space 1 end cell cell space space space space 1 end cell row 2 cell space space space space 1 space end cell cell space minus 1 end cell row 2 cell negative 1 end cell cell space space space space 1 end cell end table close square brackets comma space space space straight X equals space open square brackets table row straight x row straight y row straight z end table close square brackets comma space space space straight B space equals space open square brackets table row 5 row 2 row 2 end table close square brackets
space space open vertical bar straight A close vertical bar space equals space open vertical bar table row 1 cell space space 1 end cell cell space space space 1 end cell row 2 cell space space 1 end cell cell negative 1 end cell row 2 cell negative 1 end cell cell space space 1 end cell end table close vertical bar space equals space 1 open vertical bar table row 1 cell space space space minus 1 end cell row cell negative 1 end cell cell space space space space 1 end cell end table close vertical bar minus 1 open vertical bar table row 2 cell space space minus 1 end cell row 2 cell space space space space 1 end cell end table close vertical bar plus 1 open vertical bar table row 2 cell space space space space space space 1 end cell row 2 cell space space minus 1 end cell end table close vertical bar
space space space space equals space 1 left parenthesis 1 minus 1 right parenthesis minus 1 left parenthesis 2 plus 2 right parenthesis space plus space 1 left parenthesis negative 2 minus 2 right parenthesis
space space space space space equals 0 minus 4 minus 4 space equals space minus 8 space not equal to space 0
therefore space space space space space straight A to the power of negative 1 end exponent space exists
    Co-factors of the elements of first row of | A | are
    open vertical bar table row 1 cell space space space minus 1 end cell row cell negative 1 end cell cell space space space space space 1 end cell end table close vertical bar comma space space space minus open vertical bar table row 2 cell space space minus 1 end cell row 2 cell space space space space 1 end cell end table close vertical bar comma space space space open vertical bar table row 2 cell space space space space space 1 end cell row 2 cell space minus 1 end cell end table close vertical bar

    i.e. 0, –4, –4 respectively
    Co-factors of the elements of second row of | A | are
    negative open vertical bar table row 1 cell space space space 1 end cell row cell negative 1 end cell cell space space 1 end cell end table close vertical bar comma space space space open vertical bar table row 1 cell space space space 1 end cell row 2 cell space space space 1 end cell end table close vertical bar comma space space minus open vertical bar table row 1 cell space space space space space 1 end cell row 2 cell space space minus 1 end cell end table close vertical bar
    i.e. – 2, – 1, 3 respectively
    Co-factors of the elements of third row of | A | are
    open vertical bar table row 1 cell space space space space space 1 end cell row 1 cell space minus 1 end cell end table close vertical bar comma space space space space minus open vertical bar table row 1 cell space space space space space space 1 end cell row 2 cell space space minus 1 end cell end table close vertical bar comma space space space open vertical bar table row 1 cell space space space 1 end cell row 2 cell space space 1 end cell end table close vertical bar
    i.e. 2, 3 – 1 respectively.
    adj. space straight A space equals space open square brackets table row 0 cell space space minus 4 end cell cell space space minus 4 end cell row cell negative 2 end cell cell space space minus 1 end cell cell space space space space space 3 end cell row cell negative 2 end cell cell space space space 3 end cell cell negative 1 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row 0 cell space space space minus 2 end cell cell space space minus 2 end cell row cell negative 4 end cell cell space space minus 1 end cell cell space space space space space 3 end cell row cell negative 4 end cell cell space space space 3 end cell cell space minus 1 end cell end table close square brackets
therefore space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space minus 1 over 8 open square brackets table row 0 cell space space space space minus 2 end cell cell space space minus 2 end cell row cell negative 4 end cell cell space space space minus 1 end cell cell space space space space space space 3 end cell row cell negative 4 end cell cell space space space 3 end cell cell space space space minus 1 end cell end table close square brackets
Now space space space AX space equals space straight B space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space space space straight X equals space straight A to the power of negative 1 end exponent straight B
open square brackets table row straight x row straight y row straight z end table close square brackets space equals space minus 1 over 8 open square brackets table row 0 cell space space minus 2 end cell cell space space space minus 2 end cell row cell negative 4 end cell cell space space minus 1 end cell cell space space space space space 3 end cell row cell negative 4 end cell cell space space space 3 end cell cell space space minus 1 end cell end table close square brackets space open square brackets table row 5 row 2 row 2 end table close square brackets space space rightwards double arrow space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space minus 1 over 8 space open square brackets table row cell 0 minus 4 minus 4 end cell row cell negative 20 minus 2 plus 6 end cell row cell negative 20 plus 6 minus 2 end cell end table close square brackets space space rightwards double arrow space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row 1 row 2 row 2 end table close square brackets
therefore space space space space space solution space is space straight x space equals space 1 comma space space straight y space equals space 2 comma space space space straight z space equals space 2

    Question 281
    CBSEENMA12034857

    Use matrix method to solve the following system of equations:
    x + y – z = 1
    3x + y – 2z = 3
    x – y – z = – 1

    Solution

    The given equations are
    x + y – z = 1
    3x + y – 2z = 3
    x – y – z = – 1
    These equations can be written as
         open square brackets table row 1 cell space space space space 1 end cell cell space space space minus 1 end cell row 3 cell space space space space 1 end cell cell space space minus 2 end cell row 1 cell space minus 1 end cell cell space minus 1 end cell end table close square brackets space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row cell space space space 1 end cell row cell space space space 3 end cell row cell negative 1 end cell end table close square brackets
or space space AX space equals space straight B space where space straight A space equals space open square brackets table row 1 cell space space 1 end cell cell space minus 1 end cell row 3 cell space space 1 end cell cell negative 2 end cell row 1 cell negative 1 end cell cell negative 1 end cell end table close square brackets comma space space space straight X space equals space open square brackets table row straight x row straight y row straight z end table close square brackets comma space space space straight B space equals space open square brackets table row cell space space 1 end cell row cell space space space 3 end cell row cell negative 1 end cell end table close square brackets
open vertical bar straight A close vertical bar space equals space open vertical bar table row 1 cell space space space 1 end cell cell space space space minus 1 end cell row 3 cell space space space 1 end cell cell space space minus 2 end cell row 1 cell space minus 1 end cell cell space minus 1 end cell end table close vertical bar space equals space 1 open vertical bar table row 1 cell space space minus 2 end cell row cell negative 1 end cell cell space space minus 1 end cell end table close vertical bar space minus space 1 open vertical bar table row 3 cell space space minus 2 end cell row 1 cell space minus 1 end cell end table close vertical bar plus left parenthesis negative 1 right parenthesis space open vertical bar table row 3 cell space space space 1 end cell row 1 cell space space minus 1 end cell end table close vertical bar
space space space space equals space 1 left parenthesis negative 1 minus 2 right parenthesis space minus space 1 left parenthesis negative 3 plus 2 right parenthesis space minus space 1 left parenthesis negative 3 minus 1 right parenthesis space equals space minus 3 plus 1 plus 4 space equals space 2 not equal to 0
space therefore space space space space straight A to the power of negative 1 end exponent space exists.
    Co-factors of the elements of first row of | A | are
    open vertical bar table row 1 cell space space space minus 2 end cell row cell negative 1 end cell cell space space minus 1 end cell end table close vertical bar comma space space space minus open vertical bar table row 3 cell space space space minus 2 end cell row 1 cell space space minus 1 end cell end table close vertical bar comma space space space open vertical bar table row 3 cell space space space space space space 1 end cell row 1 cell space space minus 1 end cell end table close vertical bar
    i.e. – 3, 1, –4 respectively
    Co-factors of the elements of second row of | A | are
    negative open vertical bar table row 1 cell space space space minus 1 end cell row cell negative 1 end cell cell space space space space minus 1 end cell end table close vertical bar comma space space space open vertical bar table row 1 cell space space minus 1 end cell row 1 cell space minus 1 end cell end table close vertical bar space minus space open vertical bar table row 1 cell space space space space space 1 end cell row 1 cell space minus 1 end cell end table close vertical bar
    i.e. 2, 0, 2 respectively
    Co-factors of the elements of third row of | A | are
    open vertical bar table row 1 cell space space minus 1 end cell row 1 cell space space minus 2 end cell end table close vertical bar comma space space space space minus open vertical bar table row 1 cell space space minus 1 end cell row 3 cell space minus 2 end cell end table close vertical bar comma space space space open vertical bar table row 1 cell space space space space 1 end cell row 3 cell space space space space 1 end cell end table close vertical bar
    i.e. – 1, – 1, – 2 respectively
    therefore space space space space adj. space straight A space equals space open square brackets table row cell negative 3 end cell cell space space space space space space 1 end cell cell space space space minus 4 end cell row cell space space 2 end cell cell space space space space space 0 end cell cell space space space space space 2 end cell row cell negative 1 end cell cell space space minus 1 end cell cell space space minus 2 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row cell negative 3 end cell cell space space 2 end cell cell space space space minus 1 end cell row cell space space 1 end cell cell space space space 0 end cell cell space minus 1 end cell row cell negative 4 end cell cell space space space 2 end cell cell space minus 2 end cell end table close square brackets
therefore space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space 1 half open square brackets table row cell negative 3 end cell cell space space space 2 end cell cell space space minus 1 end cell row cell space space 1 end cell cell space space space 0 end cell cell space space minus 1 end cell row cell negative 4 end cell cell space space space 2 end cell cell space space minus 2 end cell end table close square brackets
Now space space space AX space equals space straight B space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space space space space straight X equals space space straight A to the power of negative 1 end exponent straight B
rightwards double arrow space space space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 half open square brackets table row cell negative 3 end cell cell space space space 2 end cell cell space space minus 1 end cell row 1 cell space 0 end cell cell space space minus 1 end cell row cell negative 4 end cell 2 cell space minus 2 end cell end table close square brackets space space open square brackets table row cell space space space space 1 end cell row cell space space space space 3 end cell row cell negative 1 end cell end table close square brackets space space space rightwards double arrow space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 half open square brackets table row cell negative 3 plus 6 plus 1 end cell row cell 1 plus 0 plus 1 end cell row cell negative 4 plus 6 plus 2 end cell end table close square brackets space space space space rightwards double arrow space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row 2 row 1 row 2 end table close square brackets
therefore space space space space space solution space is space straight x space equals space 2 comma space space space straight y space equals space 1 comma space space space straight z space equals space 2

    Question 282
    CBSEENMA12034859

    Use matrix method to solve the following system of equations:
    2x – y - z = 7      
    3x + y – z = 7            
    x + y – z = 3

    Solution

    The given equations are
    2x – y – z = 7    ...(1)
    3x + y – z = 7    ...(2)
    x + y – z = 3    ...(3)
    These equations can be written as
                         open square brackets table row 2 cell space space space minus 1 end cell cell space space space minus 1 end cell row 3 cell space space space space space space space 1 end cell cell space space space space minus 1 end cell row 1 cell space space space space space space 1 end cell cell space space space minus 1 end cell end table close square brackets space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row 7 row 7 row 3 end table close square brackets
    or  AX space equals space straight B space space where space straight A space equals space open square brackets table row 2 cell space space minus 1 end cell cell space space minus 1 end cell row 3 cell space space space space 1 end cell cell negative 1 end cell row 1 cell space space space 1 end cell cell negative 1 end cell end table close square brackets comma space space space space straight X space equals space open square brackets table row straight x row straight y row straight z end table close square brackets comma space space space space space straight B space equals space open square brackets table row 7 row 7 row 3 end table close square brackets
                            open vertical bar straight A close vertical bar space equals space open vertical bar table row 2 cell space space minus 1 end cell cell space space space minus 1 end cell row 3 cell space space space space space 1 end cell cell space space space minus 1 end cell row 1 cell space space space space 1 end cell cell space space space minus 1 end cell end table close vertical bar equals space 2 space open vertical bar table row 1 cell space space space minus 1 end cell row 1 cell space space minus 1 end cell end table close vertical bar minus left parenthesis negative 1 right parenthesis space open vertical bar table row 3 cell space space space minus 1 end cell row 1 cell space space minus 1 end cell end table close vertical bar plus left parenthesis negative 1 right parenthesis space open vertical bar table row 3 cell space space space 1 end cell row 1 cell space space space 1 end cell end table close vertical bar
space space space space space space equals 2 space left parenthesis negative 1 plus 1 right parenthesis space plus space 1 left parenthesis negative 3 plus 1 right parenthesis space minus space 1 left parenthesis 3 minus 1 right parenthesis space equals space 0 minus 2 minus 2 space equals space minus 4 not equal to 0
therefore space space space space space straight A to the power of negative 1 end exponent space exists.
                  
    Co-factors of the elements of first row of | A | are
    open vertical bar table row 1 cell space space space minus 1 end cell row cell space space 1 end cell cell space space space space minus 1 end cell end table close vertical bar comma space space space space minus space open vertical bar table row 3 cell space space space minus 1 end cell row 1 cell space space minus 1 end cell end table close vertical bar comma space space space space space minus open vertical bar table row 3 cell space space space space space space 1 end cell row 1 cell space space space space space space 1 end cell end table close vertical bar
    i.e. 0,  2,  2 respectively
    Co-factors of the elements of second row of | A | are
    negative open vertical bar table row cell negative 1 end cell cell space space space minus 1 end cell row 1 cell space space space minus 1 end cell end table close vertical bar comma space space space space open vertical bar table row 2 cell space space space minus 1 end cell row 1 cell space space space minus 1 end cell end table close vertical bar comma space space space minus open vertical bar table row 2 cell space space space minus 1 end cell row 1 cell space space space space space 1 end cell end table close vertical bar
    i.e. – 2, – 1, – 3 respectively
    Co-factors of the elements of third row of | A | are
    open vertical bar table row cell negative 1 end cell cell space space space minus 1 end cell row 1 cell space space space space minus 1 end cell end table close vertical bar comma space space space minus open vertical bar table row 2 cell space space space minus 1 end cell row 3 cell space space minus 1 end cell end table close vertical bar comma space space open vertical bar table row 2 cell space space space minus 1 end cell row 3 cell space space space space space space 1 end cell end table close vertical bar
    i.e.  2, 1, 5 respectively
    space therefore space space space adj. space straight A space equals space open square brackets table row 0 cell space space space space space 2 end cell cell space space space space space space 2 end cell row cell negative 2 end cell cell space space minus 1 end cell cell space space minus 3 end cell row 2 cell space space minus 1 end cell cell space space space space 5 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row 0 cell space space space minus 2 end cell cell space space 2 end cell row 2 cell space space minus 1 end cell cell space space 1 end cell row 2 cell space minus 3 end cell cell space 5 end cell end table close square brackets
space therefore space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals negative 1 fourth open square brackets table row 0 cell space space space minus 2 end cell cell space space space 2 end cell row 2 cell space space space minus 1 end cell cell space space space space 1 end cell row 2 cell space minus 3 end cell cell space space space space 5 end cell end table close square brackets
Now comma space space AX space equals space straight B
rightwards double arrow space space space space space space straight X space equals space straight A to the power of negative 1 end exponent straight B
rightwards double arrow space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space minus 1 fourth open square brackets table row cell 0 minus 14 plus 6 end cell row cell 14 minus 7 minus 3 end cell row cell 14 minus 21 plus 15 end cell end table close square brackets space space space space space space space space space rightwards double arrow space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row cell space space space space space 2 end cell row cell space minus 1 end cell row cell space space minus 2 end cell end table close square brackets
therefore space space space space space space solution space is space straight x space equals space 2 comma space space space space straight y space equals space minus 1 comma space space straight z space equals space minus 2

    Question 283
    CBSEENMA12034862

    Use matrix method to solve the following system of equations:
    x + y + z = 1
    x – 2y + 3z = 2
    x – 3y + 5z = 3

    Solution

    The given equations are
    x + y + z =1
    x – 2y + 3z = 2
    x – 3y + 5z = 3
    These equations can be written as
                 open square brackets table row 1 cell space space space space space space space space space 1 end cell cell space space space space space space 1 end cell row 1 cell space space space space space minus 2 end cell cell space space space space space space 3 end cell row 1 cell space space space space space minus 3 end cell cell space space space space space space 5 end cell end table close square brackets space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row cell space space 1 end cell row cell space space 2 end cell row cell space space 3 end cell end table close square brackets
    or        AX space equals space straight B space where space straight A space equals space open square brackets table row 1 cell space space space 1 end cell cell space space 1 end cell row 1 cell space minus 2 end cell cell space space 3 end cell row 1 cell space minus 3 end cell cell space space 5 end cell end table close square brackets space space space space space space space straight X space equals space open square brackets table row straight x row straight y row straight z end table close square brackets space space space straight B space equals space open square brackets table row 1 row 2 row 3 end table close square brackets
    open vertical bar straight A close vertical bar space equals space open vertical bar table row 1 cell space space space space space 1 end cell cell space space space 1 end cell row 1 cell space minus 2 end cell cell space space space 3 end cell row 1 cell negative 3 end cell cell space space space 5 end cell end table close vertical bar space equals space 1 space open vertical bar table row cell negative 2 end cell cell space space space 3 end cell row cell negative 3 end cell cell space space space 5 end cell end table close vertical bar space minus space 1 space open vertical bar table row 1 cell space space space 3 end cell row 1 cell space space space 5 end cell end table close vertical bar plus 1 space open vertical bar table row 1 cell space space space minus 2 end cell row 1 cell space space space minus 3 end cell end table close vertical bar
space space space space space space space equals 1 left parenthesis negative 10 plus 9 right parenthesis space minus space 1 left parenthesis 5 minus 3 right parenthesis space plus space 1 left parenthesis negative 3 plus 2 right parenthesis space equals space minus 1 minus 2 minus 1 space equals space minus 4 space not equal to space 0
therefore space space space space straight A to the power of negative 1 end exponent space exists.
      Co-factors of the elements of first row of | A | are
                    open vertical bar table row cell negative 2 end cell cell space space space 3 end cell row cell negative 3 end cell cell space space space 5 end cell end table close vertical bar comma space space space minus open vertical bar table row 1 cell space space space 3 end cell row 1 cell space space space 5 end cell end table close vertical bar comma space space space open vertical bar table row 1 cell space space space minus 2 end cell row 1 cell space space minus 3 end cell end table close vertical bar
    i.e. – 1, – 2, – 1 respectively
    Co-factors of the elements of second row of | A | are
    negative open vertical bar table row cell space space space 1 end cell cell space space space 1 end cell row cell negative 3 end cell cell space space space 5 end cell end table close vertical bar comma space space space space open vertical bar table row 1 cell space space space space 1 end cell row 1 cell space space space space 5 end cell end table close vertical bar comma space space space space minus open vertical bar table row 1 cell space space space space space space space 1 end cell row 1 cell space space space minus 3 end cell end table close vertical bar
    i.e. – 8, 4, 4 respectively
    Co-factors of the elements of third row of | A | are
    open vertical bar table row 1 cell space space space 1 end cell row cell negative 2 end cell cell space space space 3 end cell end table close vertical bar comma space space minus open vertical bar table row 1 cell space space space space 1 end cell row 1 cell space space space space 3 end cell end table close vertical bar comma space space space open vertical bar table row 1 cell space space space space space space 1 end cell row 1 cell space space minus 2 end cell end table close vertical bar
    i.e. 5, – 2, – 3 respectively
    therefore space space space adj. space straight A space equals space open square brackets table row cell negative 1 end cell cell space space minus 2 end cell cell space space minus 1 end cell row cell negative 8 end cell cell space space space space space 4 end cell cell space space space space space space 4 end cell row cell space 5 end cell cell space space minus 2 end cell cell space space minus 3 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row cell negative 1 end cell cell space space space minus 8 end cell cell space space space space space 5 end cell row cell negative 2 end cell cell space space space space space 4 end cell cell space minus 2 end cell row cell negative 1 end cell cell space space space space 4 end cell cell negative 3 end cell end table close square brackets
therefore space space space space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space minus 1 fourth open square brackets table row cell negative 1 end cell cell space space space minus 8 end cell cell space space space 5 end cell row cell negative 2 end cell cell space space space space 4 end cell cell space minus 2 end cell row cell negative 1 end cell cell space space space space 4 end cell cell negative 3 end cell end table close square brackets
Now space space space AX space equals space straight B
rightwards double arrow space space space space space space space straight X space equals space straight A to the power of negative 1 end exponent straight B
rightwards double arrow space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space minus 1 fourth open square brackets table row cell negative 1 end cell cell space space space minus 8 end cell cell space space space space space 5 end cell row cell negative 2 end cell cell space space space space 4 end cell cell space minus 2 end cell row cell negative 1 end cell cell space space space 4 end cell cell space minus 3 end cell end table close square brackets space space open square brackets table row 1 row 2 row 3 end table close square brackets
rightwards double arrow space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space minus 1 fourth open square brackets table row cell negative 1 minus 16 plus 15 end cell row cell negative 2 plus 8 minus 6 end cell row cell negative 1 plus 8 minus 9 end cell end table close square brackets space space space rightwards double arrow space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row cell 1 half end cell row 0 row cell 1 half end cell end table close square brackets
therefore space space space space space soluiton space is space straight x space equals space 1 half comma space space space straight y space equals space 0 comma space space space space straight z space equals space 1 half

    Question 284
    CBSEENMA12034864

    Use matrix method to solve the following system of equations:
    2x + y + 2z = 3
    x + y + 2z = 2
    2x + 3y – z = –2

    Solution

    The given equations are
    2x + y + 2z = 3
    x + y + 2z = 2
    2x + 3y – z = – 2
    These equations can be written as
      open square brackets table row 2 cell space space space space 1 end cell cell space space space space space 2 end cell row 1 cell space space space space 1 end cell cell space space space space space 2 end cell row 2 cell space space space 3 end cell cell space space minus 1 end cell end table close square brackets space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row cell space space space 3 end cell row cell space space space space 2 end cell row cell negative 2 end cell end table close square brackets
or space space space AX space equals space straight B space where space straight A space equals space open square brackets table row 2 cell space space space space space 1 end cell cell space space space space space 2 end cell row 1 cell space space space space space 1 end cell cell space space space space space 2 end cell row 2 cell space space space space space 3 end cell cell space space minus 1 end cell end table close square brackets comma space space space space straight X space equals space open square brackets table row straight x row straight y row straight z end table close square brackets comma space space straight B space equals space open square brackets table row cell space space space space 3 end cell row cell space space space space 2 end cell row cell negative 2 end cell end table close square brackets
open vertical bar straight A close vertical bar space equals space open vertical bar table row 2 cell space space space space space 1 end cell cell space space space space space 2 end cell row 1 cell space space space space space 1 end cell cell space space space space space 2 end cell row 2 cell space space space space 3 end cell cell space space minus 1 end cell end table close vertical bar space equals space 2 space open vertical bar table row 1 cell space space space space space space 2 end cell row 3 cell space space minus 1 end cell end table close vertical bar space minus space 1 open vertical bar table row 1 cell space space space space 2 end cell row 2 cell space space minus 1 end cell end table close vertical bar space plus space 2 open vertical bar table row 1 cell space space space 1 end cell row 2 cell space space space 3 end cell end table close vertical bar
space space space space equals space 2 left parenthesis negative 1 minus 6 right parenthesis space minus space 1 left parenthesis negative 1 minus 4 right parenthesis space plus space 2 left parenthesis 3 minus 2 right parenthesis space equals space minus 14 plus 5 plus 2 space equals space minus 7 space not equal to space 0
therefore space space space space straight A to the power of negative 1 end exponent space exists.
    Co-factors of the elements of first row of | A | are
    open vertical bar table row 1 cell space space space space space space 2 end cell row 3 cell space space minus 1 end cell end table close vertical bar comma space space space space minus open vertical bar table row 1 cell space space space space 2 end cell row 2 cell space space minus 1 end cell end table close vertical bar comma space space space open vertical bar table row 1 cell space space space space space 1 end cell row 2 cell space space space space space 3 end cell end table close vertical bar
    i.e.   -7,  5, 1 respectively.
    Co-factors of the elements of second row of | A | are
    negative open vertical bar table row 1 cell space space space space space space 2 end cell row 3 cell space space minus 1 end cell end table close vertical bar comma space space space   open vertical bar table row 2 cell space space space space space space space 2 end cell row 2 cell space space minus 1 end cell end table close vertical bar comma space space minus open vertical bar table row 2 cell space space space 1 end cell row 2 cell space space space 3 end cell end table close vertical bar
    i.e.  7, – 6, – 4 respectively
    Co-factors of the elements of third row of | A | are
    open vertical bar table row 1 cell space space space space 1 end cell row 2 cell space space space space 2 end cell end table close vertical bar comma space space minus open vertical bar table row 2 cell space space space 2 end cell row 1 cell space space space 2 end cell end table close vertical bar comma space space space space open vertical bar table row 2 cell space space space space 1 end cell row 1 cell space space space space 1 end cell end table close vertical bar
    i.e. 0. – 2, 1 respectively
    therefore space space space space adj space straight A space equals space open square brackets table row cell negative 7 end cell cell space space space space 5 end cell cell space space space space space 1 end cell row 7 cell space minus 6 end cell cell space minus 4 end cell row 0 cell space minus 2 end cell cell space space space space 1 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row cell negative 7 end cell cell space space space space 7 end cell cell space space space space space 0 end cell row 5 cell space minus 6 end cell cell space space minus 2 end cell row 1 cell space minus 4 end cell cell space space space space space 1 end cell end table close square brackets
    straight A to the power of negative 1 end exponent space equals space fraction numerator adj space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space minus 1 over 7 open square brackets table row cell negative 7 end cell cell space space space space space space 7 end cell cell space space space space space space 0 end cell row 5 cell space minus 6 end cell cell space space space minus 2 end cell row 1 cell space minus 4 end cell cell space space space space space 1 end cell end table close square brackets
    Now     AX space equals space straight B
    rightwards double arrow space space space space space straight X equals space straight A to the power of negative 1 end exponent straight B
    rightwards double arrow space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space minus 1 over 7 open square brackets table row cell negative 7 end cell cell space space space space space 7 end cell cell space space space 0 end cell row 5 cell space space minus 6 end cell cell space minus 2 end cell row 1 cell space space space minus 4 end cell cell space space space space 1 end cell end table close square brackets space open square brackets table row cell space space 3 end cell row cell space space 2 end cell row cell negative 2 end cell end table close square brackets space space rightwards double arrow space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space minus 1 over 7 open square brackets table row cell negative 21 plus 14 plus 0 end cell row cell 15 minus 12 plus 4 end cell row cell 3 minus 8 minus 2 end cell end table close square brackets
rightwards double arrow space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space minus 1 over 7 open square brackets table row cell negative 7 end cell row cell space space space 7 end cell row cell negative 7 end cell end table close square brackets space space space space space rightwards double arrow space space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row cell space space space space 1 end cell row cell negative 1 space end cell row cell space space space 1 end cell end table close square brackets
therefore space space space space solution space is space straight x space equals space 1 comma space space space space straight y space equals space minus 1 comma space space space straight z space equals space 1

    Question 285
    CBSEENMA12034867

    Use matrix method to solve the following system of equations:
    x + 2y + z = 7 
    x + z = 11
    2x – 3y = 1

    Solution

    The given equations are
    x + 2y + z = 7
    x + 3z = 11
    2x – 3y = 1
    These equations can be written as
                              open square brackets table row 1 cell space space space space 2 end cell cell space space space 1 end cell row 1 cell space space space space 0 end cell cell space space space 3 end cell row 2 cell space minus 3 end cell cell space space 0 end cell end table close square brackets space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row 7 row 11 row 1 end table close square brackets
    or   AX space equals space straight B space space space where space straight A space equals space open square brackets table row 1 cell space space space space 2 end cell cell space space space 1 end cell row 1 cell space space space 0 end cell cell space space space 3 end cell row 2 cell space minus 3 end cell cell space space space 0 end cell end table close square brackets space space space comma space space space space straight X space equals space open square brackets table row straight x row straight y row straight z end table close square brackets comma space space straight B space equals space open square brackets table row 7 row 11 row 1 end table close square brackets
    open vertical bar straight A close vertical bar space equals space open vertical bar table row 1 cell space space space 2 end cell cell space space space 1 end cell row 1 cell space space space 0 end cell cell space space space 3 end cell row 2 cell space minus 3 end cell cell space space space 0 end cell end table close vertical bar space equals space 1 open vertical bar table row 0 cell space space space 3 end cell row cell negative 3 end cell cell space space space 0 end cell end table close vertical bar minus 2 open vertical bar table row 1 cell space space space 3 end cell row 2 cell space space space 0 end cell end table close vertical bar space plus space 1 open vertical bar table row 1 cell space space space space space 0 end cell row 2 cell space space minus 3 end cell end table close vertical bar
space space space space space space space equals 1 left parenthesis 0 plus 9 right parenthesis space minus space 2 left parenthesis 0 minus 6 right parenthesis space plus space 1 left parenthesis negative 3 minus 0 right parenthesis
space space space space space space space equals 9 plus 12 minus 3 space equals space 18 space not equal to space 0
therefore space space space space space straight A to the power of negative 1 end exponent space exists.
    Co-factors of the elements of first row of | A | are
    open vertical bar table row 0 cell space space space 3 end cell row cell negative 3 end cell cell space space space 0 end cell end table close vertical bar comma space space space minus open vertical bar table row 1 cell space space space 3 end cell row 2 cell space space 0 end cell end table close vertical bar comma space space open vertical bar table row 1 cell space space space space space 0 end cell row 2 cell space minus 3 end cell end table close vertical bar
    i.e. 9, 6, – 3 respectively
    Co-factors of the elements of second row of | A | are
    negative open vertical bar table row 2 cell space space space 1 end cell row cell negative 3 end cell cell space space space 0 end cell end table close vertical bar comma space space space open vertical bar table row 1 cell space space space 1 end cell row 2 cell space space space 0 end cell end table close vertical bar comma space space minus open vertical bar table row 1 cell space space space space space space 2 end cell row 2 cell space space minus 3 end cell end table close vertical bar
    i.e.    – 3,  – 2, 7 respectively
    Co-factors of the elements of third row of | A | are
    open vertical bar table row 2 cell space space space 1 end cell row 0 cell space space 3 end cell end table close vertical bar comma space space minus open vertical bar table row 1 cell space space space space 1 end cell row 1 cell space space space space 3 end cell end table close vertical bar comma space space space open vertical bar table row 1 cell space space space space space 2 end cell row 1 cell space space space space 0 end cell end table close vertical bar
    i.e.   6, -2, -2 respectively.
    therefore space space space space adj space straight A space equals space open square brackets table row 9 cell space space space space space 6 end cell cell space space space minus 3 end cell row cell negative 3 end cell cell space space minus 2 end cell cell space space space space space 7 end cell row 6 cell space space minus 2 end cell cell space minus 2 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row cell space 9 end cell cell space space minus 3 end cell cell space space space space space 6 end cell row cell space space 6 end cell cell space space minus 2 end cell cell space space space minus 2 end cell row cell negative 3 end cell cell space space space space space 7 end cell cell space space space minus 2 end cell end table close square brackets
therefore space space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space 1 over 18 open square brackets table row cell space space 9 end cell cell space space space minus 3 end cell cell space space space space space 6 end cell row cell space space 6 end cell cell space space minus 2 end cell cell space minus 2 end cell row cell negative 3 end cell cell space space space space 7 end cell cell space space minus 2 end cell end table close square brackets
Now comma space space space space straight A space straight X space equals space straight B space space space space rightwards double arrow space space space space space space straight X equals space space straight A to the power of negative 1 end exponent straight B
rightwards double arrow space space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 over 18 open square brackets table row cell space space 9 end cell cell space space space minus 3 end cell cell space space space 6 end cell row cell space space 6 end cell cell space space minus 2 end cell cell space minus 2 end cell row cell negative 3 end cell cell space space space 7 end cell cell space minus 2 end cell end table close square brackets space open square brackets table row 7 row 11 row 1 end table close square brackets space space space rightwards double arrow space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 over 18 open square brackets table row cell 63 minus 33 plus 6 end cell row cell 42 minus 22 minus 2 end cell row cell negative 21 plus 77 minus 2 end cell end table close square brackets
rightwards double arrow space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 over 18 open square brackets table row 36 row 18 row 54 end table close square brackets space space space space space space space space space space space space space rightwards double arrow space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row 2 row 1 row 3 end table close square brackets
therefore space space space space space solution space is space straight x space equals space 2 comma space space straight y space equals space 1 comma space straight z space equals space 3

    Question 286
    CBSEENMA12034868

    Use matrix method to solve the following system of equations:
    x + 2y – 3z = 4
    x + 3 + 2z = 2
    3x – 3y + 4z = 11

    Solution
    These equations can be written as
               open square brackets table row 1 cell space space space space space 2 end cell cell space space minus 3 end cell row 2 cell space space space space space 3 end cell cell space space space space 2 end cell row 3 cell space space minus 3 end cell cell space minus 4 end cell end table close square brackets space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row cell negative 4 end cell row cell space space 2 end cell row 11 end table close square brackets
    or     AX space equals space straight B space space space where space straight A space equals open square brackets table row 1 cell space space space space space space 2 end cell cell space space space minus 3 end cell row 2 cell space space space space space 3 end cell cell space space space space space space 2 end cell row 3 cell space minus 3 end cell cell space space minus 4 end cell end table close square brackets comma space space space straight X space equals space open square brackets table row straight x row straight y row straight z end table close square brackets comma space space space straight B space equals space open square brackets table row cell negative 4 end cell row cell space space 2 end cell row cell space 11 end cell end table close square brackets
                open vertical bar straight A close vertical bar space equals space open vertical bar table row 1 cell space space space space space 2 end cell cell space space minus 3 end cell row 2 cell space space space space space 3 end cell cell space space space space space space 2 end cell row 3 cell space minus 3 end cell cell space minus 4 end cell end table close vertical bar space equals space 1 open vertical bar table row cell space space 3 end cell cell space space space space space space space 2 end cell row cell negative 3 end cell cell space space minus 4 end cell end table close vertical bar minus space 2 open vertical bar table row 2 cell space space space space space space 2 end cell row 3 cell space space space minus 4 end cell end table close vertical bar plus left parenthesis negative 3 right parenthesis space open vertical bar table row 2 cell space space space space space 3 end cell row 3 cell space space space minus 3 end cell end table close vertical bar
space space space space space space space equals 1 space left parenthesis negative 12 plus 6 right parenthesis space minus space 2 left parenthesis negative 8 minus 6 right parenthesis space minus space 3 left parenthesis negative 6 minus 9 right parenthesis
space space space space space space space space equals negative 6 plus 28 plus 45 equals space 67 not equal to 0
    Co-factors of the elements of first row of | A | are
    open vertical bar table row cell space space 3 end cell cell space space space space space space space 2 end cell row cell negative 3 end cell cell space space space minus 4 end cell end table close vertical bar comma space space space space minus open vertical bar table row 2 cell space space space space space 2 end cell row 3 cell space space space minus 4 end cell end table close vertical bar comma space space space open vertical bar table row 2 cell space space space space 3 end cell row 3 cell space minus 3 end cell end table close vertical bar
    i.e. – 6,  14, – 15 respectively
    Co-factors of the elements of second row of | A | are
    negative open vertical bar table row 2 cell space space space minus 3 end cell row cell negative 3 end cell cell space space space space space 4 end cell end table close vertical bar comma space space space open vertical bar table row 1 cell space space minus 3 end cell row 3 cell space space minus 4 end cell end table close vertical bar space space minus open vertical bar table row 1 cell space space space space space space space 2 end cell row 3 cell space space minus 3 end cell end table close vertical bar
    i.e.  17, 5,  9 respectively.
    Co-factors of the elements of third row of | A | are
    open vertical bar table row 2 cell space space space minus 3 end cell row 3 cell space space space space space 2 end cell end table close vertical bar comma space space space minus open vertical bar table row 1 cell space space space minus 3 end cell row 2 cell space space space space space space 2 end cell end table close vertical bar comma space space space open vertical bar table row 1 cell space space space 2 end cell row 2 cell space space space 3 end cell end table close vertical bar
    i.e. 13, – 8, – 1 respectively
    therefore space space space adj space straight A space equals space open square brackets table row cell negative 6 end cell cell space space space 14 end cell cell space minus 15 end cell row 17 cell space space space space 5 end cell cell space space space space 9 end cell row 13 cell space minus 8 end cell cell negative 1 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row cell negative 6 end cell cell space space 17 end cell cell space space 13 end cell row cell space space 14 end cell cell space space 5 end cell cell space minus 8 end cell row cell negative 15 end cell cell space 9 end cell cell space minus 1 end cell end table close square brackets
therefore space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals 1 over 67 open square brackets table row cell negative 6 end cell cell space space 17 end cell cell space space space 13 end cell row 14 cell space space space 5 end cell cell space minus 8 end cell row cell negative 15 end cell cell space 9 end cell cell space minus 1 end cell end table close square brackets
Now comma space space space AX space equals space straight B
rightwards double arrow space space space space straight X space space equals straight A to the power of negative 1 end exponent straight B
rightwards double arrow space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 over 67 open square brackets table row cell negative 6 end cell cell space space 17 end cell cell space 13 end cell row 14 5 cell negative 8 end cell row cell negative 15 end cell 9 cell negative 1 end cell end table close square brackets space space open square brackets table row cell negative 4 end cell row 2 row 11 end table close square brackets space space space rightwards double arrow space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 over 67 open square brackets table row cell 24 plus 34 plus 143 end cell row cell negative 56 plus 10 minus 88 end cell row cell 60 plus 18 minus 11 end cell end table close square brackets
rightwards double arrow space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 over 67 open square brackets table row cell space space space space 201 end cell row cell negative 134 end cell row cell space space space 67 end cell end table close square brackets space space space space space space rightwards double arrow space space space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row cell space space space 3 end cell row cell negative 2 end cell row cell space space space 1 end cell end table close square brackets
therefore space space space space space space space space space solution space is space space space straight x space equals space 3 comma space space space straight y space equals space minus 2 comma space space space straight z space equals space 1

space space
    Question 287
    CBSEENMA12034870

    Use matrix method to solve the following system of equations:
    x + y + z = 6 
    2 x – y + z = 3
    x – 2y + 3z = 6

    Solution

    The given equations are
    x + y + z = 6
    2x – y + z = 3
    x – 2y + 3z = 6
    These equations can be written as
                             open square brackets table row 1 cell space space space space 1 end cell cell space space space 1 end cell row 2 cell space minus 1 end cell cell space space 1 end cell row 1 cell space space minus 2 end cell cell space space 3 end cell end table close square brackets space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row 6 row 3 row 6 end table close square brackets
    where straight A space equals open square brackets table row 1 cell space space space space 1 end cell cell space space space 1 end cell row 2 cell space minus 1 end cell cell space space space 1 end cell row 1 cell negative 2 end cell cell space space space 3 end cell end table close square brackets comma space space space space straight X space equals space open square brackets table row straight x row straight y row straight z end table close square brackets comma space space space straight B space equals space open square brackets table row 6 row 3 row 6 end table close square brackets
        space open vertical bar straight A close vertical bar space equals space open vertical bar table row 1 cell space space space space space space 1 end cell cell space space space space 1 end cell row 2 cell space space minus 1 end cell cell space space space space 1 end cell row 1 cell space space space space minus 2 end cell cell space space space space 3 end cell end table close vertical bar space equals space 1 space open vertical bar table row cell negative 1 end cell cell space space space 1 end cell row cell negative 2 end cell cell space space space 3 end cell end table close vertical bar space minus 1 open vertical bar table row 2 cell space space space space space 1 end cell row 1 cell space space space space space 3 end cell end table close vertical bar space plus space 1 open vertical bar table row 2 cell space space space minus 1 end cell row 1 cell space space minus 2 end cell end table close vertical bar
space space space space space space space equals 1 space left parenthesis negative 3 minus 2 right parenthesis space minus space 1 left parenthesis 6 minus 1 right parenthesis space plus space 1 left parenthesis negative 4 plus 1 right parenthesis space equals space minus 1 minus 5 minus 3 space equals space minus 9 not equal to 0
therefore space space space space straight A to the power of negative 1 end exponent space exists
    Co-factors of the elements of first row of | A | are
    open vertical bar table row cell negative 1 end cell cell space space space 1 end cell row cell negative 2 end cell cell space space space 3 end cell end table close vertical bar space space minus space open vertical bar table row 2 cell space space space space 1 end cell row 1 cell space space space space 3 end cell end table close vertical bar comma space space space open vertical bar table row 2 cell space space minus 1 end cell row 1 cell space space minus 2 end cell end table close vertical bar
    i.e., – 1, – 5, – 3 respectively
    Co-factors of the elements of second row of | A | are
    negative open vertical bar table row 1 cell space space space space 1 end cell row cell negative 2 end cell cell space space 3 end cell end table close vertical bar comma space space open vertical bar table row 1 cell space space space space 1 end cell row 1 cell space space space space 3 end cell end table close vertical bar comma space space space space minus open vertical bar table row 1 cell space space space space space 1 end cell row 1 cell space space minus 2 end cell end table close vertical bar
straight i. straight e. space space space minus 5 comma space 2 comma space 3 space respectively
    Co-factors of the elements of third row of | A | are
    open vertical bar table row 1 cell space space space 1 end cell row cell negative 1 end cell cell space space space 1 end cell end table close vertical bar comma space space minus open vertical bar table row 1 cell space space space space 1 end cell row 2 cell space space space space 1 end cell end table close vertical bar comma space space open vertical bar table row 1 cell space space space space space space space 1 end cell row 2 cell space space minus 1 end cell end table close vertical bar
    i.e.,   2,  1, -3 respectively
    therefore space space adj space straight A space equals space open square brackets table row cell negative 1 end cell cell space space minus 5 end cell cell space space space minus 3 end cell row cell negative 5 end cell cell space space space space space 2 end cell cell space space space space space space 3 end cell row 2 cell space space space 1 end cell cell space minus 3 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row cell negative 1 end cell cell space space minus 5 end cell cell space space space 2 end cell row cell negative 5 end cell cell space space space space 2 end cell cell space space space 1 end cell row cell negative 3 end cell cell space space space space 3 end cell cell negative 3 end cell end table close square brackets
therefore space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj. space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space minus 1 over 9 open square brackets table row cell negative 1 end cell cell space space minus 5 end cell cell space space space space space space space 2 end cell row cell negative 5 end cell cell space space space space 2 end cell cell space space space space space space 1 end cell row cell negative 3 end cell cell space space space 3 end cell cell space space minus 3 end cell end table close square brackets
Now comma space space AX space equals space straight B space rightwards double arrow space space space straight X space equals space straight A to the power of negative 1 end exponent straight B space space space rightwards double arrow space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space minus 1 over 19 open square brackets table row cell negative 1 end cell cell space space minus 5 end cell cell space space space space space 2 end cell row cell negative 5 end cell cell space space space space space space 2 end cell cell space space space space space 1 end cell row cell negative 3 end cell cell space space space space 3 end cell cell space minus 3 end cell end table close square brackets space open square brackets table row 6 row 3 row 6 end table close square brackets
rightwards double arrow space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space minus 1 over 19 open square brackets table row cell negative 6 minus 15 plus 12 end cell row cell negative 30 plus 6 plus 6 end cell row cell negative 18 plus 9 minus 18 end cell end table close square brackets space rightwards double arrow space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space minus 1 over 19 open square brackets table row cell negative 9 end cell row cell negative 18 end cell row cell negative 27 end cell end table close square brackets
rightwards double arrow space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row 1 row 2 row 3 end table close square brackets space space space space rightwards double arrow space space space space space straight x space equals space 1 comma space space space space straight y space equals space 2 comma space space space straight z space equals space 3

    Question 288
    CBSEENMA12034873

    Use matrix method to solve the following system of equations:
    3x + 14y + 7z = 14
    2x – y + 3z = 4
    x + 2y – 3z = 0

    Solution

    The given equations are
    3x + 14y + 7z = 14
    2x – y + 3z = 4
    x + 2y – 3z = 0
    These equations can be written as
                           open square brackets table row 3 cell space space space space space space 4 end cell cell space space space space 7 end cell row 2 cell space space minus 1 end cell cell space space space space space 3 end cell row 1 cell space space space space space space 2 end cell cell space minus 3 end cell end table close square brackets space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space space open square brackets table row 14 row 4 row 0 end table close square brackets
    or    AX space equals space straight B space space where space straight A space equals space open square brackets table row 3 cell space space space space space space 4 end cell cell space space space space space 7 end cell row 2 cell space space minus 1 end cell cell space space space space space 3 end cell row 1 cell space space space space space 2 end cell cell space minus 3 end cell end table close square brackets comma space space space space straight X space equals space open square brackets table row straight x row straight y row straight z end table close square brackets comma space space space straight B space equals space open square brackets table row 14 row 4 row 0 end table close square brackets
    open vertical bar straight A close vertical bar space equals space open vertical bar table row 3 cell space space space space 4 end cell cell space space space space 7 end cell row 2 cell space minus 1 end cell cell space space space space 3 end cell row 1 cell space space space space 2 end cell cell negative 3 end cell end table close vertical bar space equals space 3 open vertical bar table row cell negative 1 end cell cell space space space space space space space 3 end cell row cell space 2 end cell cell space space minus 3 end cell end table close vertical bar space minus space 4 open vertical bar table row 2 cell space space space space space space 3 end cell row 1 cell space space minus 3 end cell end table close vertical bar space plus space 7 open vertical bar table row 2 cell space space space minus 1 end cell row 1 cell space space space space space space 2 end cell end table close vertical bar
space space space space space equals 3 space left parenthesis 3 minus 6 right parenthesis space minus space 4 left parenthesis negative 6 minus 3 right parenthesis space plus space 7 left parenthesis 4 plus 1 right parenthesis space equals space minus 9 plus 36 plus 35 space equals space 62 not equal to 0 space space space space rightwards double arrow space space straight A to the power of negative 1 end exponent space exists.
    Co-factors of the elements of first row of | A | are
    open vertical bar table row cell negative 1 end cell cell space space space space space 3 end cell row 2 cell space space minus 3 end cell end table close vertical bar comma space space space space minus open vertical bar table row 2 cell space space space space space space 3 end cell row 1 cell space space minus 3 end cell end table close vertical bar comma space space space open vertical bar table row 2 cell space space space space minus 1 end cell row 1 cell space space space space space space 2 end cell end table close vertical bar
    i.e.,  – 3,  9, 5 respectively.
    Co-factors of the elements of second row of | A | are
    negative open vertical bar table row 4 cell space space space space space space 7 end cell row 2 cell space space minus 3 end cell end table close vertical bar comma space space open vertical bar table row 3 cell space space space space 7 end cell row 1 cell space space minus 3 end cell end table close vertical bar comma space space minus open vertical bar table row 3 cell space space space space 4 end cell row 1 cell space space space 2 end cell end table close vertical bar
    i.e.,   26, – 16, – 2 respectively.
    Co-factors of the elements of third row of | A | are
    open vertical bar table row cell space 4 end cell cell space space space 7 end cell row cell negative 1 end cell cell space space 3 end cell end table close vertical bar comma space space space minus open vertical bar table row 3 cell space space space space 7 end cell row 2 cell space space space 3 end cell end table close vertical bar comma space space space open vertical bar table row 3 cell space space space space space space 4 end cell row 2 cell space space space minus 1 end cell end table close vertical bar
    i.e., 19,  5,  – 11 respectively.
    therefore space space space space adj. space straight A space equals space open square brackets table row cell negative 3 end cell cell space 9 end cell cell space space space space 5 end cell row 26 cell negative 16 end cell cell space minus 2 end cell row 19 5 cell space minus 11 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row cell negative 3 end cell cell space space space 26 end cell cell space space space space 19 end cell row cell space 9 end cell cell space minus 16 end cell cell space space space 5 end cell row cell space 5 end cell cell space minus 2 end cell cell space minus 11 end cell end table close square brackets
therefore space space space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj. space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space 1 over 62 open square brackets table row cell negative 3 end cell cell space space space space 26 end cell cell space space space space 19 end cell row 9 cell space space minus 16 end cell cell space space space space 5 end cell row 5 cell space minus 2 end cell cell space minus 11 end cell end table close square brackets
Now comma space space AX space equals space straight B space space space space space space space rightwards double arrow space space space space space straight X space equals space straight A to the power of negative 1 end exponent straight B
rightwards double arrow space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 over 62 open square brackets table row cell negative 3 end cell cell space space space 26 end cell cell space space space 19 end cell row 9 cell space space minus 16 end cell cell space space space space 5 end cell row 5 cell space space minus 2 end cell cell space minus 11 end cell end table close square brackets space open square brackets table row 14 row 4 row 0 end table close square brackets
rightwards double arrow space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 over 62 open square brackets table row cell negative 42 plus 104 plus 0 end cell row cell 126 minus 64 plus 0 end cell row cell 70 minus 8 plus 0 end cell end table close square brackets space space space space rightwards double arrow space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space space space equals space 1 over 62 open square brackets table row 62 row 62 row 62 end table close square brackets
rightwards double arrow space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row 1 row 1 row 1 end table close square brackets
    ⇒ x = 1, y = 1, z = 1 is the required solution.

    Question 289
    CBSEENMA12034876

    Use matrix method to solve the following system of equations:
    5x + 3y + z = 16
    2x + y + 3 z = 19
    x + 2y+ 4 z = 25

    Solution

    The given equations are
    5x + 3y + z = 16
    2x + y + 3z = 19
    x + 2y + 4z = 25
    These equations can be written as
                   open square brackets table row 5 cell space space space 3 end cell cell space space space 1 end cell row 2 cell space space space 1 end cell cell space space space 3 end cell row 1 cell space space 2 end cell cell space space space 4 end cell end table close square brackets space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row 16 row 19 row 25 end table close square brackets
    where straight A equals space open square brackets table row 5 cell space space 3 end cell cell space space 1 end cell row 2 cell space space 1 end cell cell space space 3 end cell row 1 cell space space 2 end cell cell space space 4 end cell end table close square brackets comma space space space straight X space equals space open square brackets table row straight x row straight y row straight z end table close square brackets comma space space space straight B space equals space open square brackets table row 16 row 19 row 25 end table close square brackets
    Now comma space open vertical bar straight A close vertical bar space equals space open vertical bar table row 5 cell space space 3 end cell cell space space 1 end cell row 2 cell space space 1 end cell cell space space 3 end cell row 1 cell space space 2 end cell cell space space 4 end cell end table close vertical bar space equals space 5 open vertical bar table row 1 cell space space space 3 end cell row 2 cell space space 4 end cell end table close vertical bar space minus space 3 open vertical bar table row 2 cell space space space 3 end cell row 1 cell space space space space 4 end cell end table close vertical bar space plus space 1 open vertical bar table row 2 cell space space 1 end cell row 1 cell space space 2 end cell end table close vertical bar
                     equals space 5 left parenthesis 4 minus 6 right parenthesis space minus space 3 left parenthesis 8 minus 3 right parenthesis space plus 1 thin space left parenthesis 4 minus 1 right parenthesis space equals space minus 10 minus 15 plus 3 space equals space minus 22
    Co-factors of the elements of first row of | A | are
    open vertical bar table row 1 cell space space space 3 end cell row 2 cell space space 4 end cell end table close vertical bar comma space space minus open vertical bar table row 2 cell space space space 3 end cell row 1 cell space space 4 end cell end table close vertical bar comma space space open vertical bar table row 2 cell space space space 1 end cell row 1 cell space space 2 end cell end table close vertical bar
    i.e., – 2, – 5, 3 respectively.
    Co-factors of the elements of 2nd row of | A | are
    negative open vertical bar table row 3 cell space space space 1 end cell row 2 cell space space space 4 end cell end table close vertical bar comma space space space space open vertical bar table row 5 cell space space space 1 end cell row 1 cell space space space 4 end cell end table close vertical bar comma space space space space minus open vertical bar table row 5 cell space space space 3 end cell row 2 cell space space 1 end cell end table close vertical bar
    i.e.,  – 10,   9, – 7 respectively.
    Co-factors of the elements of 3rd row of | A | are
    open vertical bar table row 3 cell space space 1 end cell row 1 cell space space 3 end cell end table close vertical bar comma space space minus open vertical bar table row 5 cell space space space 1 end cell row 2 cell space space space 3 end cell end table close vertical bar comma space space open vertical bar table row 5 cell space space space 3 end cell row 2 cell space space space 1 end cell end table close vertical bar
    i.e., 8, – 13, – 1 respectively.
    therefore space space space space space adj. space straight A space equals space open square brackets table row cell negative 2 end cell cell space space space minus 5 end cell cell space space space 3 end cell row cell negative 10 end cell cell space space space space space space 19 end cell cell space space minus 7 end cell row 8 cell space space minus 13 end cell cell negative 1 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row cell negative 2 end cell cell space space minus 10 end cell cell space space space space space space 8 end cell row cell negative 5 end cell cell space space space space space space 19 end cell cell space space minus 13 end cell row 3 cell space space space minus 7 end cell cell negative 1 end cell end table close square brackets
space space space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj. space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space minus 1 over 22 open square brackets table row cell negative 2 end cell cell space space space minus 10 end cell cell space space space space 8 end cell row cell negative 5 end cell cell space space space space 19 end cell cell negative 13 end cell row 3 cell space space minus 7 end cell cell negative 1 end cell end table close square brackets
Now comma space space space AX space equals space straight B space space space space space space rightwards double arrow space space space space space space space space straight X space equals space straight A to the power of negative 1 end exponent straight B
rightwards double arrow space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space minus 1 over 22 open square brackets table row cell negative 2 end cell cell space space minus 10 end cell cell space space space space space 8 end cell row cell negative 5 end cell cell space space space space 19 end cell cell negative 13 end cell row 3 cell space minus 7 end cell cell negative 1 end cell end table close square brackets space open square brackets table row 16 row 19 row 25 end table close square brackets
rightwards double arrow space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space minus 1 over 22 open square brackets table row cell negative 32 minus 190 plus 200 end cell row cell negative 80 plus 361 minus 325 end cell row cell 48 minus 133 minus 25 end cell end table close square brackets space space space space rightwards double arrow space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space minus 1 over 22 open square brackets table row cell negative 22 end cell row cell negative 44 end cell row cell negative 110 end cell end table close square brackets
rightwards double arrow space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row 1 row 2 row 5 end table close square brackets space space space space space space space space space space space space space space space space space rightwards double arrow space space space space straight x space equals space 1 comma space space space space space space straight y space equals space 2 comma space space space space straight z space equals space 5

    Question 290
    CBSEENMA12034878

    Use matrix method to solve the following system of equations:
    x + y + z = 9
    2x + 5y + 7z = 52
    2x + y – z = 0

    Solution

    The given equations are
    x + y + z = 9
    2 x + 5 y + 7 z = 52
    2 x + y – z = 0
    These equations can be written as
    open square brackets table row 1 cell space space space 1 end cell cell space space space space space 1 end cell row 2 cell space space 5 end cell cell space space space space 7 end cell row 2 cell space space 1 end cell cell space minus 1 end cell end table close square brackets space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row 9 row 52 row 0 end table close square brackets
    or     AX space equals space straight B space space space where space straight A space equals space open square brackets table row 1 cell space space space 1 end cell cell space space 1 end cell row 2 cell space space space 5 end cell cell space space space 7 end cell row 2 cell space space 1 end cell cell negative 1 end cell end table close square brackets comma space space space straight X space equals space open square brackets table row straight x row straight y row straight z end table close square brackets comma space space space straight B space equals space open square brackets table row 9 row 52 row 0 end table close square brackets
                    open vertical bar straight A close vertical bar space equals space open vertical bar table row 1 cell space space space 1 end cell cell space space space 1 end cell row 2 cell space space 5 end cell cell space space space 7 end cell row 2 cell space 1 end cell cell negative 1 end cell end table close vertical bar space equals space 1 open vertical bar table row 5 cell space space space space 7 end cell row 1 cell space minus 1 end cell end table close vertical bar space minus space 1 open vertical bar table row 2 cell space space space space 7 end cell row 2 cell space minus 1 end cell end table close vertical bar plus 1 open vertical bar table row 2 cell space space space 5 end cell row 2 cell space space 1 end cell end table close vertical bar
space space space space space space space space equals 1 left parenthesis negative 5 minus 7 right parenthesis minus 1 left parenthesis negative 2 minus 14 right parenthesis space plus space 1 left parenthesis 2 minus 19 right parenthesis space equals space minus 12 plus 16 minus 8 space equals space minus 4 not equal to 0
therefore space space space space space straight A to the power of negative 1 end exponent space exists.
    Co-factors of the elements of first row of | A | are
    open vertical bar table row 5 cell space space space space space 7 end cell row 1 cell space minus 1 end cell end table close vertical bar comma space space space space minus open vertical bar table row 2 cell space space space space space 7 end cell row 2 cell space minus 1 end cell end table close vertical bar comma space space space space open vertical bar table row 2 cell space space space 5 end cell row 2 cell space space space 1 end cell end table close vertical bar
straight i. straight e. space space space space minus 12 comma space space 16 comma space space minus 8 space respectively.
    Cofactors of-the elements of 2nd row of | A | are
    negative open vertical bar table row 1 cell space space space space 1 end cell row 1 cell space minus 1 end cell end table close vertical bar comma space space space open vertical bar table row 1 cell space space space space 1 end cell row 2 cell space minus 1 end cell end table close vertical bar comma space space space minus open vertical bar table row 1 cell space space space space 1 end cell row 2 cell space space space space 1 end cell end table close vertical bar
    i.e., 2, – 3, 1 respectively.
    Co-factors of the elements of 3rd row of | A | are
    open vertical bar table row 1 cell space space space space 1 end cell row 5 cell space space space 7 end cell end table close vertical bar comma space space space minus open vertical bar table row 1 cell space space space 1 end cell row 2 cell space space space 7 end cell end table close vertical bar comma space space open vertical bar table row 1 cell space space space 1 end cell row 2 cell space space space 5 end cell end table close vertical bar
    i.e., 2, – 5, 3 respectively.
    therefore space space space space adj space straight A space equals space open square brackets table row cell negative 12 end cell cell space space space 16 end cell cell space space space 8 end cell row cell space space 2 end cell cell negative 3 end cell cell space space 1 end cell row cell space space 2 end cell cell negative 5 end cell cell space space 3 end cell end table close square brackets space equals space open square brackets table row cell negative 12 end cell cell space space space 2 end cell cell space space space space 2 end cell row cell space space 16 end cell cell space minus 3 end cell cell space space minus 5 end cell row cell space space minus 8 end cell cell space space 1 end cell cell space space space space 3 end cell end table close square brackets
therefore space space space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj. space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space minus 1 fourth open square brackets table row cell negative 12 end cell cell space space space space space space 2 end cell cell space space space space space space space 2 end cell row cell space space 16 end cell cell space space minus 3 end cell cell space space space minus 5 end cell row cell negative 8 end cell cell space space space space space 1 end cell cell space space space space space space space 3 end cell end table close square brackets
Now space space space AX space equals space straight B space space space space space space space space rightwards double arrow space space space space straight X space equals space straight A to the power of negative 1 end exponent straight B
rightwards double arrow space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space minus 1 fourth open square brackets table row cell negative 12 end cell cell space space space space space 2 end cell cell space space space space 2 end cell row 16 cell space minus 3 end cell cell space minus 5 end cell row cell negative 8 end cell cell space space space space 1 end cell cell space space space space 3 end cell end table close square brackets space open square brackets table row 9 row 52 row 0 end table close square brackets
rightwards double arrow space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space minus 1 fourth open square brackets table row cell negative 108 plus 104 plus 0 end cell row cell 148 minus 156 plus 0 end cell row cell negative 72 plus 52 plus 0 end cell end table close square brackets space space space space rightwards double arrow space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space minus 1 fourth open square brackets table row cell negative 4 end cell row cell negative 12 end cell row cell negative 20 end cell end table close square brackets
rightwards double arrow space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row 1 row 3 row 5 end table close square brackets space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space space space space straight x space equals space 1 comma space space space space space straight y space equals space 3 comma space space space space straight z space equals space 5.

    Question 291
    CBSEENMA12034883

    Use matrix method to solve the following system of equations:
    x + y + z = 4
    2 x – y + z = - 1
    2 x + y – 3 z = – 9

    Solution

    The given equations are
    x + y + z = 4
    2x – y + z = - 1
    2x + y – 3z = – 9
    These equations can be written as
                                open square brackets table row 1 cell space space space space space space 1 end cell cell space space space space space space 1 end cell row 2 cell space space minus 1 end cell cell space space space space space space 1 end cell row 2 cell space space space 1 end cell cell space space space minus 3 end cell end table close square brackets space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row cell space space space space 4 end cell row cell negative 1 end cell row cell negative 9 end cell end table close square brackets
    or space space space AX space equals space straight B space where space straight A space equals space open square brackets table row 1 cell space space space space space 1 end cell cell space space space space 1 end cell row 2 cell space minus 1 end cell cell space space space space space 1 end cell row 2 cell space space space space space 1 end cell cell space minus 3 end cell end table close square brackets comma space space space straight X space equals space open square brackets table row straight x row straight y row straight z end table close square brackets comma space space space straight B space equals space open square brackets table row cell space space space 4 end cell row cell negative 1 end cell row cell negative 9 end cell end table close square brackets
open vertical bar straight A close vertical bar space equals space open vertical bar table row 1 cell space space space space space 1 end cell cell space space space space 1 end cell row 2 cell space minus 1 end cell cell space space space space 1 end cell row 2 cell space space space space 1 end cell cell space minus 3 end cell end table close vertical bar space equals space 1 open vertical bar table row cell negative 1 end cell cell space space space space space 1 end cell row 1 cell space space minus 3 end cell end table close vertical bar minus 1 open vertical bar table row 2 cell space space space space space 1 end cell row 2 cell space space minus 3 end cell end table close vertical bar plus 1 space open vertical bar table row 2 cell space space space minus 1 end cell row 2 cell space space space space space space 1 end cell end table close vertical bar
space space space space space space space equals 1 left parenthesis 3 minus 1 right parenthesis space minus space 1 left parenthesis negative 6 minus 2 right parenthesis space plus space 1 space left parenthesis 2 plus 2 right parenthesis
space space space space space space equals 2 plus 8 plus 4 space equals space 14 space not equal to space 0
space space therefore space space space space straight A to the power of negative 1 end exponent space exists.
    Co-factors of the elements of first row of | A | are
    open vertical bar table row cell negative 1 end cell cell space space space space space space 1 end cell row 1 cell space space minus 3 end cell end table close vertical bar comma space space space space minus open vertical bar table row 2 cell space space space space space space space 1 end cell row 2 cell space space minus 3 end cell end table close vertical bar comma space space space space open vertical bar table row 2 cell space space space minus 1 end cell row 2 cell space space space space space 1 end cell end table close vertical bar

    i.e. 2, 8, 4 respectively.
    Co-factors of the of the elements of second row of | A | are
    negative open vertical bar table row cell negative 1 end cell cell space space space space space 1 end cell row cell space 1 end cell cell space minus 3 end cell end table close vertical bar comma space space space space open vertical bar table row 2 cell space space space space space space space space 1 end cell row 2 cell space space space minus 3 end cell end table close vertical bar comma space space space space open vertical bar table row 2 cell space space space space minus 1 end cell row 2 cell space space space space space space space 1 end cell end table close vertical bar

    i.e. 2, 8, 4 respectively.
    Co-factors of the of the elements of second row of | A | are
    negative open vertical bar table row cell negative 1 end cell cell space space space space space space 1 end cell row cell space 1 end cell cell space space minus 3 end cell end table close vertical bar comma space space space space space open vertical bar table row 2 cell space space space space space space space 1 end cell row 2 cell space space space minus 3 end cell end table close vertical bar comma space space space space minus open vertical bar table row 1 cell space space space space 1 end cell row 2 cell space space space space 1 end cell end table close vertical bar
    i.e.   4, – 5, 1 respectively.
    Co-factors of the elements of third row of | A | are
    open vertical bar table row cell space space 1 end cell cell space space space space 1 end cell row cell negative 1 end cell cell space space space space 1 end cell end table close vertical bar comma space space space space space space minus open vertical bar table row 1 cell space space space 1 end cell row 2 cell space space space 1 end cell end table close vertical bar comma space space space space space open vertical bar table row 1 cell space space space space space space space 1 end cell row 2 cell space space space minus 1 end cell end table close vertical bar
    i.e. 2,  1, – 3 respectively.
    therefore space space space space adj space straight A space equals space open square brackets table row 2 cell space space space space space space 8 end cell cell space space space 4 end cell row 4 cell space space minus 5 end cell cell space space space space 1 end cell row 2 cell space space space space space 1 end cell cell space minus 3 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row 2 cell space space space space space 4 end cell cell space space space space space space 2 end cell row 8 cell space space space minus 5 end cell cell space space space space space space 1 end cell row 4 cell space space space space 1 end cell cell space space minus 3 end cell end table close square brackets
space space space space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space 1 over 14 open square brackets table row 2 cell space space space space space 4 end cell cell space space space space space 2 end cell row 8 cell space space minus 5 end cell cell space space space space space 1 end cell row 4 cell space space space space 1 end cell cell space minus 3 end cell end table close square brackets
Now comma space space AX space equals space straight B space space space rightwards double arrow space space space straight X space equals straight A to the power of negative 1 end exponent straight B
rightwards double arrow space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 over 14 open square brackets table row 2 cell space space space space space 4 end cell cell space space space space space 2 end cell row 8 cell space minus 5 end cell cell space space space space space 1 end cell row 4 cell space space space 1 end cell cell space minus 3 end cell end table close square brackets space space open square brackets table row cell space space space space 4 end cell row cell negative 1 end cell row cell negative 9 end cell end table close square brackets
rightwards double arrow space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space space equals space 1 over 14 open square brackets table row cell 8 minus 4 minus 18 end cell row cell 32 plus 5 minus 9 end cell row cell 16 minus 1 plus 27 end cell end table close square brackets space space space space space rightwards double arrow space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 over 14 open square brackets table row cell negative 14 end cell row cell space 28 end cell row cell space 42 end cell end table close square brackets
rightwards double arrow space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row cell negative 1 end cell row cell space space 2 end cell row cell space 3 end cell end table close square brackets
therefore space space space space space straight x space equals space minus 1 comma space space space space space space straight y space equals space 2 comma space space space straight z space equals 3 space is space required space solution. space

    Question 292
    CBSEENMA12034887

    Use matrix method to solve the following system of equations:
    x + y – z = 1
    3 x + y – 2z = 3
    x – y – z = – 1

    Solution

    The given equations are
    x + y – z = 1
    3x + y – 2z = 3
    x – y – z = – 1
    These equations can be written as
                 open square brackets table row 1 cell space space space 1 end cell cell space space space minus 1 end cell row 3 cell space space space 1 end cell cell space minus 2 end cell row 1 cell space minus 1 end cell cell space minus 1 end cell end table close square brackets space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row cell space space space 1 end cell row cell space space space 3 end cell row cell negative 1 end cell end table close square brackets
    or         AX space equals space straight B space space where space straight A space equals space open square brackets table row 1 cell space space space space 1 end cell cell space space space minus 1 end cell row 3 cell space space space space space 1 end cell cell space space space space minus 2 end cell row 1 cell space space minus 1 end cell cell space space minus 1 end cell end table close square brackets space space comma space space space straight X space equals space open square brackets table row straight x row straight y row straight z end table close square brackets comma space space space straight B equals space open square brackets table row cell space space space space 1 end cell row cell space space space space 3 end cell row cell negative 1 end cell end table close square brackets
    open vertical bar straight A close vertical bar space equals space open vertical bar table row 1 cell space space space space 1 end cell cell space space space space minus 1 end cell row 3 cell space space space space 1 end cell cell space space space minus 2 end cell row 1 cell space minus 1 end cell cell space space minus 1 end cell end table close vertical bar minus 1 open vertical bar table row 1 cell space space space space space minus 2 end cell row cell negative 1 end cell cell space space space space space minus 1 end cell end table close vertical bar minus 1 open vertical bar table row 3 cell space space space minus 2 end cell row 1 cell space space space minus 1 end cell end table close vertical bar plus left parenthesis negative 1 right parenthesis space open vertical bar table row 3 cell space space space space space 1 end cell row 1 cell space minus 1 end cell end table close vertical bar
space space space space space space space space equals 1 left parenthesis negative 1 minus 2 right parenthesis space minus space 1 left parenthesis negative 3 plus 2 right parenthesis minus space 1 left parenthesis negative 3 minus 1 right parenthesis space equals space minus 3 plus 1 plus 4 space equals space 2 not equal to 0
therefore space space space space straight A to the power of negative 1 end exponent space exists.
    Co-factors of the elements of first row of | A | are
    open vertical bar table row 1 cell space space minus 2 end cell row cell negative 1 end cell cell space space space minus 1 end cell end table close vertical bar comma space space space minus open vertical bar table row 3 cell space space minus 2 end cell row 1 cell space space minus 1 end cell end table close vertical bar comma space space space open vertical bar table row 3 cell space space space space space space 1 end cell row 1 cell space space space minus 1 end cell end table close vertical bar
       i.e.,  – 3  1, – 4 respectively
    Co-factors of the elements of second row of | A | are
    negative open vertical bar table row 1 cell space space space minus 1 end cell row cell negative 1 end cell cell space space minus 1 end cell end table close vertical bar comma space space open vertical bar table row 1 cell space space space minus 1 end cell row 1 cell space space minus 1 end cell end table close vertical bar comma space space space minus open vertical bar table row 1 cell space space space space space 1 end cell row 1 cell space space minus 1 end cell end table close vertical bar
    i.e. 2,  0, 2 respectively
    Co-factors of the elements of third row of | A | are
    open vertical bar table row 1 cell space space space minus 1 end cell row 1 cell space space minus 2 end cell end table close vertical bar comma space space space space minus open vertical bar table row 1 cell space space minus 1 end cell row 3 cell space space minus 2 end cell end table close vertical bar comma space space space space open vertical bar table row 1 cell space space space space 1 end cell row 3 cell space space space 1 end cell end table close vertical bar
    i.e. – 1, – 1, – 2 respectively
    therefore space space space space adj. space straight A space equals space open square brackets table row cell negative 3 end cell cell space space space 1 end cell cell space space space minus 4 end cell row 2 cell space space space space 0 end cell cell space space space space space space 2 end cell row cell negative 1 end cell cell space space minus 1 end cell cell space space minus 2 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row cell negative 3 end cell cell space space space space 2 end cell cell space space minus 1 end cell row cell space space 1 end cell cell space space space 0 end cell cell space minus 1 end cell row cell negative 4 end cell cell space space 2 end cell cell negative 2 end cell end table close square brackets
therefore space space space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space 1 half open square brackets table row cell negative 3 end cell cell space space space 2 end cell cell space space space minus 1 end cell row cell space space 1 end cell cell space space space 0 end cell cell space space minus 1 end cell row cell negative 4 end cell cell space space space 2 end cell cell space space minus 2 end cell end table close square brackets
Now space space space AX space equals space straight B space space space space space space space space space space rightwards double arrow space space space space straight X space equals space straight A to the power of negative 1 end exponent straight B
rightwards double arrow space space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 half open square brackets table row cell negative 3 end cell cell space space space space space 2 end cell cell space space space space minus 1 end cell row 1 cell space space space space 0 end cell cell space space minus 1 end cell row cell negative 4 end cell cell space space space space 2 end cell cell space space minus 2 end cell end table close square brackets space open square brackets table row 1 row 3 row 1 end table close square brackets space space space rightwards double arrow space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 half open square brackets table row cell negative 3 plus 6 minus 1 end cell row cell 1 plus 0 minus 1 end cell row cell negative 4 plus 6 minus 2 end cell end table close square brackets space space space rightwards double arrow space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row 1 row 0 row 0 end table close square brackets
therefore space space space space space space solution space is space straight x space equals space 1 comma space space space space space straight y space equals space 0 comma space space space straight z space equals space 0

    Question 293
    CBSEENMA12034891

    Use matrix method to solve the following system of equations:
    2x – 3y + 5z = 16
    3x + 2y – 4z = – 4
    x + y – 2z = – 3

    Solution

    2x – 3y + 5z = 16
    3x + 2y – 4z = – 4
    x + y – 2z = – 3
    These equations can be written as
                      open square brackets table row 2 cell space space minus 3 end cell cell space space space space 5 end cell row 3 cell space space space 2 end cell cell negative 4 end cell row 1 cell space 1 end cell cell negative 2 end cell end table close square brackets space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row cell space space space 16 end cell row cell negative 4 end cell row cell negative 3 end cell end table close square brackets
    or        AX space equals space straight B space where space straight A space equals space open square brackets table row 2 cell space space minus 3 end cell cell space space space space 5 end cell row 3 cell space space space space space 2 end cell cell space space minus 4 end cell row 1 cell space space space space 1 end cell cell space minus 2 end cell end table close square brackets comma space space space straight X space equals space open square brackets table row straight x row straight y row straight z end table close square brackets comma space space space space straight B space equals space open square brackets table row cell space space 16 end cell row cell negative 4 end cell row cell negative 3 end cell end table close square brackets
    Now  AX = B      rightwards double arrow space space space space space straight X space equals space straight A to the power of negative 1 end exponent space straight B
    therefore space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals open square brackets table row 0 cell space space space 1 end cell cell space space space space minus 2 end cell row cell negative 2 end cell cell space space space 9 end cell cell space space minus 23 end cell row cell negative 1 end cell cell space space space 5 end cell cell space minus 13 end cell end table close square brackets space open square brackets table row cell space space space 16 end cell row cell negative 4 end cell row cell negative 3 end cell end table close square brackets space space space space rightwards double arrow space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row cell 0 minus 4 plus 6 end cell row cell negative 32 minus 36 plus 69 end cell row cell negative 16 minus 20 plus 39 end cell end table close square brackets space rightwards double arrow space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row 2 row 1 row 3 end table close square brackets
therefore space space space space space space space space space space straight x space equals space 2 comma space space space space straight y space equals space 1 comma space space space straight z space equals space 3 comma space space space which space is space required space solution. space

    Question 294
    CBSEENMA12034895

    Use matrix method to solve the following system of equations:
    2x – y – z = 1
    x + y + 2z = 1
    3x – 2y – 2z = 1

    Solution

    The given equations are
    2 x – y – z = 1
    x + y + 2z = 1
    3x – 2y – 2z = 1
    These equations can be written as
                             open square brackets table row 2 cell space space space minus 1 end cell cell space space minus 1 end cell row 1 cell space space space space space space 1 end cell cell space space space space 2 end cell row 3 cell space space space space minus 2 end cell cell space minus 2 end cell end table close square brackets space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row 1 row 1 row 1 end table close square brackets
    or     AX space equals space straight B space where space straight A space equals space open square brackets table row 2 cell space space minus 1 end cell cell space space space minus 1 end cell row 1 cell space space space space 1 end cell cell space space space space space space space 2 end cell row 3 cell space space minus 2 end cell cell space space minus 2 end cell end table close square brackets comma space space space straight X space equals space open square brackets table row straight x row straight y row straight z end table close square brackets comma space space space straight B space equals space open square brackets table row 1 row 1 row 1 end table close square brackets
    open vertical bar straight A close vertical bar space equals space open vertical bar table row 2 cell space space minus 1 end cell cell space space space minus 1 end cell row 1 cell space space space space 1 end cell cell space space space space space space space 2 end cell row 3 cell space minus 2 end cell cell space space minus 2 end cell end table close vertical bar space equals space 2 open vertical bar table row cell space 1 end cell cell space space space space 2 end cell row cell negative 2 end cell cell space space minus 2 end cell end table close vertical bar space minus left parenthesis negative 1 right parenthesis space open vertical bar table row 1 cell space space space space 2 end cell row 3 cell space space minus 2 end cell end table close vertical bar plus left parenthesis negative 1 right parenthesis space open vertical bar table row 1 cell space space space space 1 end cell row 3 cell space space minus 2 end cell end table close vertical bar
space space space space space equals 2 left parenthesis negative 2 plus 4 right parenthesis space plus 1 left parenthesis negative 2 minus 6 right parenthesis minus 1 left parenthesis negative 2 minus 3 right parenthesis space equals space 4 minus 8 plus 5 space equals space 1 space not equal to space 0
therefore space space space space space straight A to the power of negative 1 end exponent space exists.
    Co-factors of the elements of first row of | A | are
    open vertical bar table row 1 cell space space space space space 2 end cell row cell negative 2 end cell cell space space minus 2 end cell end table close vertical bar comma space space space minus open vertical bar table row 1 cell space space space space space space 2 end cell row 3 cell space space minus 2 end cell end table close vertical bar comma space space open vertical bar table row 1 cell space space space space space 1 end cell row 3 cell space space minus 2 end cell end table close vertical bar
    i.e.  2, 8, – 5 respectively
    Co-factors of the elements of second row of | A | are
    negative open vertical bar table row cell negative 1 end cell cell space space space space space minus 1 end cell row cell negative 2 end cell cell space space minus 2 end cell end table close vertical bar comma space space minus open vertical bar table row 2 cell space space space space minus 1 end cell row 3 cell space space minus 2 end cell end table close vertical bar comma space space minus space open vertical bar table row 2 cell space space space space space space minus 1 end cell row 3 cell space space space space minus 2 end cell end table close vertical bar

    i.e. 0, – 1, 1 respectively
    Co-factors of the elements of third row of | A | are
    open vertical bar table row cell negative 1 end cell cell space space space minus 1 end cell row 1 cell space space space space space 2 end cell end table close vertical bar comma space space space space minus open vertical bar table row 2 cell space space space minus 1 end cell row 1 cell space space space space space space 2 end cell end table close vertical bar comma space space space open vertical bar table row 2 cell space space space space minus 1 end cell row 1 cell space space space space space space 1 end cell end table close vertical bar comma space space straight i. straight e. space space space space minus 1 comma space minus 5 comma space space 3 space respectively
    therefore space space space space adj space space straight A space equals space open square brackets table row 2 cell space space space space 8 end cell cell space space space minus 5 end cell row 0 cell space space minus 1 end cell cell space space space space space 1 end cell row cell negative 1 end cell cell space minus 5 end cell cell space space space space space 3 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row 2 cell space space space space space 0 end cell cell space space minus 1 end cell row 8 cell space minus 1 end cell cell space space minus 5 end cell row cell negative 5 end cell cell space space space space 1 end cell cell space space space space space 3 end cell end table close square brackets
space space space space space space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj space space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space open square brackets table row 2 cell space space space space 0 end cell cell space space space minus 1 end cell row cell space 8 end cell cell space minus 1 end cell cell space space minus 5 end cell row cell negative 5 end cell cell space space space space space 1 end cell cell space space space space space 3 end cell end table close square brackets
Now space space space AX space equals space straight B space space rightwards double arrow space space space straight X space equals space straight A to the power of negative 1 end exponent straight B
rightwards double arrow space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row cell space 2 end cell cell space space space space 0 end cell cell space space space space minus 1 end cell row cell space 8 end cell cell space space minus 1 end cell cell space space minus 5 end cell row cell negative 5 end cell cell space space space space space 1 end cell cell space space space space space space 3 end cell end table close square brackets space open square brackets table row 1 row 1 row 1 end table close square brackets space rightwards double arrow space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row cell 2 plus 0 minus 1 end cell row cell 8 minus 1 minus 5 end cell row cell negative 5 plus 1 plus 3 end cell end table close square brackets space rightwards double arrow space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row cell space space 1 end cell row cell space space space space 2 end cell row cell negative 1 end cell end table close square brackets.
therefore space space space space space solution space is space straight x space equals space 1 comma space space space straight y space equals space 2 comma space space space straight z space equals space 1.

    Question 295
    CBSEENMA12034899

    Use matrix method to solve the following system of equations:
    2x + 6y = 2
    3x – z =  8
    2x - y + z = – 3 

    Solution

    The given equations are
    2x + 6y = 2
    3x – z = –8
    2x – y + z = –3
    These equations can be written as
                       open square brackets table row 2 cell space space space space 6 end cell cell space space space 0 end cell row 3 cell space space space space space 0 end cell cell space minus 1 end cell row 2 cell space space minus 1 end cell cell space space space space space space 1 end cell end table close square brackets space open square brackets table row straight x row straight y row straight z end table close square brackets space equals open square brackets table row cell space space space 2 end cell row cell negative 8 end cell row cell negative 3 end cell end table close square brackets
    or          AX space equals space straight B space where space straight A space equals space open square brackets table row 2 cell space space space 6 end cell cell space space 0 end cell row 3 cell space space space 0 end cell cell space minus 1 end cell row 2 cell space minus 1 end cell cell space space 1 end cell end table close square brackets comma space space space straight X space equals space open square brackets table row straight x row straight y row straight z end table close square brackets comma space space space straight B space equals space open square brackets table row cell space space 2 end cell row cell negative 8 end cell row cell space minus 3 end cell end table close square brackets
    Now comma space open vertical bar straight A close vertical bar space equals open vertical bar table row 2 cell space space space 6 end cell cell space space 0 end cell row 3 cell space space 0 end cell cell negative 1 end cell row 2 cell negative 1 end cell cell space space 1 end cell end table close vertical bar space equals space 2 space open vertical bar table row cell space space 0 end cell cell space space space minus 1 end cell row cell negative 1 end cell cell space space space space space 1 end cell end table close vertical bar space minus space 6 space open vertical bar table row 3 cell space space space minus 1 end cell row 2 cell space space space space space space 1 end cell end table close vertical bar plus 0 space open vertical bar table row 3 cell space space space space space space 0 end cell row 2 cell space space minus 1 end cell end table close vertical bar
space space space space space space space equals 2 space left parenthesis 0 minus 1 right parenthesis space minus space 6 left parenthesis 3 plus 2 right parenthesis space plus space 0 left parenthesis negative 3 minus 0 right parenthesis space equals space minus 2 minus 30 plus 0 space equals negative 32 space not equal to space 0
therefore space space space space straight A to the power of negative 1 end exponent space exists.
straight A subscript 11 space equals space open vertical bar table row 0 cell space space space space minus 1 end cell row cell negative 1 end cell cell space space space space space space 1 end cell end table close vertical bar space equals space 0 minus 1 space equals space minus 1
straight A subscript 12 space equals space open vertical bar table row 3 cell space space space space minus 1 end cell row 2 cell space space space space space space space 1 end cell end table close vertical bar space equals space minus left parenthesis 3 plus 2 right parenthesis space equals space minus 5
straight A subscript 13 space equals space open vertical bar table row 3 cell space space space space space space 0 end cell row 2 cell space space minus 1 end cell end table close vertical bar space equals space minus 3 minus 0 space equals space minus 3
straight A subscript 21 space equals space minus open vertical bar table row 6 cell space space space space 0 end cell row cell negative 1 end cell cell space space space 1 end cell end table close vertical bar space equals space minus left parenthesis 6 plus 0 right parenthesis space equals space minus 6
straight A subscript 22 space equals space open vertical bar table row 2 cell space space space space space 0 end cell row 2 cell space space space space space 1 end cell end table close vertical bar space equals space 2 minus 0 space equals space 2
straight A subscript 23 space equals space minus open vertical bar table row 2 cell space space space space 6 end cell row 2 cell space space minus 1 end cell end table close vertical bar space equals space minus left parenthesis negative 2 minus 12 right parenthesis space equals space 14
straight A subscript 31 space equals space open vertical bar table row 6 cell space space space space space space space 0 end cell row 0 cell space space space minus 1 end cell end table close vertical bar space equals space minus 6 minus 0 space equals space minus 6
straight A subscript 32 space equals space minus open vertical bar table row 2 cell space space space space space space space space 0 end cell row 3 cell space space space space minus 1 end cell end table close vertical bar space equals space minus left parenthesis negative 2 minus 0 right parenthesis space equals space 2 
    straight A subscript 33 space equals space open vertical bar table row 2 cell space space space 6 end cell row 3 cell space space 0 end cell end table close vertical bar space equals space 0 minus 8 space equals space minus 18
       adj space straight A space equals space open square brackets table row cell negative 1 end cell cell space space space minus 5 end cell cell space space space minus 3 end cell row cell negative 6 end cell cell space space space space space 2 end cell cell space space space space space 14 end cell row cell negative 6 end cell cell space space space space 2 end cell cell space space minus 18 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row cell negative 1 end cell cell space space minus 6 end cell cell space space minus 6 end cell row cell negative 5 end cell cell space space space space 2 end cell cell space space space space 2 end cell row cell negative 3 end cell cell space space 14 end cell cell space minus 18 end cell end table close square brackets
space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space minus 1 over 32 open square brackets table row cell negative 1 end cell cell space space minus 6 end cell cell space minus 6 end cell row cell negative 5 end cell cell space space space 2 end cell cell space space space space space 2 end cell row cell negative 3 end cell cell space space 14 end cell cell space minus 18 end cell end table close square brackets
Now comma space space space AX space equals space straight B space space space space space space space space space space space rightwards double arrow space space space space straight X space equals space straight A to the power of negative 1 end exponent straight B
rightwards double arrow space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space minus 1 over 32 open square brackets table row cell negative 1 end cell cell space space space minus 6 end cell cell space space space minus 6 end cell row cell negative 5 end cell cell space space space space space 2 end cell cell space space space space space space 2 end cell row cell negative 3 end cell cell space space space space 14 end cell cell space minus 18 end cell end table close square brackets space space open square brackets table row cell space space space space 2 end cell row cell negative 8 end cell row cell negative 3 end cell end table close square brackets space space space space space space rightwards double arrow space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space minus 1 over 32 open square brackets table row cell negative 2 plus 48 plus 18 end cell row cell negative 10 minus 16 minus 6 end cell row cell negative 6 minus 112 plus 54 end cell end table close square brackets
rightwards double arrow space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space minus 1 over 32 open square brackets table row cell space space space 64 end cell row cell negative 32 end cell row cell negative 64 end cell end table close square brackets space space space space space space rightwards double arrow space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space space equals space open square brackets table row cell negative 2 end cell row cell space 1 end cell row cell space space 2 end cell end table close square brackets
therefore space space space space space space space space space space straight x space equals space minus 2 comma space space space space space space space straight y space equals space 1 comma space space space space space straight z space equals space 2.

    Question 296
    CBSEENMA12034906

    Use matrix method to solve the following system of equations:
    x + y + z = 6
    x – y + z = 2
    2x + y – z = 1

    Solution

    The given equations are
    x + y + z = 6
    x – y + z = 2
    2x + y – z = 1
    These equations can be written as
                              open square brackets table row 1 cell space space space space space 1 end cell cell space space space space space 1 end cell row 1 cell space minus 1 end cell cell space space space space space 1 end cell row 2 cell space space space space space 1 end cell cell space minus 1 end cell end table close square brackets space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row 6 row 2 row 1 end table close square brackets
    or         AX space space equals space straight B space where space straight A space equals space open square brackets table row 1 cell space space space space space 1 end cell cell space space space space space space 1 end cell row 1 cell space minus 1 end cell cell space space space space space space 1 end cell row 2 cell space space space 1 end cell cell space space minus 1 end cell end table close square brackets comma space space space straight X space equals space open square brackets table row straight x row straight y row straight z end table close square brackets comma space space space straight B space equals space open square brackets table row 6 row 2 row 1 end table close square brackets
    open vertical bar straight A close vertical bar space equals space open vertical bar table row 1 cell space space space space space 1 end cell cell space space space space space 1 end cell row 1 cell space minus 1 end cell cell space space space space space 1 end cell row 2 cell space space space 1 end cell cell space minus 1 end cell end table close vertical bar space equals space 1 open vertical bar table row cell negative 1 end cell cell space space space space space 1 end cell row 1 cell space space minus 1 end cell end table close vertical bar space minus 1 open vertical bar table row 1 cell space space space space space space 1 end cell row 2 cell space space minus 1 end cell end table close vertical bar plus 1 open vertical bar table row 1 cell space space space space minus 1 end cell row 2 cell space space space space space space space 1 end cell end table close vertical bar
space space space space space space equals 1 left parenthesis 1 minus 1 right parenthesis minus 1 left parenthesis negative 1 minus 2 right parenthesis plus 1 left parenthesis 1 plus 2 right parenthesis space equals space 1 left parenthesis 0 right parenthesis minus 1 left parenthesis negative 3 right parenthesis plus 1 left parenthesis 3 right parenthesis
space space space space space space space equals 0 plus 3 plus 3 space equals space 6 space not equal to space 0
therefore space space space space space space space straight A to the power of negative 1 end exponent space exists.
    Co-factors of the elements of first row of  | A | are
    open vertical bar table row cell negative 1 end cell cell space space space space space 1 end cell row cell space space 1 end cell cell space minus 1 end cell end table close vertical bar comma space space space space minus open vertical bar table row 1 cell space space space space space space 1 end cell row 2 cell space space minus 1 end cell end table close vertical bar comma space space space open vertical bar table row 1 cell space space space minus 1 end cell row 2 cell space space space space space space 1 end cell end table close vertical bar space space or space space space space space 1 comma space space space minus 1 space comma space space minus left parenthesis negative 1 minus 2 right parenthesis comma space space space space 1 plus 2
straight i. straight e.. space space space 0 comma space 3 comma space 3 space respectively.
    Co-factors of the elements of second row of | A | are
    negative open vertical bar table row 1 cell space space space space space space 1 end cell row 1 cell space space minus 1 end cell end table close vertical bar comma space space space open vertical bar table row 1 cell space space space space space space 1 end cell row 2 cell space space minus 1 end cell end table close vertical bar comma space space minus open vertical bar table row 1 cell space space space space space 1 end cell row 2 cell space space space space space 1 end cell end table close vertical bar space space space or space space minus left parenthesis negative 1 minus 1 right parenthesis comma space space minus 1 minus 2 comma space space minus left parenthesis 1 minus 2 right parenthesis
    i.e. 2, – 3,   1 respectively.
    Co-factors of the elements of third row of | A | are
    open vertical bar table row cell space space 1 end cell cell space space 1 end cell row cell negative 1 end cell cell space space 1 end cell end table close vertical bar comma space space minus open vertical bar table row 1 cell space space space 1 end cell row 1 cell space space space 1 end cell end table close vertical bar comma space space space space open vertical bar table row 1 cell space space space space space space 1 end cell row 1 cell space space minus 1 end cell end table close vertical bar space space or space space space 1 plus 1 comma space space minus left parenthesis 1 minus 1 right parenthesis comma space space space space minus 1 minus 1
    i.e. 2, 0, – 2 respectively.
    therefore space space adj space straight A space equals space open square brackets table row 0 cell space space space space space 3 end cell cell space space space space 3 end cell row 2 cell space minus 3 end cell cell space space space space 1 end cell row 2 cell space space space space 0 end cell cell space minus 2 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row 0 cell space space space space space space 2 end cell cell space space space space space 2 end cell row 3 cell space space minus 3 end cell cell space space space space space 0 end cell row 3 cell space space space space space space 1 end cell cell space minus 2 end cell end table close square brackets
therefore space space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space 1 over 6 open square brackets table row 0 cell space space space space space 2 end cell cell space space space space space 2 end cell row 3 cell space minus 3 end cell cell space space space space space 0 end cell row 3 cell space space space space 1 end cell cell space space minus 2 end cell end table close square brackets
Now space space space AX space equals space straight B space space space space space space rightwards double arrow space space space straight X space equals space straight A to the power of negative 1 end exponent straight B
therefore space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 over 6 open square brackets table row 0 cell space space space space space 2 end cell cell space space space space space space 2 end cell row 3 cell space minus 3 end cell cell space space space space space 0 end cell row 3 cell space space space space 1 end cell cell space space space minus 2 end cell end table close square brackets space open square brackets table row 6 row 2 row 1 end table close square brackets space space space space rightwards double arrow space space space open square brackets table row straight x row straight y row straight z end table close square brackets space space equals space 1 over 6 open square brackets table row cell 0 plus 4 plus 2 end cell row cell 18 minus 6 plus 0 end cell row cell 18 plus 2 minus 2 end cell end table close square brackets
rightwards double arrow space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 over 6 open square brackets table row 6 row 12 row 18 end table close square brackets space space space space rightwards double arrow space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row 1 row 2 row 3 end table close square brackets
therefore space space space space space straight x space equals space 1 comma space space space straight y space equals space 2 comma space space space straight z equals space 3.

    Question 297
    CBSEENMA12034907

    Use matrix method to solve the following system of equations:
    9x – 5y - 11z = 12 
    x – 3y + z = 1
    2x + 3y – 7z = 2

    Solution

    The given equations are
    9x – 5y – 11z = 12
    x – 3y + z = 1
    2x + 3y – 7z = 2
    These equations can be written as
                             open square brackets table row 9 cell space space space space minus 5 end cell cell space space space minus 11 end cell row 1 cell space space space space minus 3 end cell cell space space space space space space space 1 end cell row 2 cell space space space space space space 3 end cell cell space space space minus 7 end cell end table close square brackets space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row 12 row 1 row 2 end table close square brackets
    or              AX space equals space straight B space where space straight A space equals space open square brackets table row 9 cell space space space minus 5 end cell cell space space space minus 11 end cell row 1 cell space space space minus 3 end cell cell space space space space space space 1 end cell row 2 cell space space space space 3 end cell cell space space space space space space 7 end cell end table close square brackets comma space space space space straight X space equals space open square brackets table row straight x row straight y row straight z end table close square brackets comma space space straight B space equals space open square brackets table row 12 row 1 row 2 end table close square brackets
                       open vertical bar straight A close vertical bar space equals space open vertical bar table row 9 cell space space space minus 5 end cell cell space space minus 11 end cell row 1 cell space space minus 3 end cell cell space space space space space space 1 end cell row 2 cell space space space space space 3 end cell cell space space space space minus 7 end cell end table close vertical bar space equals space 9 open vertical bar table row cell negative 3 end cell cell space space space space space space 1 end cell row cell space 3 end cell cell space minus 7 end cell end table close vertical bar minus left parenthesis negative 5 right parenthesis space open vertical bar table row 1 cell space space space space space space space 1 end cell row 2 cell space space space minus 7 end cell end table close vertical bar space minus space 11 space open vertical bar table row 1 cell space space space minus 3 end cell row 2 cell space space space space space space space 3 end cell end table close vertical bar
space space space space space space space equals space 9 space left parenthesis 21 minus 3 right parenthesis space plus space 5 left parenthesis negative 7 minus 2 right parenthesis space minus 11 space left parenthesis 3 plus 6 right parenthesis space equals space 9 space left parenthesis 18 right parenthesis space plus space 5 thin space left parenthesis negative 9 right parenthesis space minus space 11 left parenthesis 9 right parenthesis
space space space space space space space space equals space 162 space minus 45 space minus 99 space equals space 18 space not equal to space 0
therefore space space space space space space space space straight A to the power of negative 1 end exponent space exists.
    Co-factors of the elements of first row of | A | are
    open vertical bar table row cell negative 3 end cell cell space space space space space space 1 end cell row 3 cell space minus 7 end cell end table close vertical bar comma space space space space space space minus open vertical bar table row 1 cell space space space space space space space 1 end cell row 2 cell space space minus 7 end cell end table close vertical bar comma space space space open vertical bar table row 1 cell space space space minus 3 end cell row 2 cell space space space space space space 3 end cell end table close vertical bar space space space or space space 21 minus 3 comma space space space space minus left parenthesis negative 7 minus 2 right parenthesis comma space space 3 space plus space 6
straight i. straight e. space space 18 comma space 9 comma space 9 space space respectively.
    Co-factors of the elements of second row of | A | are
    negative open vertical bar table row cell negative 5 end cell cell space space space minus 11 end cell row 3 cell space space minus 7 end cell end table close vertical bar comma space space space space open vertical bar table row 9 cell space space space minus 11 end cell row 2 cell space space space minus 7 end cell end table close vertical bar comma space space minus open vertical bar table row 9 cell space space space minus 5 end cell row 2 cell space space space space space 3 end cell end table close vertical bar space space or space space space minus left parenthesis 35 plus 33 right parenthesis comma space space minus 63 plus 22 comma space space minus left parenthesis 27 plus 10 right parenthesis
    i.e. – 68 – 41, – 37 respectively.
    Co-factors of the elements of third row of | A | are
    open vertical bar table row cell negative 5 end cell cell space space space space minus 11 end cell row cell negative 3 end cell cell space space space space space space space 1 end cell end table close vertical bar comma space space minus open vertical bar table row 9 cell space space space minus 11 end cell row 1 cell space space space space space space space 1 end cell end table close vertical bar comma space space space space open vertical bar table row 9 cell space space space minus 5 end cell row 1 cell space space space minus 3 end cell end table close vertical bar space space or space space minus 5 minus 33 comma space space space space minus left parenthesis 9 plus 11 right parenthesis comma space space minus 27 plus 5
    i.e. – 38, – 20, – 22 respectively.
    therefore space space space space space space space space adj space straight A space equals space open square brackets table row 18 cell space space space space space space 9 end cell cell space space space space 9 end cell row cell negative 68 end cell cell space space minus 41 end cell cell negative 37 end cell row cell negative 38 end cell cell space minus 20 end cell cell negative 22 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row 18 cell space space space space minus 68 end cell cell space space space minus 38 end cell row 9 cell space space space minus 41 end cell cell space minus 20 end cell row 9 cell space minus 37 end cell cell space minus 22 end cell end table close square brackets
therefore space space space space space space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space 1 over 18 open square brackets table row 18 cell space space minus 68 end cell cell space space minus 38 end cell row 9 cell space space minus 41 end cell cell space minus 20 end cell row 9 cell space space minus 37 end cell cell space minus 22 end cell end table close square brackets
    Now,     
          AX space equals space straight B space space space space space space rightwards double arrow space space space space straight X space equals space straight A to the power of negative 1 end exponent straight B
therefore space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 over 18 open square brackets table row 18 cell space space space minus 68 end cell cell space space minus 38 end cell row 9 cell negative 41 end cell cell negative 20 end cell row 9 cell negative 37 end cell cell negative 22 end cell end table close square brackets space open square brackets table row 12 row 1 row 2 end table close square brackets space space space space rightwards double arrow space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 over 18 open square brackets table row cell 216 minus 68 minus 76 end cell row cell 108 minus 41 minus 40 end cell row cell 108 minus 37 minus 44 end cell end table close square brackets
rightwards double arrow space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 over 18 open square brackets table row 72 row 27 row 27 end table close square brackets space space space space space rightwards double arrow space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row 4 row cell 3 over 2 end cell row cell 3 over 2 end cell end table close square brackets
therefore space space space space space space straight x space equals space 4 comma space space space space straight y space equals space 3 over 2 comma space space space space straight z space equals space 3 over 2.

    Question 298
    CBSEENMA12034910

    Use matrix method to solve the following system of equations:
    2x + y – z = 1
    x – y + z = 2
    3x + y – 2z = – 1


    Solution

    The given equations are
    2x + y – z = 1
    x – y + z = 2
    3x + y – 2 z = – 1
    These equations can be written as
                          open square brackets table row 2 cell space space space space space 1 end cell cell space space space minus 1 end cell row 1 cell space minus 1 end cell cell space space space space space space 1 end cell row 3 cell space space space space space 1 end cell cell space space space minus 2 end cell end table close square brackets space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row cell space space 1 end cell row cell space space 2 end cell row cell negative 1 end cell end table close square brackets
    or space space space space space space space space space space space space space space AX space equals space straight B space where space straight A space equals space open square brackets table row 2 cell space space space space space space 1 end cell cell space space space minus 1 end cell row 1 cell space space minus 1 end cell cell space space space space space space 1 end cell row 3 cell space space space space 1 end cell cell space space space space minus 2 end cell end table close square brackets comma space space straight X space equals space open square brackets table row straight x row straight y row straight z end table close square brackets comma space space space straight B space equals space open square brackets table row cell space space space space space 1 end cell row cell space space space space space 2 end cell row cell negative 1 end cell end table close square brackets space space space
space space space space space space space space space space space space space open vertical bar straight A close vertical bar space equals space open vertical bar table row 2 cell space space space space 1 end cell cell space space space minus 1 end cell row 1 cell space minus 1 end cell cell space space space space space space space 1 end cell row 3 cell space space space space space 1 end cell cell space space space minus 2 end cell end table close vertical bar space equals space 2 open vertical bar table row cell negative 1 end cell cell space space space space space space space space 1 end cell row 1 cell space space space space minus 2 end cell end table close vertical bar minus 1 space open vertical bar table row 1 cell space space space space space space 1 end cell row 3 cell space space minus 2 end cell end table close vertical bar space plus space left parenthesis negative 1 right parenthesis space open vertical bar table row 1 cell space space minus 1 end cell row 3 cell space space space space space 1 end cell end table close vertical bar
space space space space space space space space space space space space space space space space space space space space equals space 2 left parenthesis 2 minus 1 right parenthesis space minus space 1 left parenthesis negative 2 minus 3 right parenthesis space minus space 1 left parenthesis 1 plus 3 right parenthesis space equals space 2 left parenthesis 1 right parenthesis space minus space 1 left parenthesis negative 5 right parenthesis space minus space 1 left parenthesis 4 right parenthesis
space space space space space space space space space space space space space space space space space space space equals 2 plus 5 plus 4 space equals space 3 space not equal to space 0
therefore space space space space space straight A to the power of negative 1 end exponent space exists.
space space space space space space space space space space space space space space space space space space space space space space space space space space space space
    Co-factors of the elements of first row of | A | are
           open vertical bar table row cell negative 1 end cell cell space space space space space space space 1 end cell row cell space 1 end cell cell space space space minus 2 end cell end table close vertical bar comma space space space minus open vertical bar table row 1 cell space space space space space space 1 end cell row 3 cell space space minus 2 end cell end table close vertical bar comma space space space space open vertical bar table row 1 cell space space space space minus 1 end cell row 3 cell space space space space space space space 1 end cell end table close vertical bar space space space or space space space 2 comma space space minus 1 comma space space minus left parenthesis negative 2 minus 3 right parenthesis comma space space space space 1 plus 3 space
    i.e.     1, 5, 4 respectively.
    Co-factors of the elements of second row of open vertical bar straight A close vertical bar are 
     negative open vertical bar table row 1 cell space space space minus 1 end cell row 1 cell space space space minus 2 end cell end table close vertical bar comma space space space space open vertical bar table row 2 cell space space space minus 1 end cell row 3 cell space space minus 2 end cell end table close vertical bar comma space space space space minus open vertical bar table row 2 cell space space space space 1 end cell row 3 cell space space space 1 end cell end table close vertical bar space space or space space space minus left parenthesis negative 2 plus 1 right parenthesis comma space space space space minus 4 plus 3 comma space space space minus left parenthesis 2 minus 3 right parenthesis
    i.e. 1. – 1, 1 respectively.
    Co-factors of the elements of third row of | A | are
    open vertical bar table row cell space space 1 end cell cell space space minus 1 end cell row cell negative 1 end cell cell space space space space 1 end cell end table close vertical bar comma space space space space minus open vertical bar table row 2 cell space space space minus 1 end cell row 1 cell space space space space 1 end cell end table close vertical bar comma space space open vertical bar table row 2 cell space space space space space space space space space 1 space end cell row 1 cell space space space space minus 1 end cell end table close vertical bar space space space or space space 1 comma space minus 1 comma space minus left parenthesis 2 plus 1 right parenthesis comma space space minus 2 minus 1
    i.e. 0, – 3, – 3 respectively.
     therefore space space space space space adj space straight A space equals space open square brackets table row 1 cell space space space space space space 5 end cell cell space space space space space 4 end cell row 1 cell space space minus 1 end cell cell space space space space 1 end cell row 0 cell space space minus 3 end cell cell space space minus 3 end cell end table close square brackets to the power of apostrophe space space equals space open square brackets table row 1 cell space space space space space space 1 end cell cell space space space space space space space 0 end cell row 5 cell space space minus 1 end cell cell space space space minus 3 end cell row 4 cell space space space space space 1 end cell cell space space space minus 3 end cell end table close square brackets
therefore space space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space 1 third open square brackets table row 1 cell space space space space space 1 end cell cell space space space space space space space 0 end cell row 5 cell space minus 1 end cell cell space space space minus 3 end cell row 4 cell space space space space space 1 end cell cell space space space minus 3 end cell end table close square brackets
Now comma space space space AX space equals space straight B space space space space space rightwards double arrow space space space space space space straight X space equals space straight A to the power of negative 1 end exponent straight B
therefore space space space space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space space equals space 1 third open square brackets table row 1 cell space space space space space 1 end cell cell space space space space space 0 end cell row 5 cell space minus 1 end cell cell space space space minus 3 end cell row 4 cell space space space space space 1 end cell cell space space minus 3 end cell end table close square brackets space open square brackets table row cell space space 1 end cell row cell space space 2 end cell row cell negative 1 end cell end table close square brackets space space space space space rightwards double arrow space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 third open square brackets table row cell 1 plus 2 plus 0 end cell row cell 5 minus 2 plus 3 end cell row cell 4 plus 2 plus 3 end cell end table close square brackets
rightwards double arrow space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 third open square brackets table row 3 row 6 row 9 end table close square brackets space space space space space space rightwards double arrow space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row 1 row 2 row 3 end table close square brackets
therefore space space space space space space straight x space equals space 1 comma space space space space space straight y space equals space 2 comma space space straight z space equals space 3

    Question 299
    CBSEENMA12034911

    Use matrix method to solve the following system of equations:
    6x + y – 3z = 5
    x + 3y – 2z = 5
    2x + y + 4z = 8

    Solution

    The given equations are
    6x + y – 3z = 5
    x + 3 y – 2z = 5
    2x + y + 4 z = 8

    These equations can be written as
                          open square brackets table row 6 cell space space space space space 1 end cell cell space space space minus 3 end cell row 1 cell space space space space space 3 end cell cell space space space space minus 2 end cell row 2 cell space space space space space 1 end cell cell space space space space space space space 4 end cell end table close square brackets space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row cell space space 5 end cell row cell space space 5 end cell row cell space space 8 end cell end table close square brackets
    or space space space space space space space space space space space space space space AX space equals space straight B space where space straight A space equals space open square brackets table row 6 cell space space space space space space 1 end cell cell space space space minus 3 end cell row 1 cell space space space space space space 3 end cell cell space space space minus 2 end cell row 2 cell space space space space space 1 end cell cell space space space space space space 4 end cell end table close square brackets comma space space straight X space equals space open square brackets table row straight x row straight y row straight z end table close square brackets comma space space space straight B space equals space open square brackets table row cell space 5 end cell row cell space 5 end cell row cell space 8 end cell end table close square brackets space space space
space space space space space space space space space space space space space open vertical bar straight A close vertical bar space equals space open vertical bar table row 6 cell space space space space 1 end cell cell space space space minus 3 end cell row 1 cell space space space space space 3 end cell cell space space space space minus 2 end cell row 2 cell space space space space 1 end cell cell space space space space space space space 4 end cell end table close vertical bar space equals space 2 open vertical bar table row 3 cell space space space space space space space minus 2 end cell row 1 cell space space space space space space space space space 4 end cell end table close vertical bar minus 1 space open vertical bar table row 1 cell space space space space space space minus 2 end cell row 2 cell space space space space space space 4 end cell end table close vertical bar space plus space left parenthesis negative 3 right parenthesis space open vertical bar table row 1 cell space space space space 3 end cell row 2 cell space space space space 1 end cell end table close vertical bar
space space space space space space space space space space space space space space space space space space space space equals space 6 left parenthesis 12 plus 2 right parenthesis space minus space 1 left parenthesis 4 plus 4 right parenthesis space minus space 3 left parenthesis 1 minus 6 right parenthesis space equals space 6 left parenthesis 14 right parenthesis space minus space 1 left parenthesis 8 right parenthesis space minus space 3 left parenthesis negative 5 right parenthesis
space space space space space space space space space space space space space space space space space space space equals 84 minus 8 plus 15 equals space 91 space not equal to space 0
therefore space space space space space straight A to the power of negative 1 end exponent space exists.
space space space space space space space space space space space space space space space space space space space space space space space space space space space space
    Co-factors of the elements of first row of | A | are
           open vertical bar table row 3 cell space space minus 2 end cell row 1 cell space space space 4 end cell end table close vertical bar comma space space minus open vertical bar table row 1 cell space space space minus 2 end cell row 2 cell space space space space space 4 end cell end table close vertical bar comma space space space space open vertical bar table row 1 cell space space space 3 end cell row 2 cell space space space 1 end cell end table close vertical bar space space space or space space space 12 plus 2 comma space space space space minus left parenthesis 4 plus 4 right parenthesis comma space space space 1 space minus space 6
    i.e.  14, – 8, – 5 respectively.
    Co-factors of the elements of second row of open vertical bar straight A close vertical bar are 
    negative open vertical bar table row 1 cell space minus 3 end cell row 1 cell space space space space 4 end cell end table close vertical bar comma space space space space open vertical bar table row 6 cell space space space minus 3 end cell row 2 cell space space space space space 4 end cell end table close vertical bar comma space space space minus open vertical bar table row 6 cell space space space 1 end cell row 2 cell space space space 1 end cell end table close vertical bar space space space or space minus left parenthesis 4 plus 3 right parenthesis comma space space space 24 plus 6 comma space space minus left parenthesis 6 minus 2 right parenthesis 

    i.e. – 7, 30, – 4 respectively. 
    Co-factors of the elements of third row of | A | are
    open vertical bar table row 1 cell space space space minus 3 end cell row 3 cell space space minus 2 end cell end table close vertical bar comma space space minus open vertical bar table row 6 cell space space minus 3 end cell row 1 cell space space minus 2 end cell end table close vertical bar comma space space space open vertical bar table row 6 cell space space space space 1 end cell row 1 cell space space space space 3 end cell end table close vertical bar space space or space space space minus 2 plus 9 comma space space space space minus left parenthesis 12 plus 3 right parenthesis comma space space space 18 minus 1
    i.e. 7, 9, 17 respectively.
    therefore space space space space space space space space adj. space straight A space equals space open square brackets table row 14 cell space space minus 8 end cell cell space space minus 5 end cell row cell negative 7 end cell cell space space space space 30 end cell cell space space minus 4 end cell row 7 cell space space space 9 end cell cell space space space 17 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row cell space 14 end cell cell space space space minus 7 end cell cell space space space space 7 end cell row cell negative 8 end cell cell space space space space space space 30 end cell cell space space space space 9 end cell row cell negative 5 end cell cell space space space minus 4 end cell cell space space space 17 end cell end table close square brackets
therefore space space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space 1 over 91 open square brackets table row 14 cell space space minus 7 end cell cell space space space space 7 end cell row cell negative 8 end cell cell space space space space 30 end cell cell space space space 9 end cell row cell negative 5 end cell cell space minus 4 end cell cell space space 17 end cell end table close square brackets
Now comma space space space AX space equals space straight B space space space space rightwards double arrow space space space space space straight X space equals space straight A to the power of negative 1 end exponent straight B
therefore space space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 over 91 open square brackets table row 14 cell space space minus 7 end cell cell space space space space 7 end cell row cell negative 8 end cell cell space space space space space 30 end cell cell space space space 9 end cell row cell negative 5 end cell cell negative 4 end cell cell space 17 end cell end table close square brackets space open square brackets table row 5 row 5 row 8 end table close square brackets space space space rightwards double arrow space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 over 91 open square brackets table row cell 70 minus 35 plus 56 end cell row cell negative 40 plus 150 plus 72 end cell row cell negative 25 minus 20 plus 136 end cell end table close square brackets
rightwards double arrow space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 over 91 open square brackets table row 91 row 182 row 91 end table close square brackets space space space space space rightwards double arrow space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row 1 row 2 row 1 end table close square brackets
therefore space space space space straight x space equals space 1 comma space space space space space straight y space equals space 2 comma space space space straight z space equals space 1

    Question 300
    CBSEENMA12034913

    Use matrix method to solve the following system of equations:
    2x – y + z = 3
    – x + 2y – z = – 4
    x – y + 2z = 1

    Solution

    The given equations are
    2x – y + z = 3
    – x + 2y – z = – 4
    x – y + 2z = 1
    These equations can be written as
                               open square brackets table row cell space space space space 2 end cell cell space space space minus 1 end cell cell space space space space 1 end cell row cell negative 1 end cell cell space space space space space space 2 end cell cell space minus 1 end cell row cell space space space 1 end cell cell space space minus 1 end cell cell space space space 2 end cell end table close square brackets space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row cell space space space 3 end cell row cell negative 4 end cell row cell space space 1 end cell end table close square brackets
    or space space AX space equals space straight B space space space space where space space straight A space equals space open square brackets table row cell space space space 2 end cell cell space space space minus 1 end cell cell space space space space space space space 1 end cell row cell negative 1 end cell cell space space space space space space 2 end cell cell space space minus 1 end cell row cell space space 1 end cell cell space minus 1 end cell cell space space space space 2 end cell end table close square brackets comma space space space space space space straight X space equals space open square brackets table row straight x row straight y row straight z end table close square brackets comma space space straight B space equals space space open square brackets table row cell space space space space 3 end cell row cell negative 4 end cell row cell space space space 1 end cell end table close square brackets
space space space space space space open vertical bar straight A close vertical bar space equals space open vertical bar table row cell space space space 2 end cell cell space space space minus 1 end cell cell space space space space space 1 end cell row cell negative 1 end cell cell space space space space space space space 2 end cell cell space minus 1 end cell row cell space space 1 end cell cell space space space minus 1 end cell cell space space space space space 2 end cell end table close vertical bar space equals space 2 space open vertical bar table row 2 cell space space space minus 1 end cell row cell negative 1 end cell cell space space space space space space 2 end cell end table close vertical bar space minus left parenthesis negative 1 right parenthesis space open vertical bar table row cell negative 1 end cell cell space space space minus 1 end cell row cell space 1 end cell cell space space space space space space 2 end cell end table close vertical bar space plus space 1 space open vertical bar table row cell negative 1 end cell cell space space space space space space space 2 end cell row 1 cell space space space space minus 1 end cell end table close vertical bar
space space space space space space space space space space space space equals space 2 left parenthesis 4 minus 1 right parenthesis plus 1 left parenthesis negative 2 plus 1 right parenthesis plus 1 left parenthesis 1 minus 2 right parenthesis space equals space 2 left parenthesis 3 right parenthesis plus 1 left parenthesis negative 1 right parenthesis plus 1 left parenthesis negative 1 right parenthesis
space space space space space space space space space space space space equals 6 minus 1 minus 1 space equals space 4 space not equal to space 0
therefore space space space space space space space straight A to the power of negative 1 end exponent space space exists.
    Co-factors of the elements of first row of | A | are
    open vertical bar table row cell space space 2 end cell cell space space space minus 1 end cell row cell negative 1 end cell cell space space space space space 2 end cell end table close vertical bar comma space space space space minus open vertical bar table row cell negative 1 end cell cell space space space minus 1 end cell row 1 cell space space space space space 2 end cell end table close vertical bar comma space space space open vertical bar table row cell negative 1 end cell cell space space space space space space space 2 end cell row 1 cell space space space minus 1 end cell end table close vertical bar space space space or space space 4 minus 1 comma space space minus left parenthesis negative 2 plus 1 right parenthesis comma space space 1 minus 2             

    i.e. 3, 1, – 1 respectively.
    Co-factors of the elements of second row of | A | are
    negative open vertical bar table row cell negative 1 end cell cell space space space space 1 end cell row cell negative 1 end cell cell space space 2 end cell end table close vertical bar comma space space open vertical bar table row 2 cell space space space space 1 end cell row 1 cell space space space 2 end cell end table close vertical bar comma space space minus open vertical bar table row 2 cell space space space minus 1 end cell row 1 cell space space space minus 1 end cell end table close vertical bar space space or space space space minus left parenthesis negative 2 plus 1 right parenthesis comma space space 4 minus 1 comma space space space minus left parenthesis negative 2 plus 1 right parenthesis
    i.e.  1, 3, 1 respectively.
    Co-factors of the elements of third row of | A | are
    open vertical bar table row cell negative 1 end cell cell space space space space space space 1 end cell row 2 cell space space minus 1 end cell end table close vertical bar comma space space minus open vertical bar table row cell space space space 2 end cell cell space space space space space space space 1 end cell row cell negative 1 end cell cell space space minus 1 end cell end table close vertical bar comma space space space space space open vertical bar table row cell space space 2 end cell cell space space space space minus 1 end cell row cell negative 1 end cell cell space space space space space space 2 end cell end table close vertical bar space space space space or space space space 1 minus 2 comma space space space minus left parenthesis negative 2 plus 1 right parenthesis comma space space 4 minus 1
straight i. straight e. comma space space space minus 1 comma space space 1 comma space space 3 space respectively.
    therefore space space space space space space space adj space straight A space equals space open square brackets table row 3 cell space space space space 1 end cell cell space space space minus 1 end cell row 1 cell space space space space 3 end cell cell space space space space space space 1 end cell row cell negative 1 end cell cell space space space space 1 end cell cell space space space space space space 3 end cell end table close square brackets to the power of apostrophe space equals space space open square brackets table row 3 cell space space space 1 end cell cell space space space minus 1 end cell row 1 cell space space space space 3 end cell cell space space space space 1 end cell row cell negative 1 end cell cell space space space 1 end cell cell space space 3 end cell end table close square brackets
therefore space space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space 1 fourth open square brackets table row 3 cell space space space 1 end cell cell space space space minus 1 end cell row 1 cell space space space 3 end cell cell space space space space space 1 end cell row cell negative 1 end cell cell space space space 1 end cell cell space space space space space 3 end cell end table close square brackets
Now comma space space space AX space equals space straight B space space space space space space rightwards double arrow space space space space space straight X equals space straight A to the power of negative 1 end exponent straight B
therefore space space space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 fourth open square brackets table row 3 cell space space space 1 end cell cell space space space minus 1 end cell row 1 cell space space space space 3 end cell cell space space space space space space 1 end cell row cell negative 1 end cell cell space space space space 1 end cell cell space space space space space space 3 end cell end table close square brackets space open square brackets table row cell space space space space 3 end cell row cell negative 4 end cell row cell space space 1 end cell end table close square brackets space space space rightwards double arrow space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals 1 fourth open square brackets table row cell 9 minus 4 minus 1 end cell row cell 3 minus 12 plus 1 end cell row cell negative 3 minus 4 plus 3 end cell end table close square brackets
rightwards double arrow space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 fourth open square brackets table row cell space space space 4 end cell row cell negative 8 end cell row cell negative 4 end cell end table close square brackets space space space space space space rightwards double arrow space space space space space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row cell space space space 1 end cell row cell negative 2 end cell row cell negative 1 end cell end table close square brackets
therefore space space space space space straight x space equals space 1 comma space space space space straight y space equals space minus 2 comma space space space straight z space equals space minus 1

              

    Question 301
    CBSEENMA12034916

    Solve by matrix method:
    3 over straight x plus 4 over straight y plus 7 over straight z space equals space 14
2 over straight x minus 1 over straight y plus 3 over straight z space equals space 4
1 over straight x plus 2 over straight y minus 3 over straight z space equals space 0

    Solution
    The given equations are:
        3 over straight x plus 4 over straight y plus 7 over straight z space equals space 14
2 over straight x minus 1 over straight y plus 3 over straight z space equals space 4
1 over straight x plus 2 over straight y minus 3 over straight z space equals space 0
    Put 1 over straight x space equals space straight a comma space space space space space 1 over straight y space equals space straight b comma space space space space 1 over straight z equals straight c
    ∴    given equations become
    3a + 4b + 7c = 14
    2a – b + 3c = 4
    a + 2b – 3c = 0
    These equations can be written as
                                 open square brackets table row 3 cell space space space space space space 4 end cell cell space space space space space 7 end cell row 2 cell space space minus 1 end cell cell space space space space space 3 end cell row 1 cell space space space space space space 2 end cell cell space minus 3 end cell end table close square brackets space open square brackets table row straight a row straight b row straight c end table close square brackets space equals space open square brackets table row 14 row 4 row 0 end table close square brackets
    or     AX space equals space straight B space where space space space straight A space equals space open square brackets table row 3 cell space space space 4 end cell cell space space 7 end cell row 2 cell space minus 1 end cell cell space space space 3 end cell row 1 cell space space space space space 2 end cell cell space space 3 end cell end table close square brackets comma space space space space straight X space equals space open square brackets table row straight a row straight b row straight c end table close square brackets comma space space space straight B space equals space open square brackets table row 14 row 4 row 0 end table close square brackets

               open vertical bar straight A close vertical bar space equals space open vertical bar table row 3 cell space space space space space 4 end cell cell space space space space space space 7 end cell row 2 cell space space minus 1 end cell cell space space space space space space 3 end cell row 1 cell space space space space 2 end cell cell space space minus 3 end cell end table close vertical bar space equals space 3 space open vertical bar table row cell negative 1 end cell cell space space space space space 3 end cell row cell space space space 2 end cell cell space space minus 3 end cell end table close vertical bar space minus space 4 space open vertical bar table row 2 cell space space space space space 3 end cell row 1 cell space space minus 3 end cell end table close vertical bar plus 7 open vertical bar table row 2 cell space space space minus 1 end cell row cell space 1 end cell cell space space space space space space 2 end cell end table close vertical bar
space space space space space space equals 3 space left parenthesis 3 minus 6 right parenthesis space minus space 4 space left parenthesis negative 6 minus 3 right parenthesis space plus space 7 left parenthesis 4 plus 1 right parenthesis space equals space 3 space left parenthesis negative 3 right parenthesis space minus space 4 left parenthesis negative 9 right parenthesis space plus space 7 left parenthesis 5 right parenthesis
space space space space space space equals negative 9 plus 36 plus 35 space equals space 62 space not equal to 0
therefore space space space space space space space space straight A to the power of negative 1 end exponent space exists.
    Co-factors of the elements of first row of | A | are
    open vertical bar table row cell negative 1 end cell cell space space space space space space 3 end cell row 2 cell space space minus 3 end cell end table close vertical bar comma space space minus open vertical bar table row 2 cell space space space space space space 3 end cell row 1 cell space space minus 3 end cell end table close vertical bar comma space space space space open vertical bar table row 2 cell space space space minus 1 end cell row 1 cell space space space space space 2 end cell end table close vertical bar
    i.e. 3 –6, – ( – 6 – 3), 4 + 1   i.e. – 3,  9, 5 respectively.
    Co-factors of the elements of second row of | A | are
    open vertical bar table row 4 cell space space space space space 7 end cell row 2 cell space minus 3 end cell end table close vertical bar comma space open vertical bar table row 2 cell space space space space space 3 end cell row 1 cell space minus 3 end cell end table close vertical bar comma space open vertical bar table row 3 cell space space space space space 4 end cell row 1 cell space space space space 2 end cell end table close vertical bar
    i.e. – (– 12 – 14), – 9 – 7, – (6 – 4) i.e. 26, — 16, – 2 respectively.
    Co-factors of the elements of third row of | A | are
    open vertical bar table row 4 cell space space space 7 end cell row cell negative 1 end cell cell space space space 3 end cell end table close vertical bar comma space space open vertical bar table row 3 cell space space space 7 end cell row 2 cell space space space 3 end cell end table close vertical bar comma space open vertical bar table row 3 cell space space space space space space 4 end cell row 2 cell space space space minus 1 end cell end table close vertical bar
    i.e. 12 + 7, – (9 – 14), – 3 – 8   i.e. 19, 5 – 11 respectively.
    therefore space space space space adj. space straight A space equals space open square brackets table row cell negative 3 end cell cell space space space space space space 9 end cell cell space space space space space 5 end cell row 26 cell space space minus 16 end cell cell space minus 2 end cell row 19 cell space space space space 5 end cell cell space minus 11 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row cell negative 3 end cell cell space space space space space space 26 end cell cell space space space space space 19 end cell row 9 cell space space minus 16 end cell cell space space space space 5 end cell row 5 cell space space space space minus 2 end cell cell space minus 11 end cell end table close square brackets
therefore space space space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space 1 over 62 open square brackets table row cell negative 3 end cell cell space space space 26 end cell cell space space space space 19 end cell row 9 cell negative 16 end cell cell space space space space space 5 end cell row 5 cell negative 2 end cell cell space minus 11 end cell end table close square brackets
Now comma space space AX space equals space straight B space space space space space rightwards double arrow space space space space space straight X space equals space straight A to the power of negative 1 end exponent straight B
therefore space space space space space open square brackets table row straight a row straight b row straight c end table close square brackets space equals space 1 over 62 open square brackets table row cell negative 3 end cell cell space space space space 26 end cell cell space space space 19 end cell row cell space 9 end cell cell negative 16 end cell cell space space space space 5 end cell row cell space 5 end cell cell negative 2 end cell cell space minus 11 end cell end table close square brackets space open square brackets table row 14 row 4 row 0 end table close square brackets
rightwards double arrow space space space space space open square brackets table row straight a row straight b row straight c end table close square brackets space equals space 1 over 62 open square brackets table row cell negative 42 plus 104 plus 0 end cell row cell 126 minus 64 plus 0 end cell row cell 70 minus 8 plus 0 end cell end table close square brackets
rightwards double arrow space space space space space open square brackets table row straight a row straight b row straight c end table close square brackets space equals space 1 over 62 open square brackets table row 62 row 62 row 62 end table close square brackets space space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space space space space open square brackets table row straight a row straight b row straight c end table close square brackets space equals space open square brackets table row 1 row 1 row 1 end table close square brackets
therefore space space space space straight a space equals space 1 comma space space space space space straight b space equals space 1 comma space space space space straight c space equals space 1 comma space space space space space space space space space space rightwards double arrow space space space space 1 over straight x space equals space 1 comma space space 1 over straight y space equals space 1 comma space space space space 1 over straight z space equals space 1
rightwards double arrow space space space space straight x space equals space 1 comma space space space straight y space equals space 1 comma space space straight z space equals space 1.
    Question 302
    CBSEENMA12034920

    Solve  the system of the following equations:
    2 over straight x plus 3 over straight y plus 10 over straight z space equals space 4
4 over straight x minus 6 over straight y plus 5 over straight z space equals space 1
6 over straight x plus 9 over straight y minus 20 over straight z space equals space 2

    Solution

    The given equations are
                           2 over straight x plus 3 over straight y plus 10 over straight z space equals space 4
4 over straight x minus 6 over straight y plus 5 over straight z space equals space 1
6 over straight x plus 9 over straight y minus 20 over straight z space equals space 2
    Put 1 over straight x space equals space straight a comma space space space 1 over straight y space equals space straight b comma space space space space 1 over straight z equals straight c
    ∴      given equations become
    2a + 3b + 10c = 4
    4a – 6b + 5c = 1
    6a + 9b – 20c = 2
    These equations can be written as
                            open square brackets table row 2 cell space space space space space 3 end cell cell space space space space space 10 end cell row 4 cell space space minus 6 end cell cell space space space space space 5 end cell row 6 cell space space space space 9 end cell cell space space minus 20 end cell end table close square brackets space open square brackets table row straight a row straight b row straight c end table close square brackets space equals open square brackets table row 4 row 1 row 2 end table close square brackets
    or     or space space space space AX space equals space straight B space where space straight A space equals space open square brackets table row 2 cell space space space space space space 3 end cell cell space space space space 10 end cell row 4 cell space space minus 6 end cell cell space space space space space 5 end cell row 6 cell space space space space space space 9 end cell cell space space minus 20 end cell end table close square brackets comma space space space straight X space equals space open square brackets table row straight a row straight b row straight c end table close square brackets comma space space straight B space equals space open square brackets table row 4 row 1 row 2 end table close square brackets
         open vertical bar straight A close vertical bar space equals space open vertical bar table row 2 cell space space space space space 3 end cell cell space space space space space 10 end cell row 4 cell space minus 6 end cell cell space space space space space 5 end cell row 6 cell space space space space space 9 end cell cell space space minus 20 end cell end table close vertical bar space equals space 2 open vertical bar table row cell negative 6 end cell cell space space space space space space space space 5 end cell row 9 cell space space minus 20 end cell end table close vertical bar space minus space space 3 space open vertical bar table row 4 cell space space space space space 5 end cell row 6 cell space minus 20 end cell end table close vertical bar space plus space 10 space open vertical bar table row 4 cell space space space minus 6 end cell row 6 cell space space space space space space space 9 end cell end table close vertical bar
space space space space space space space space equals 2 space left parenthesis 120 minus 45 right parenthesis space minus space 3 left parenthesis negative 80 minus 30 right parenthesis space plus space 10 space left parenthesis 36 plus 36 right parenthesis
space space space space space space space space space equals 2 space left parenthesis 75 right parenthesis space minus space 3 space left parenthesis negative 110 right parenthesis space plus space 10 space left parenthesis 72 right parenthesis space equals space 150 plus 330 plus 720 space equals space 1200 space not equal to space 0
therefore space space space space straight A to the power of negative 1 end exponent space exists.
    Co-factors of the elements of first row of | A | are
    open vertical bar table row cell negative 6 end cell cell space space space space space space 5 end cell row 9 cell space minus 20 end cell end table close vertical bar comma space space space space minus open vertical bar table row 4 cell space space space space space space 5 end cell row 6 cell space space minus 20 end cell end table close vertical bar comma space space space space space open vertical bar table row 4 cell space space space space minus 6 end cell row 6 cell space space space space space space 9 end cell end table close vertical bar
    i.e.   120 – 45, – (– 80 – 30), 36 + 36 i.e. 75, 110, 72 respectively.
    Co-factors of the elements of second row of | A | are
    negative open vertical bar table row 3 cell space space space space space 10 end cell row 9 cell space space minus 20 end cell end table close vertical bar comma space space space space open vertical bar table row 2 cell space space space space 10 end cell row 6 cell space space minus 20 end cell end table close vertical bar comma space space space minus open vertical bar table row 2 cell space space space space 3 end cell row 6 cell space space space space 9 end cell end table close vertical bar
    i.e. – (– 60 – 90), – 40 – 60, – (18 – 18) i.e. 150, 100, 0 respectively.
    Co-factors of the elements of third row of | A | are
    open vertical bar table row cell space space 3 end cell cell space space space 10 end cell row cell negative 6 end cell cell space space space space 5 end cell end table close vertical bar comma space space space space space minus open vertical bar table row 2 cell space space space space 10 end cell row 4 cell space space space space 5 end cell end table close vertical bar comma space space space open vertical bar table row 2 cell space space space space space space space 3 end cell row 4 cell space space space minus 6 end cell end table close vertical bar
    i.e. 15 + 60, – (10 – 40), – 12 – 12   i.e. 75, 30, –24 respectively.
    therefore space space space space space adj space straight A space equals space open square brackets table row 75 cell space space space 110 end cell cell space space space 72 end cell row 150 cell space minus 100 end cell cell space space 0 end cell row 75 cell space space space 30 end cell cell space minus 24 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row 75 cell space space space space space 150 end cell cell space space space 75 end cell row 110 cell space space minus 100 end cell cell space space space 30 end cell row 72 cell space space space space 0 end cell cell negative 24 end cell end table close square brackets
space space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space 1 over 1200 open square brackets table row 75 cell space space space space space 150 end cell cell space space space 75 end cell row 110 cell space space minus 100 end cell cell space space 30 end cell row 72 cell space space 0 end cell cell space space minus 24 end cell end table close square brackets
Now comma space space space AX space equals space space straight B space space space space space rightwards double arrow space space space space space straight X space equals space straight A to the power of negative 1 end exponent straight B
therefore space space space space space open square brackets table row straight a row straight b row straight c end table close square brackets space equals space 1 over 1200 open square brackets table row 75 cell space space space space 150 end cell cell space space space space 75 end cell row 110 cell space minus 100 end cell cell space space space 30 end cell row 72 cell space space 0 end cell cell negative 24 end cell end table close square brackets space open square brackets table row 4 row 1 row 2 end table close square brackets
rightwards double arrow space space space space space space open square brackets table row straight a row straight b row straight c end table close square brackets space equals space 1 over 1200 open square brackets table row cell 300 plus 150 plus 150 end cell row cell 440 minus 100 plus 60 end cell row cell 288 plus 0 minus 48 end cell end table close square brackets
rightwards double arrow space space space space space space space space open square brackets table row straight a row straight b row straight c end table close square brackets space equals space 1 over 1200 open square brackets table row 600 row 400 row 240 end table close square brackets space space space space space rightwards double arrow space space space space space open square brackets table row straight a row straight b row straight c end table close square brackets space equals space open square brackets table row cell 1 half end cell row cell 1 third end cell row cell 1 fifth end cell end table close square brackets
therefore space space space space space straight a space equals space 1 half comma space space space space straight b space equals space 1 third comma space space space straight c space equals space 1 fifth space space space rightwards double arrow space space space straight x space equals space 2 comma space space space space straight y space equals space 3 comma space space space straight z space equals space 5.

    Question 303
    CBSEENMA12034928

    If straight A space equals space open square brackets table row 2 cell space space space minus 3 end cell cell space space space space 5 end cell row 3 cell space space space space space 2 end cell cell space minus 4 end cell row 1 cell space space space 1 end cell cell space minus 2 end cell end table close square brackets comma  find A-1, Using A-1, solve the following system of linear equations.
    2x – 3y + 5z = 16
    3x + 2y – 4z = – 4
    x + y – 2z = – 3

    Solution

    Here,
          straight A space equals space open square brackets table row 2 cell space space space minus 3 end cell cell space space space 5 end cell row 3 cell space space space space space 2 end cell cell negative 4 end cell row 1 cell space space space 1 end cell cell negative 2 end cell end table close square brackets
    therefore space space space space open vertical bar straight A close vertical bar space equals space open vertical bar table row 2 cell space space minus 3 end cell cell space space space 5 end cell row 3 cell space space space 2 end cell cell negative 4 end cell row 1 cell space space 1 end cell cell negative 2 end cell end table close vertical bar space equals space 2 space open vertical bar table row 2 cell space space minus 4 end cell row 1 cell space space minus 2 end cell end table close vertical bar space minus space left parenthesis negative 3 right parenthesis space open vertical bar table row 3 cell space space minus 4 end cell row 1 cell space space minus 2 end cell end table close vertical bar plus 5 space open vertical bar table row 3 cell space space 2 end cell row 1 cell space space 1 end cell end table close vertical bar
space space space space space space space space space space space space space space space equals 2 left parenthesis negative 4 plus 4 right parenthesis space plus space 3 left parenthesis negative 6 plus 4 right parenthesis space plus space 5 left parenthesis 3 minus 2 right parenthesis space equals space 0 minus 6 plus 5 space equals space minus 1 space not equal to space 0
therefore space space space space straight A to the power of negative 1 end exponent space exists.
    Co-factors of the elements of first row of | A | are
    open vertical bar table row 2 cell space space space minus 4 end cell row 1 cell space space minus 2 end cell end table close vertical bar comma space space space space minus open vertical bar table row 3 cell space space space minus 4 end cell row 1 cell space space minus 2 end cell end table close vertical bar comma space space space space open vertical bar table row 3 cell space space space 2 end cell row 1 cell space space 1 end cell end table close vertical bar
    i.e. 0, 2, 1 respectively
    Co-factors of the elements of second row of | A | are
    negative open vertical bar table row cell negative 3 end cell cell space space space space 5 end cell row 1 cell space minus 2 end cell end table close vertical bar comma space space space open vertical bar table row 2 cell space space space space space 5 end cell row 1 cell space space minus 2 end cell end table close vertical bar comma space space space space minus open vertical bar table row 2 cell space space space minus 3 end cell row 1 cell space space space space space space 1 end cell end table close vertical bar
    i.e., –1, –9 , –5 respectively.
    Co-factors of the elements of third row of | A | are
    open vertical bar table row cell negative 3 end cell cell space space space space space space 5 end cell row 2 cell space space minus 4 end cell end table close vertical bar comma space space space space minus open vertical bar table row 2 cell space space space space space space 5 end cell row 3 cell space space space minus 4 end cell end table close vertical bar comma space space space open vertical bar table row 2 cell space space minus 3 end cell row 3 cell space space space space 2 end cell end table close vertical bar
    i.e., 2, 23, 13 respectively.
    therefore space space space space adj space. space straight A space equals space open square brackets table row cell space space space 0 end cell cell space space space space space 2 end cell cell space space space 1 end cell row cell negative 1 end cell cell space minus 9 end cell cell space minus 5 end cell row cell space space 2 end cell cell space space space 23 end cell cell space space 13 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row 0 cell space space space space minus 1 end cell cell space space space space 2 end cell row 2 cell space space space minus 9 end cell cell space space 23 end cell row 1 cell space space minus 5 end cell cell space space 13 end cell end table close square brackets
space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space minus open square brackets table row 0 cell space space minus 1 end cell cell space space space 2 end cell row 2 cell space minus 9 end cell cell space space 23 end cell row 1 cell negative 5 end cell cell space 13 end cell end table close square brackets space equals open square brackets table row 0 cell space space space space space 1 end cell cell space space minus space 2 end cell row cell negative 2 end cell cell space space space space space space 9 end cell cell space space space minus 23 end cell row cell negative 1 end cell cell space minus 5 end cell cell space space space minus 13 end cell end table close square brackets space
space space space space space space

    The given equations are
    2x – 3y + 5z = 16
    3x + 2y – 4z = – 4
    x + y – 2z = – 3
    These equations can be written as
                     space open square brackets table row 2 cell space space space minus 3 end cell cell space space space space space space 5 end cell row 3 cell space space space space space 2 end cell cell space minus 4 end cell row 1 cell space space space 1 end cell cell space space minus 2 end cell end table close square brackets space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row cell space 16 end cell row cell negative 4 end cell row cell negative 3 end cell end table close square brackets
    or space space space space space AX space equals space straight B space space where space straight A space equals space open square brackets table row 2 cell space minus 3 end cell cell space space space space 5 end cell row 3 cell space space space 2 end cell cell space minus 4 end cell row 1 cell space space 1 end cell cell negative 2 end cell end table close square brackets comma space space straight X space equals space open square brackets table row straight x row straight y row straight z end table close square brackets comma space space straight B space equals space open square brackets table row 16 row cell negative 4 end cell row cell negative 3 end cell end table close square brackets

    therefore space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row cell space space 0 end cell cell space space space space space 1 end cell cell space space space space minus 2 end cell row cell negative 2 end cell cell space space space space 9 end cell cell space space minus 23 end cell row cell negative 1 end cell cell space space space 5 end cell cell space space minus 13 end cell end table close square brackets space open square brackets table row 16 row cell negative 4 end cell row cell negative 3 end cell end table close square brackets
rightwards double arrow space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row cell 0 minus 4 plus 6 end cell row cell negative 32 minus 36 plus 69 end cell row cell negative 16 minus 20 plus 39 end cell end table close square brackets space space space space space rightwards double arrow space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row 2 row 1 row 3 end table close square brackets
    therefore space space space space straight x space equals 2 comma space space space space space straight y space equals space 1 comma space space space straight z space equals space 3.

    Question 304
    CBSEENMA12034929

    If straight A space equals space open square brackets table row 2 cell space space space minus 3 end cell cell space space space space 5 end cell row 3 cell space space space space 2 end cell cell negative 4 end cell row 1 cell space space space 1 end cell cell negative 2 end cell end table close square brackets comma find –1 .
    Using A–1, solve the following system of linear equations.
    2x – 3y + 5z = 11
    3x + 2y – 4z = – 5
    x + y – 2z = – 3

    Solution

    Here,    straight A space equals space open square brackets table row 2 cell space space minus 3 end cell cell space space space 5 end cell row 3 cell space space space space 2 end cell cell space minus 4 end cell row 1 cell space space space 1 end cell cell space minus 2 end cell end table close square brackets
    therefore space space space space space open vertical bar straight A close vertical bar space equals space open vertical bar table row 2 cell space space minus 3 end cell cell space space space 5 end cell row 3 cell space space space space 2 end cell cell negative 4 end cell row 1 cell space space space 1 end cell cell negative 2 end cell end table close vertical bar space equals space 2 open vertical bar table row 2 cell space space minus 4 end cell row 1 cell space space minus 2 end cell end table close vertical bar minus left parenthesis negative 3 right parenthesis space open vertical bar table row 3 cell space space space minus 4 end cell row 1 cell space space space minus 2 end cell end table close vertical bar plus 5 space open vertical bar table row 3 cell space space space 2 end cell row 1 cell space space 1 end cell end table close vertical bar
space space space space space space space space space space space space space space space space space equals 2 left parenthesis negative 4 plus 4 right parenthesis plus 3 left parenthesis negative 6 plus 4 right parenthesis plus 5 left parenthesis 3 minus 2 right parenthesis space equals space 0 minus 6 plus 5 space equals space minus 1 not equal to 0
therefore space space space space space space space straight A to the power of negative 1 end exponent space exists.
    Co-factors of the elements of first row of | A | are
    open vertical bar table row 2 cell space space space minus 4 end cell row 1 cell space space space minus 2 end cell end table close vertical bar comma space space space space minus open vertical bar table row 3 cell space space minus 4 end cell row 1 cell space space minus 2 end cell end table close vertical bar comma space open vertical bar table row 3 cell space space space space space 2 end cell row 1 cell space space space space 1 end cell end table close vertical bar
    i.e., 0, 2, 1 respectively
    Co-factors of the elements of second row of | A | are
    negative open vertical bar table row cell negative 3 end cell cell space space space 5 end cell row 1 cell negative 2 end cell end table close vertical bar comma space space minus open vertical bar table row 2 cell space space space space space 5 end cell row 1 cell space minus 2 end cell end table close vertical bar comma space space minus open vertical bar table row 2 cell space space minus 3 end cell row 1 cell space space space space space 1 end cell end table close vertical bar
    i.e., –1 –9 , –5 respectively.
    Co-factors of the elements of third row of | A | are
    open vertical bar table row cell negative 3 end cell cell space space space space space space space 5 end cell row 2 cell space space space minus 4 end cell end table close vertical bar comma space space space space minus open vertical bar table row 2 cell space space space space space 5 end cell row 3 cell space space minus 4 end cell end table close vertical bar comma space space space open vertical bar table row 2 cell space space space minus 3 end cell row 3 cell space space space space space 2 end cell end table close vertical bar
    i.e.,    2,   23,  13 respectively.
    therefore space space adj space straight A space equals space open square brackets table row 0 cell space space space space 2 end cell cell space space 1 end cell row cell negative 1 end cell cell negative 9 end cell cell space minus 5 end cell row 2 cell space space 23 end cell cell space space 13 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row 0 cell space space minus 1 end cell cell space space 2 end cell row 2 cell space minus 9 end cell cell space 23 end cell row 1 cell space minus 5 end cell cell space 13 end cell end table close square brackets
straight A to the power of negative 1 end exponent space equals space fraction numerator adj space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space minus open square brackets table row 0 cell space space minus 1 end cell cell space space 2 end cell row 2 cell space minus 9 end cell cell space 23 end cell row 1 cell negative 5 end cell 13 end table close square brackets space equals open square brackets table row 0 cell space space 1 end cell cell space space minus 2 end cell row cell negative 2 end cell cell space space 9 end cell cell space minus 23 end cell row cell negative 1 end cell cell space space 5 end cell cell space minus 13 end cell end table close square brackets

    The given equations are
    2x – 3y + 5z = 11
    3x + 2y – 4z = – 5
    x + y – 2z = – 3
    These equations can be written as
                         open square brackets table row 2 cell space space space minus 3 end cell cell space space space space 5 end cell row 3 cell space space space space 2 end cell cell negative 4 end cell row 1 cell space space 1 end cell cell negative 2 end cell end table close square brackets space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row cell space 11 end cell row cell negative 5 end cell row cell negative 3 end cell end table close square brackets
    or     AX space equals space straight B space space where space straight A space equals space open square brackets table row 2 cell space space minus 3 end cell cell space space space space 5 end cell row 3 cell space space space space 2 end cell cell negative 4 end cell row 1 cell space space 1 end cell cell negative 2 end cell end table close square brackets comma space space space straight X space equals open square brackets table row straight x row straight y row straight z end table close square brackets comma space space space straight B space equals open square brackets table row cell space space 11 end cell row cell negative 5 end cell row cell negative 3 end cell end table close square brackets
    Now  AX space equals space straight B space space space space space rightwards double arrow space space space space space straight X space equals space straight A to the power of negative 1 end exponent straight B
    therefore space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row 0 cell space space space 1 end cell cell space space minus 2 end cell row cell negative 2 end cell cell space space space 9 space end cell cell space minus 23 end cell row cell negative 1 end cell cell space space 5 end cell cell negative 13 end cell end table close square brackets space open square brackets table row cell space space 11 end cell row cell negative 5 end cell row cell negative 3 end cell end table close square brackets
    rightwards double arrow space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row cell 0 minus 5 plus 6 end cell row cell negative 22 minus 45 plus 69 end cell row cell negative 11 minus 25 plus 39 end cell end table close square brackets space space space space rightwards double arrow space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row 1 row 2 row 3 end table close square brackets
therefore space space space space space space space space straight x space equals space 1 comma space space space straight y space equals 2 comma space space space space straight z space equals space 3

    Question 305
    CBSEENMA12034931

    Compute A–1 for the following matrix 
    straight A space equals space open square brackets table row cell negative 1 end cell cell space space space space space 2 end cell cell space space space space 5 end cell row cell space space 2 end cell cell space space minus 3 end cell cell space space space 1 end cell row cell negative 1 end cell cell space space 1 end cell cell space space space space 1 end cell end table close square brackets.
    Hence solve the system of equations.
    – x + 2y+ 5 z = 2
    2x – 3y + Z = 15
    – x + y + z = – 3

    Solution

    Here straight A space equals space open square brackets table row cell negative 1 end cell cell space space space space 2 end cell cell space space 5 end cell row 2 cell space minus 3 end cell cell space space 1 end cell row cell negative 1 end cell cell space space space space 1 end cell cell space space 1 end cell end table close square brackets
    therefore space space space open vertical bar straight A close vertical bar space equals space open vertical bar table row cell negative 1 end cell cell space space space space 2 end cell cell space space space 5 end cell row 2 cell space minus 3 end cell cell space space 1 end cell row cell negative 1 end cell cell space space 1 end cell cell space space 1 end cell end table close vertical bar
                equals left parenthesis negative 1 right parenthesis space open vertical bar table row cell negative 3 end cell cell space space space 1 end cell row 1 cell space space space 1 end cell end table close vertical bar minus 2 space open vertical bar table row 2 cell space space space 1 end cell row cell negative 1 end cell cell space space space 1 end cell end table close vertical bar space plus space 5 space open vertical bar table row cell space 2 end cell cell space space space minus 3 end cell row cell negative 1 end cell cell space space space space space space 1 end cell end table close vertical bar
space equals negative left parenthesis negative 3 minus 1 right parenthesis space minus space 2 left parenthesis 2 plus 1 right parenthesis space plus space 5 left parenthesis 2 minus 3 right parenthesis space space equals space 4 minus 6 minus 5 space equals space space minus 7 not equal to 0
    Co-factors of the elements of the first row of | A | are
    open vertical bar table row cell negative 3 end cell cell space space space space 1 end cell row 1 cell space space space 1 end cell end table close vertical bar comma space space space minus open vertical bar table row cell space 2 end cell cell space space space space 1 end cell row cell negative 1 end cell cell space space space 1 end cell end table close vertical bar comma space space space space open vertical bar table row cell space space 2 end cell cell space space space minus 3 end cell row cell negative 1 end cell cell space space space space space space 1 end cell end table close vertical bar
    i.e.,   – 4, – 3, – 1 respectively
    Co-factors of the elements of the second row of | A | are
    negative open vertical bar table row 2 cell space space space 5 end cell row 1 cell space space space 1 end cell end table close vertical bar comma space space space open vertical bar table row cell negative 1 end cell cell space space space 5 end cell row cell negative 1 end cell cell space space space 1 end cell end table close vertical bar comma space space minus open vertical bar table row cell negative 1 end cell cell space space space space 2 end cell row cell negative 1 end cell cell space space space space 1 end cell end table close vertical bar

    i.e., 3, 4, – 1 respectively
    Co-factors of the elements of the third row of | A | are
    negative open vertical bar table row cell space 2 end cell cell space space space 5 end cell row cell negative 3 end cell cell space space 1 end cell end table close vertical bar comma space space space minus open vertical bar table row cell negative 1 end cell cell space space space 5 end cell row cell space 2 end cell cell space space 1 end cell end table close vertical bar comma space space open vertical bar table row cell negative 1 end cell cell space space space space space 2 end cell row 2 cell space space minus 3 end cell end table close vertical bar
straight i. straight e. space space space 17 comma space 11 comma space minus 1 space respectively.
    therefore space space space space adj. space straight A space equals space open square brackets table row cell negative 4 end cell cell space space space minus 3 end cell cell space space minus 1 end cell row 3 cell space space space space space 4 end cell cell space space minus 1 end cell row 17 cell space space space 11 end cell cell space minus 1 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row cell negative 4 end cell cell space space space 3 end cell cell space space 17 end cell row cell negative 3 end cell cell space space space 4 end cell cell space space 11 end cell row cell negative 1 end cell cell space minus 1 end cell cell negative 1 end cell end table close square brackets
space space space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj space straight A over denominator open vertical bar straight A close vertical bar end fraction equals space minus 1 over 7 open square brackets table row cell negative 4 end cell cell space space space space 3 end cell cell space space 17 end cell row cell negative 3 end cell cell space space space space 4 end cell cell space space 11 end cell row cell negative 1 end cell cell space space minus 1 end cell cell negative 1 end cell end table close square brackets

    The given equations are
    – r + 2y + 5z = 2
    2x – 3y + z = 15
    – x + y + z = – 3
    These equations can be written as
                  open square brackets table row cell negative 1 end cell cell space space space space space 2 end cell cell space space space 5 end cell row cell space space 2 end cell cell space minus 3 end cell cell space space space 1 end cell row cell negative 1 end cell cell space space space 1 end cell cell space space 1 end cell end table close square brackets space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row cell space space 2 end cell row cell space space 15 end cell row cell negative 3 end cell end table close square brackets space space space space or space space space space AX space equals space straight B
    where straight A space equals space open square brackets table row cell negative 1 end cell cell space space space space 2 end cell cell space space 5 space end cell row cell space space 2 end cell cell negative 3 end cell cell space 1 end cell row cell negative 1 end cell cell space space 1 end cell cell space 1 end cell end table close square brackets comma space space space space straight X space equals space open square brackets table row straight x row straight y row straight z end table close square brackets comma space space space straight B space equals space open square brackets table row cell space 2 end cell row 15 row cell negative 3 end cell end table close square brackets
    therefore space space space space space space straight X space equals space straight A to the power of negative 1 end exponent straight B
    rightwards double arrow space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space minus 1 over 7 open square brackets table row cell negative 4 end cell cell space space space 3 end cell cell space space 17 end cell row cell negative 3 end cell cell space space space 4 end cell cell space space 11 end cell row cell negative 1 end cell cell negative 1 end cell cell negative 1 end cell end table close square brackets space open square brackets table row cell space space space 2 end cell row 15 row cell negative 3 end cell end table close square brackets
rightwards double arrow space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space minus 1 over 7 open square brackets table row cell negative 8 plus 45 minus 51 end cell row cell negative 6 plus 60 minus 33 end cell row cell negative 2 minus 15 plus 3 end cell end table close square brackets
therefore space space space space space space straight A to the power of negative 1 end exponent space exists.
rightwards double arrow space space space open square brackets table row straight x row straight y row straight z end table close square brackets space space equals space minus 1 over 7 open square brackets table row cell negative 14 end cell row cell space space space 21 end cell row cell negative 14 end cell end table close square brackets space space space space rightwards double arrow space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row cell space space space space 2 end cell row cell negative 3 end cell row cell space space 2 end cell end table close square brackets
rightwards double arrow space space space space space straight x space equals space 2 comma space space space straight y space equals space minus 3 comma space space space straight z space equals space 2
     

    Question 306
    CBSEENMA12034935

    Compute A–1 for the following matrix
    straight A space equals space open square brackets table row 1 cell space space space space space 2 end cell cell space space space 5 end cell row 1 cell space minus 1 end cell cell space minus 1 end cell row 2 cell space space space 3 end cell cell space minus 2 end cell end table close square brackets.
    Hence,  solve the system of equations:
    x + 2y + 5z = 10
    x – y – z = – 2
    2x + 3y – 2z = – 1

    Solution
    straight A space equals space open square brackets table row 1 cell space space space space space space 2 end cell cell space space space space 5 end cell row 1 cell space space minus 1 end cell cell space minus 1 end cell row 2 cell space space space space 3 end cell cell space minus 2 end cell end table close square brackets
therefore space space space open vertical bar straight A close vertical bar space equals space open vertical bar table row 1 cell space space space space space 2 end cell cell space space space space space space 5 end cell row 1 cell space space minus 1 end cell cell space minus 1 end cell row 2 cell space space space space space 3 end cell cell space space minus 2 end cell end table close vertical bar space equals space 1 space open vertical bar table row cell negative 1 end cell cell space space space minus 1 end cell row 3 cell space space space minus 2 end cell end table close vertical bar minus 2 open vertical bar table row 1 cell space space minus 1 end cell row 2 cell space space minus 2 end cell end table close vertical bar plus 5 space open vertical bar table row 1 cell space space minus 1 end cell row 2 cell space space space space 3 end cell end table close vertical bar
space space space space space space space space space space space space space space equals 1 left parenthesis 2 plus 3 right parenthesis minus 2 left parenthesis negative 2 plus 2 right parenthesis space plus space 5 left parenthesis 3 plus 2 right parenthesis space equals space 5 minus 0 plus 25 space equals space 30 space not equal to space 0
therefore space space space space space space straight A to the power of negative 1 end exponent space exists.
    Co-factors of the elements of first row of | A | are
    open vertical bar table row cell negative 1 end cell cell space space space minus 1 end cell row cell space 3 end cell cell space space minus 2 end cell end table close vertical bar comma space space space minus open vertical bar table row 1 cell space space space minus 1 end cell row 2 cell space space space minus 2 end cell end table close vertical bar comma space space space open vertical bar table row 1 cell space space minus 1 end cell row 2 cell space space space space 3 end cell end table close vertical bar
    i.e., 5, 0, 5 respectively
    Co-factors of the elements of second row of | A | are
    negative open vertical bar table row 2 cell space space space space space space 5 end cell row 3 cell space space minus 2 end cell end table close vertical bar comma space space space open vertical bar table row 1 cell space space space space space 5 end cell row 2 cell space space minus 2 end cell end table close vertical bar comma space space minus open vertical bar table row 1 cell space space space space space 2 end cell row 2 cell space space space space 3 end cell end table close vertical bar

    i.e., 19, – 12, 1 respectively
    Co-factors of the elements of third row of | A | are
    open vertical bar table row cell space space 2 end cell cell space space space space space 5 end cell row cell negative 1 end cell cell space minus 1 end cell end table close vertical bar comma space space space space space minus open vertical bar table row 1 cell space space space space space 5 end cell row 1 cell space minus 1 end cell end table close vertical bar comma space space space open vertical bar table row 1 cell space space space space space 2 end cell row 1 cell space space minus 1 end cell end table close vertical bar
    i.e., 3, 6, – 3 respectively
    therefore space space space adj space straight A space equals space open square brackets table row 5 cell space space space space 0 end cell cell space space space space 5 end cell row 19 cell space minus 12 end cell cell space space space 1 end cell row 3 cell space space space 6 end cell cell space minus 3 end cell end table close square brackets to the power of apostrophe space equals space open square brackets table row 5 cell space space space space space 9 end cell cell space space space 3 end cell row 0 cell space space minus 12 end cell cell space space space 6 end cell row 5 cell space space space 1 end cell cell negative 3 end cell end table close square brackets
space space space space space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj. space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space 1 over 30 open square brackets table row 5 cell space space space space space 9 end cell cell space space space 3 end cell row 0 cell space space minus 12 end cell cell space space space 6 end cell row 5 cell space space space 1 end cell cell negative 3 end cell end table close square brackets

    The given equations are
    x + 2y + 5z = 10
    x – y – z = – 2
    2x + 3y – 2z = – 1
    These equations can be written as
                    open square brackets table row 1 cell space space space space space space 2 end cell cell space space space space space 5 end cell row 1 cell space space minus 1 end cell cell space space minus 1 end cell row 2 cell space space space space space space 3 end cell cell space space minus 2 end cell end table close square brackets space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row cell space space 10 end cell row cell negative 2 end cell row cell negative 1 end cell end table close square brackets
    or          AX space equals space straight B space space where space straight A space equals space open square brackets table row 1 cell space space space space space 2 end cell cell space space space space space space 5 end cell row 1 cell space space minus 1 end cell cell space space space minus 1 end cell row 2 cell space space space space 3 end cell cell space space space minus 2 end cell end table close square brackets comma space space space straight X space equals space open square brackets table row straight x row straight y row straight z end table close square brackets comma space space space space space straight B space equals open square brackets table row cell space space 10 end cell row cell negative 2 end cell row cell negative 1 end cell end table close square brackets
    Now comma space AX space equals space straight B space space space space rightwards double arrow space space space space straight X space equals space straight A to the power of negative 1 end exponent straight B space space space rightwards double arrow space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 over 30 open square brackets table row 5 cell space space space 19 end cell cell space space space space space 3 end cell row 0 cell space minus 12 end cell cell space space space space space 6 end cell row 5 cell space space space 1 end cell cell space space minus 3 end cell end table close square brackets space open square brackets table row 10 row cell negative 2 end cell row cell negative 1 end cell end table close square brackets to the power of apostrophe
rightwards double arrow space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 over 30 open square brackets table row cell 50 minus 38 minus 3 end cell row cell 0 plus 24 minus 6 end cell row cell 50 minus 2 plus 3 end cell end table close square brackets space space space space rightwards double arrow space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 over 30 open square brackets table row 9 row 18 row 51 end table close square brackets
rightwards double arrow space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row cell 3 over 10 end cell row cell 3 over 5 end cell row cell 17 over 10 end cell end table close square brackets space space space rightwards double arrow space space space space straight x space equals space 3 over 10 comma space space straight y space equals space 3 over 5 comma space space straight z space equals 17 over 10

     

    Question 307
    CBSEENMA12034940

    If straight A equals space open square brackets table row 3 cell space space space minus 2 end cell cell space space space space space 1 end cell row 2 cell space space space space 1 end cell cell space minus 3 end cell row cell negative 1 end cell cell space space space 2 end cell cell space space space 1 end cell end table close square brackets comma  Find A–1.

    Using A solve the following systems of linear equations:
    3x – 2y + z = 2
    2y + y – 3z = – 5
    – x + 2y + z = 6.

    Solution

    Here,     
        straight A space equals space open square brackets table row 3 cell space space space minus 2 end cell cell space space space space space 1 end cell row 2 cell space space space space space 1 end cell cell space minus 3 end cell row 1 cell space space space space 2 end cell cell space space space space space 1 space end cell end table close square brackets
open vertical bar straight A close vertical bar space equals space open vertical bar table row 3 cell space space space space minus 2 end cell cell space space space 1 end cell row 2 cell space space space space space 1 end cell cell negative 3 end cell row cell negative 1 end cell cell space space space space space 2 end cell cell space space space 1 end cell end table close vertical bar space equals space 3 space open vertical bar table row 1 cell space space space minus 3 end cell row 2 cell space space space space space space 1 end cell end table close vertical bar minus left parenthesis negative 2 right parenthesis space open vertical bar table row cell space space 2 end cell cell space space minus 3 end cell row cell negative 1 end cell cell space space space space space 1 end cell end table close vertical bar plus 1 space open vertical bar table row cell space space 2 end cell cell space space space space 1 end cell row cell negative 1 end cell cell space space space space space 2 end cell end table close vertical bar
space space space space space space equals space 3 space left parenthesis 1 plus 6 right parenthesis space plus space 2 left parenthesis 2 minus 3 right parenthesis space plus space 1 left parenthesis 4 plus 1 right parenthesis space equals space 21 minus 2 plus 5 space equals space 24 space not equal to 0
therefore space space space space space space space straight A to the power of negative 1 end exponent space exists.
    Co-factors of the elements of first row of | A | are
    open vertical bar table row 1 cell space space space minus 3 end cell row 2 cell space space space space space 1 end cell end table close vertical bar comma space space space minus open vertical bar table row cell space space space 2 end cell cell space space space minus 3 end cell row cell negative 1 end cell cell space space space space space 1 end cell end table close vertical bar comma space space space space space open vertical bar table row cell space space 2 end cell cell space space space 1 end cell row cell negative 1 end cell cell space space space 2 end cell end table close vertical bar
    i.e., 7, 1, 5 respectively
    Co-factors of the elements of second row of | A | are
    negative open vertical bar table row cell negative 2 end cell cell space space space 1 end cell row cell space 2 end cell cell space space space 1 end cell end table close vertical bar comma space space space space open vertical bar table row cell space 3 end cell cell space space space 1 end cell row cell negative 1 end cell cell space space space 1 end cell end table close vertical bar comma space space space minus open vertical bar table row cell space space 3 end cell cell space space space minus 2 end cell row cell negative 1 end cell cell space space space space space 2 end cell end table close vertical bar
    i.e.   4,  4, – 4 respectively
    Co-factors of the elements of third row of | A | are
    open vertical bar table row cell negative 2 end cell cell space space space space space space space space 1 end cell row 1 cell space space space space minus 3 end cell end table close vertical bar comma space space space space space minus open vertical bar table row 3 cell space space space space space 1 end cell row 2 cell space space minus 3 end cell end table close vertical bar comma space space space open vertical bar table row 3 cell space space space minus 2 end cell row 2 cell space space space space space 1 end cell end table close vertical bar
    i.e.  5, 11, 7 respectively
    therefore space space space adj. space straight A space equals space open square brackets table row 7 cell space space space space 1 end cell cell space space space 5 end cell row 4 cell space space space 4 end cell cell negative 4 end cell row 5 cell space space space space 11 end cell cell space space space 7 end cell end table close square brackets to the power of apostrophe space space equals space open square brackets table row 7 cell space space space space 4 end cell cell space 5 end cell row 1 cell space space space space 4 end cell cell space 11 end cell row 5 cell space minus 4 end cell 7 end table close square brackets
           straight A to the power of negative 1 end exponent space equals space fraction numerator adj space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space 1 over 24 open square brackets table row 7 cell space space space space 4 end cell cell space space 5 end cell row 1 cell space space space space space 4 space end cell cell space space 11 end cell row 5 cell negative 4 end cell cell space space 7 end cell end table close square brackets

    The given equations are
    3x – 2y + z = 2
    2y + y – 3 z = – 5
    – x + 2y + z = 6
    These equations can be written as
                                open square brackets table row 3 cell space space space space minus 2 end cell cell space space space space space 1 end cell row 2 cell space space space space space 1 end cell cell space minus 3 end cell row cell negative 1 end cell cell space space space space 2 end cell cell space space space space space 1 end cell end table close square brackets space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row cell space space space 2 end cell row cell negative 5 end cell row cell space space 6 end cell end table close square brackets space
    or      AX space equals space straight B space where space straight A space equals space open square brackets table row cell space space 3 end cell cell space space space minus 2 end cell cell space space space 1 end cell row cell space space space 2 end cell cell space space space space 1 end cell cell negative 3 end cell row cell negative 1 end cell cell space space space 2 end cell cell space space 1 end cell end table close square brackets comma space space space straight X space equals space open square brackets table row straight x row straight y row straight z end table close square brackets comma space space straight B space equals space open square brackets table row cell space space 2 end cell row cell negative 5 end cell row cell space space 6 end cell end table close square brackets
    Now  Now space space space AX space equals space straight B space space space space rightwards double arrow space space space space straight X space equals space straight A to the power of negative 1 end exponent straight B
    therefore space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 over 24 open square brackets table row 7 cell space space space 4 end cell cell space space space 5 end cell row 1 cell space space space space 4 end cell cell space space 11 end cell row 5 cell space minus 4 end cell cell space space 7 end cell end table close square brackets space open square brackets table row cell space space space 2 end cell row cell negative 5 end cell row cell space space space 6 end cell end table close square brackets space space space rightwards double arrow space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 over 24 open square brackets table row cell 14 minus 20 plus 30 end cell row cell 2 minus 20 plus 66 end cell row cell 10 plus 20 plus 42 end cell end table close square brackets
rightwards double arrow space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 over 24 open square brackets table row 24 row 48 row 72 end table close square brackets space space space space space space rightwards double arrow space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row 1 row 2 row 3 end table close square brackets
therefore space space space space space straight x space equals space 1 comma space space space space straight y equals space 2 comma space space straight z space equals space 3.

    Question 308
    CBSEENMA12034942

    Investigate for what values of a and b the simultaneous equations:
    x + y + z = 6
    x + 2y + 3z = 10
    x + 2y + az = b have a unique solution.

    Solution

    The given equations are
    x + y + z = 6
    x + 2y + 3z = 10
    x + 2y + az = b
    These equations can be written as
                                   open square brackets table row 1 cell space space space 1 end cell cell space space space 1 end cell row 1 cell space space space 2 end cell cell space space space 3 end cell row 1 cell space space space 2 end cell cell space space space straight a end cell end table close square brackets space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row 16 row 10 row straight b end table close square brackets
    or       AX space equals space straight B space space where space straight A space equals space open square brackets table row 1 cell space space space 1 end cell cell space space 1 end cell row 1 cell space space 2 end cell cell space space 3 end cell row 1 cell space 2 end cell cell space space straight a end cell end table close square brackets space space open square brackets table row straight x row straight y row straight z end table close square brackets space space equals space open square brackets table row 6 row 10 row straight b end table close square brackets
                     open vertical bar straight A close vertical bar space equals space open vertical bar table row 1 cell space space space 1 end cell cell space space space 1 end cell row 1 cell space space space 2 end cell cell space space 3 end cell row 1 cell space space space 2 end cell cell space straight a space end cell end table close vertical bar space equals space 1 left parenthesis 2 straight a minus 6 right parenthesis space minus space 1 space left parenthesis straight a minus 3 right parenthesis space plus space 1 space left parenthesis 2 minus 2 right parenthesis
space space space space space space equals space space 2 straight a minus 6 space minus straight a plus 3 plus 0 space equals space straight a minus 3
    Given system of equation has a unique solution
    when | A | ≠ 0 i.e., a – 3 ≠ i.e., a ≠ 3, and b and may have any value.

    Question 309
    CBSEENMA12034944

    The sum of three numbers is 6. If we multiply third number by 3 and add second number to it, we get 11. By adding first and third numbers, we get double of the second number. Represent it algebraically and find the numbers using matrix method.

    Solution

    Let first, second and third numbers be denoted by x, y and z respectively.
    From given conditions,
    x + y + z = 6
    y + 3z = 11  or    0x + y + 3z = 11
    x + z = 2y   or   x – 2y + z = 0
    These equations can be written as
                     open square brackets table row 1 cell space space space space space space 1 end cell cell space space space 1 end cell row 0 cell space space space space space space 1 end cell cell space space space 3 end cell row 1 cell space space space minus 2 end cell cell space space 1 end cell end table close square brackets space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row 6 row 11 row 0 end table close square brackets comma
    or             AX space equals space straight B space space where space straight A space equals space open square brackets table row 1 cell space space space space 1 end cell cell space space space 1 end cell row 0 cell space space space space 1 end cell cell space space space 3 end cell row 1 cell space minus 2 end cell cell space space space 1 end cell end table close square brackets comma space space straight X space equals space open square brackets table row straight x row straight y row straight z end table close square brackets comma space space space straight B space equals space open square brackets table row 6 row 11 row 0 end table close square brackets space
                       open vertical bar straight A close vertical bar space equals space open vertical bar table row 1 cell space space space 1 end cell cell space space space 1 end cell row 0 cell space space 1 end cell cell space space space 3 end cell row 1 cell negative 2 end cell cell space space 1 end cell end table close vertical bar space equals space 1 space open vertical bar table row 1 cell space space space 3 end cell row cell negative 2 end cell cell space space space 1 end cell end table close vertical bar minus space 1 open vertical bar table row 0 cell space space space 3 end cell row 1 cell space space space 1 end cell end table close vertical bar plus 1 space open vertical bar table row 0 cell space space space space space space space 1 end cell row 1 cell space space space minus 2 end cell end table close vertical bar
space space space space space space space space equals 1 left parenthesis 1 plus 6 right parenthesis space minus space 1 left parenthesis 0 minus 3 right parenthesis space plus space 1 left parenthesis 0 minus 1 right parenthesis space equals space 7 plus 3 minus 1 space equals space 9 space not equal to space 0
therefore space space space space space space space space straight A to the power of negative 1 end exponent space exists.
    Co-factors of the elements of first row of | A | are
    open vertical bar table row cell space space 1 end cell cell space space space 3 end cell row cell negative 2 end cell cell space space space 1 end cell end table close vertical bar comma space space space space minus open vertical bar table row cell space 0 end cell cell space space space 3 end cell row cell space 1 end cell cell space space space 1 end cell end table close vertical bar comma space space space open vertical bar table row 0 cell space space space space space space space 1 end cell row 1 cell space space space minus 2 end cell end table close vertical bar
    i.e.,    1 + 6, – (0 - 3), 0 – 1    i.e. 7, 3, – 1 respectively.
    Co-factors of the elements of second row of | A | are
    negative open vertical bar table row cell space space 1 end cell cell space space space space 1 end cell row cell negative 2 end cell cell space space space space 1 end cell end table close vertical bar comma space space space open vertical bar table row 1 cell space space space space 1 end cell row 1 cell space space space 1 end cell end table close vertical bar comma space space space minus open vertical bar table row 1 cell space space space space space space 1 end cell row 1 cell space space minus 2 end cell end table close vertical bar
    i.e. – (1 + 2), 1 – 1, – (– 2 – 1) i.e. - 3, 0, 3 respectively
    Co-factors of the elements of third row of | A | are
    open vertical bar table row 1 cell space space space space 1 end cell row 1 cell space space space space 3 end cell end table close vertical bar comma space space space space space minus open vertical bar table row 1 cell space space space space 1 end cell row 0 cell space space space space 3 end cell end table close vertical bar comma space space space space open vertical bar table row 1 cell space space space space 1 end cell row 0 cell space space space space 1 end cell end table close vertical bar
    i.e.  3 – 1(3 – 0), 1 – 0 i.e. 2, – 3, 1 respectively.
    therefore space space space space space space space adj space straight A space equals space open square brackets table row cell space space space 7 end cell cell space space space 3 end cell cell space space space minus 1 end cell row cell negative 3 end cell cell space space space space 0 end cell cell space space space space space 3 end cell row cell space space 2 end cell cell space minus 3 end cell cell space space space space 1 end cell end table close square brackets to the power of apostrophe space equals open square brackets table row cell space 7 end cell cell space space minus 3 end cell cell space space space space space space space 2 end cell row cell space 3 end cell cell space space space space space 0 end cell cell space space space minus 3 end cell row cell negative 1 end cell cell space space space space space 3 end cell cell space space space space space space space 1 end cell end table close square brackets space
therefore space space space space space space space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space 1 over 9 open square brackets table row cell space space space 7 end cell cell space space minus 3 end cell cell space space space space space space 2 end cell row cell space space 3 end cell cell space space space space 0 end cell cell space space minus 3 end cell row cell negative 1 end cell cell space space space space 3 end cell cell space space space space space space 1 end cell end table close square brackets
    Now,   Now comma space space space AX space equals space straight B space space space space space space space space space rightwards double arrow space space space space straight X space equals space straight A to the power of negative 1 end exponent straight B
    therefore space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 over 9 open square brackets table row cell space space 7 end cell cell space space minus 3 end cell cell space space space space space 2 end cell row cell space space 3 end cell cell space space space 0 end cell cell space minus 3 end cell row cell negative 1 end cell cell space space space 3 end cell cell space space space space 1 end cell end table close square brackets space open square brackets table row 6 row 11 row 0 end table close square brackets to the power of apostrophe space space space rightwards double arrow space space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 over 9 open square brackets table row cell 42 minus 33 plus 0 end cell row cell 18 plus 0 minus 0 end cell row cell negative 6 plus 33 plus 0 end cell end table close square brackets
rightwards double arrow space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 over 9 open square brackets table row 9 row 18 row 27 end table close square brackets space space space space space rightwards double arrow space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row 1 row 2 row 3 end table close square brackets
therefore space space space space space straight x space equals space 1 comma space space space space space straight y space equals space 2 comma space space space straight z space equals space 3.
therefore space space space space space space required space numbers space are space 1 comma space 2 comma space space 3.

    Question 310
    CBSEENMA12034948

    The cost of 4 kg. onion, 3 kg. wheat and 2 kg. rice is Rs. 60. The cost of 2 kg. onion, 4 kg. wheat and 6 kg. rice is Rs. 90. The cost of 6 kg. onion. 2 kg. wheat and 3 kg. rice is Rs. 70. Find cost of each item per kg. by matrix method.

    Solution

    Let the cost of onion, wheat and rice per kg. be Rs. ,v, Rs. y and Rs. r respectively.
    From given conditions,
    4x + 3y + 2z = 60
    2x + 4y + 6z = 90
    6x + 2y + 3z = 70
    These equations can be written as
                            open square brackets table row 4 cell space space space 3 end cell cell space space space 2 end cell row 2 cell space space space 4 end cell cell space space space 6 end cell row 6 cell space space space 2 end cell cell space space 3 end cell end table close square brackets space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row 60 row 90 row 70 end table close square brackets
       or space space space space space space space space AX space equals space straight B space space where space straight A space equals space open square brackets table row 4 cell space space space 3 end cell cell space space space 2 end cell row 2 cell space space space 4 end cell cell space space space 6 end cell row 6 cell space space space 2 end cell cell space space space 3 end cell end table close square brackets comma space space space space straight X space equals space open square brackets table row straight x row straight y row straight z end table close square brackets comma space space space straight B space equals space open square brackets table row 60 row 90 row 70 end table close square brackets
     open vertical bar straight A close vertical bar space equals space open vertical bar table row 4 cell space space 3 end cell cell space space space 2 end cell row 2 cell space space 4 end cell cell space space space 6 end cell row 6 cell space space 2 end cell cell space space space 3 end cell end table close vertical bar space equals space 4 open vertical bar table row 4 cell space space space 6 end cell row 2 cell space space space 3 end cell end table close vertical bar minus 3 space open vertical bar table row 2 cell space space space space 6 end cell row 6 cell space space space 3 end cell end table close vertical bar plus space 2 space open vertical bar table row 2 cell space space space space 4 end cell row 6 cell space space space space 2 end cell end table close vertical bar
space space space space space space space equals space 4 left parenthesis 12 minus 12 right parenthesis space minus space 3 left parenthesis 6 minus 36 right parenthesis space plus space 2 left parenthesis 4 minus 24 right parenthesis
space space space space space space space space equals 4 left parenthesis 0 right parenthesis space minus space 3 left parenthesis negative 30 right parenthesis space plus space 2 left parenthesis negative 20 right parenthesis space equals space 0 plus 90 minus 40 space equals space 50 space not equal to space 0
therefore space space space space space straight A to the power of negative 1 end exponent space exists.
    Co-factors of the elements of first row of | A | are   
      open vertical bar table row 4 cell space space space 6 end cell row 2 cell space space 3 end cell end table close vertical bar comma space space space space minus open vertical bar table row 2 cell space space space space 6 end cell row 6 cell space space space space 3 end cell end table close vertical bar comma space space open vertical bar table row 2 cell space space space space 4 end cell row 6 cell space space space space 2 end cell end table close vertical bar
    i.e. (12 – 12), – (6 – 36), (4 – 24)   i.e. 0,  30, – 20 respectively.
    Co-factors of the elements of second row of | A | are
    negative open vertical bar table row 3 cell space space space 2 end cell row 2 cell space space space 3 end cell end table close vertical bar comma space space open vertical bar table row 4 cell space space space space 2 end cell row 6 cell space space space 3 end cell end table close vertical bar comma space space space space minus open vertical bar table row 4 cell space space space 3 end cell row 6 cell space space space 2 end cell end table close vertical bar
    i.e. – (9 – 4), (12 – 12), – (8 - 18) i.e. – 5, 0, 10 respectively.
    Co-factors of the elements of third row of | A | are
    open vertical bar table row 3 cell space space space 2 end cell row 4 cell space space space 6 end cell end table close vertical bar comma space space space minus open vertical bar table row 4 cell space space space 2 end cell row 2 cell space space space 6 end cell end table close vertical bar comma space space space open vertical bar table row 4 cell space space space 3 end cell row 2 cell space space space 4 end cell end table close vertical bar
    i.e. (18 – 8), – (24 – 4), (16 – 6),  i.e. 10, – 20, 10 respectively.
      therefore space space space space space space space space adj. space straight A space equals space open square brackets table row cell space space 0 end cell cell space space space space 30 end cell cell space space space minus 20 end cell row cell negative 5 end cell cell space space space space 0 end cell cell space space space space space 10 end cell row 10 cell space space minus 20 end cell cell space space space space space space 10 end cell end table close square brackets to the power of apostrophe space equals space space open square brackets table row 0 cell space space minus 5 end cell cell space space space space 10 end cell row 30 cell space space space space space 0 end cell cell space minus 20 end cell row cell negative 20 end cell cell space space space space space 10 end cell cell space space space space 10 end cell end table close square brackets space space
therefore space space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj space straight A over denominator open vertical bar straight A close vertical bar end fraction space equals space 1 over 50 open square brackets table row cell space space space 0 end cell cell space space space minus 5 end cell cell space space space space space 10 end cell row cell space space space space 30 end cell cell space space space 0 end cell cell space minus 20 end cell row cell negative 20 end cell cell space space 10 end cell cell space space space 10 end cell end table close square brackets
Now comma space space space space space space space AX space equals space straight B space space space space space rightwards double arrow space space space space space straight X space equals space straight A to the power of negative 1 end exponent straight B
therefore space space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space 1 over 50 open square brackets table row 0 cell space space minus 5 end cell cell space space space 10 end cell row 30 cell space space space space 0 end cell cell space minus 20 end cell row cell negative 20 end cell cell space space space 10 end cell cell space space 10 end cell end table close square brackets space open square brackets table row 60 row 90 row 70 end table close square brackets
space space space space space space space space space space space space space space space space space space space equals space 1 over 50 open square brackets table row cell 0 minus 450 plus 700 end cell row cell 1800 plus 0 minus 1400 end cell row cell negative 1200 plus 900 plus 700 end cell end table close square brackets
space space therefore space space space space space space space space space space space space space space space space space space space space equals space 1 over 50 open square brackets table row 5 row 8 row 8 end table close square brackets space space space
therefore space space space space space space space space space space space space space space space space space open square brackets table row straight x row straight y row straight z end table close square brackets space space space equals space open square brackets table row 250 row 400 row 400 end table close square brackets
therefore space space space space space space space space space space space space space space space space space straight x space equals space 5 comma space space space straight y space space equals space 8 comma space space space space straight z space equals space 8.
space
    ∴   the cost of onion, wheat and rice per kg. are Rs. 5, Rs. 8, Rs. 8 respectively.

    Question 312
    CBSEENMA12035655
    Question 314
    CBSEENMA12035692

    If open vertical bar table row cell 3 straight x end cell cell space 7 end cell row cell negative 2 end cell cell space 4 end cell end table close vertical bar space equals open vertical bar table row 8 cell space 7 end cell row 6 cell space 4 end cell end table close vertical bar comma find the value of x.

    Solution

    Given that open vertical bar table row cell 3 straight x end cell cell space space 7 end cell row cell negative 2 end cell cell space 4 end cell end table close vertical bar space equals space open vertical bar table row 8 cell space space space 7 end cell row 6 cell space space space 4 end cell end table close vertical bar
    We need to find the value of x
    open vertical bar table row cell 3 straight x end cell cell space space 7 end cell row cell negative 2 end cell cell space 4 end cell end table close vertical bar space equals space open vertical bar table row 8 cell space space space 7 end cell row 6 cell space space space 4 end cell end table close vertical bar
rightwards double arrow space space space 12 straight x minus left parenthesis negative 14 right parenthesis space equals space 32 minus 42
rightwards double arrow space space 12 straight x plus 14 space equals negative 10
rightwards double arrow space space 12 straight x space equals space minus 10 minus 14
rightwards double arrow space 12 straight x space equals space minus 24
rightwards double arrow space space straight x space equals space minus 2

    Question 315
    CBSEENMA12035711

    Use Properties of determinants, prove that:
    open vertical bar table row cell 1 plus straight a end cell cell space 1 end cell cell space 1 end cell row 1 cell 1 plus straight b end cell 1 row 1 1 cell 1 plus straight c end cell end table close vertical bar space equals space abc plus bc plus ca plus ab

    Solution

    Consider the determinant
    increment space equals open vertical bar table row cell 1 plus straight a end cell 1 1 row 1 cell 1 plus straight b end cell 1 row 1 1 cell 1 plus straight c end cell end table close vertical bar
    Taking abc common outside, we have
    increment equals abc space open vertical bar table row cell 1 over straight a plus 1 end cell cell 1 over straight b end cell cell space 1 over straight c end cell row cell 1 over straight a end cell cell 1 over straight b plus 1 end cell cell 1 over straight c end cell row cell 1 over straight a end cell cell 1 over straight b end cell cell space 1 over straight c plus 1 end cell end table close vertical bar
    Applying the transformation, straight C subscript 1 rightwards arrow straight C subscript 1 plus straight C subscript 2 plus straight C subscript 3 comma
    increment equals space abc open vertical bar table row cell 1 plus 1 over straight a plus 1 over straight b plus 1 over straight c space space space end cell cell 1 over straight b end cell cell 1 over straight c end cell row cell 1 plus 1 over straight a plus 1 over straight b plus 1 over straight c end cell cell space 1 over straight b plus 1 end cell cell 1 over straight c end cell row cell 1 plus 1 over straight a plus 1 over straight b plus 1 over straight c end cell cell 1 over straight b end cell cell space space 1 over straight c plus 1 end cell end table close vertical bar
    rightwards double arrow increment equals abc open parentheses 1 plus 1 over straight a plus 1 over straight b plus 1 over straight c close parentheses space open vertical bar table row 1 cell 1 over straight b end cell cell 1 over straight c end cell row cell 1 space end cell cell 1 over straight b plus 1 end cell cell 1 over straight c end cell row 1 cell 1 over straight b end cell cell 1 over straight c plus 1 end cell end table close vertical bar
    Apply the transformations, straight R subscript 2 rightwards arrow straight R subscript 1 space and space straight R subscript 3 rightwards arrow straight R subscript 3 minus straight R subscript 1
    increment equals abc open parentheses 1 plus 1 over straight a plus 1 over straight b plus 1 over straight c close parentheses space open vertical bar table row 1 cell space 1 over straight b end cell cell 1 over straight c end cell row 1 1 0 row 1 0 1 end table close vertical bar
    Expanding along straight C subscript 1, we have
    increment equals abc open parentheses 1 plus 1 over straight a plus 1 over straight b plus 1 over straight c close parentheses cross times 1 cross times open vertical bar table row 1 0 row 0 1 end table close vertical bar
rightwards double arrow space increment equals abc open parentheses 1 plus 1 over straight a plus 1 over straight b plus 1 over straight c close parentheses equals abc plus ab plus bc plus ca

    Question 316
    CBSEENMA12035727
    Question 317
    CBSEENMA12035737

    Using properties of determinants prove the following:
    open vertical bar table row 1 cell space space straight x end cell cell space space straight x squared end cell row cell straight x squared end cell cell space 1 end cell straight x row straight x cell space straight x end cell 1 end table close vertical bar space equals space left parenthesis 1 minus straight x cubed right parenthesis squared

    Solution
    increment space equals space open vertical bar table row 1 cell space space straight x end cell cell space straight x squared end cell row cell straight x squared end cell cell space 1 end cell straight x row straight x cell space straight x squared end cell 1 end table close vertical bar
    Applying straight R subscript 1 rightwards arrow straight R subscript 1 plus straight R subscript 2 plus straight R subscript 3 comma space we have
    increment space equals space open vertical bar table row cell 1 plus straight x plus straight x squared end cell cell 1 plus straight x plus straight x squared end cell cell 1 plus straight x plus straight x squared end cell row cell straight x squared end cell 1 straight x row straight x cell straight x to the power of 21 end cell blank end table close vertical bar
equals space left parenthesis 1 plus straight x plus straight x squared right parenthesis space open vertical bar table row 1 cell space space 1 end cell cell space space space 1 end cell row cell straight x squared end cell cell space space 1 end cell cell space space straight x end cell row straight x cell space space straight x squared end cell cell space space space 1 end cell end table close vertical bar
      Applying space straight C subscript 2 rightwards arrow straight C subscript 2 minus straight C subscript 1 space and space straight C subscript 3 minus straight C subscript 1 comma space we space have colon
increment space equals space left parenthesis 1 plus straight x plus straight x squared right parenthesis space open vertical bar table row 1 cell space space space 0 end cell cell space space 0 end cell row cell straight x squared end cell cell space 1 minus straight x squared end cell cell space space straight x minus straight x squared end cell row straight x cell space 1 plus straight x squared end cell cell space 1 minus straight x end cell end table close vertical bar
equals left parenthesis 1 plus straight x plus straight x squared right parenthesis thin space left parenthesis 1 minus straight x right parenthesis left parenthesis 1 minus straight x right parenthesis space open vertical bar table row 1 cell space 0 end cell cell space 0 end cell row cell straight x squared end cell cell 1 plus straight x end cell cell space straight x end cell row straight x cell negative straight x end cell cell space 1 end cell end table close vertical bar
equals left parenthesis 1 minus straight x cubed right parenthesis left parenthesis 1 minus straight x right parenthesis open vertical bar table row 1 cell space 0 end cell cell space 0 end cell row cell straight x squared space end cell cell 1 plus straight x end cell cell space straight x end cell row straight x cell negative straight x end cell cell space 1 end cell end table close vertical bar
    Expanding along R1, we have:
    increment equals left parenthesis 1 minus straight x cubed right parenthesis left parenthesis 1 minus straight x right parenthesis thin space left parenthesis 1 right parenthesis space open vertical bar table row cell 1 plus straight x end cell cell space space space straight x end cell row cell negative straight x end cell cell space space 1 end cell end table close vertical bar
space space space equals left parenthesis 1 minus straight x cubed right parenthesis left parenthesis 1 minus straight x right parenthesis left parenthesis 1 plus straight x plus straight x squared right parenthesis
space space space equals left parenthesis 1 minus straight x cubed right parenthesis left parenthesis 1 minus straight x cubed right parenthesis
space space space equals left parenthesis 1 minus straight x cubed right parenthesis squared
Hence space proved.
    Question 318
    CBSEENMA12035772
    Question 319
    CBSEENMA12035785

    Use product open square brackets table row 1 cell negative 1 end cell 2 row 0 2 cell negative 3 end cell row 3 cell negative 2 end cell 4 end table close square brackets space space open square brackets table row cell negative 2 end cell 0 1 row 9 2 cell negative 3 end cell row 6 1 cell negative 2 end cell end table close square bracketsto solve the system of equations x + 3z = 9,
    –x + 2y – 2z = 4, 2x – 3y + 4z = –3

    Solution
    straight A space equals open square brackets table row 1 cell negative 1 end cell 2 row 0 2 cell negative 3 end cell row 3 cell negative 2 end cell 4 end table close square brackets space straight B space equals space open square brackets table row cell negative 2 end cell 0 1 row 9 2 cell negative 3 end cell row 6 1 cell negative 2 end cell end table close square brackets
AxB space equals space open square brackets table row 1 cell negative 1 end cell 2 row 0 2 cell negative 3 end cell row 3 cell negative 2 end cell 4 end table close square brackets space open square brackets table row cell negative 2 end cell 0 1 row 9 2 cell negative 3 end cell row 6 1 cell negative 2 end cell end table close square brackets
space equals open square brackets table row cell negative 2 minus 9 plus 12 space end cell cell space 0 minus 2 plus 2 space end cell cell space 1 plus 3 minus 4 space end cell row cell 0 plus 18 minus 18 space end cell cell space 0 plus 4 minus 3 space end cell cell space 0 minus 6 plus 6 end cell row cell negative 6 minus 18 plus 24 space end cell cell space 0 minus 4 plus 4 space end cell cell space 3 plus 6 minus 8 end cell end table close square brackets
equals open square brackets table row 1 0 0 row 0 1 0 row 0 0 1 end table close square brackets

    Since A X B = I,
    therefore, B = A-1..... (i)
    Now, the given system of equations is
    x+3z =9
    -x+2y-2z =4
    2x-3y+4z = -3
    This can also be represented as,
    open square brackets table row 1 0 3 row cell negative 1 end cell 2 cell negative 2 end cell row 2 cell negative 3 end cell 4 end table close square brackets open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row 9 row 4 row cell negative 3 end cell end table close square brackets
Here comma space we space can space observe space that space open square brackets table row 1 0 3 row cell negative 1 end cell 2 cell negative 2 end cell row 2 cell negative 3 end cell 4 end table close square brackets space equals space straight A to the power of straight T
So comma space straight A to the power of straight T space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row 9 row 4 row cell negative 3 end cell end table close square brackets
Multiply space the space above space expression space by space left parenthesis straight A to the power of straight T right parenthesis to the power of negative 1 end exponent
open square brackets table row straight x row straight y row straight z end table close square brackets space equals space left parenthesis straight A to the power of straight T right parenthesis to the power of negative 1 end exponent space open square brackets table row 9 row 4 row cell negative 3 end cell end table close square brackets
open square brackets table row straight x row straight y row straight z end table close square brackets space equals space left parenthesis straight A to the power of straight T right parenthesis to the power of negative 1 end exponent space open square brackets table row 9 row 4 row cell negative 3 end cell end table close square brackets
open square brackets table row straight x row straight y row straight z end table close square brackets space equals space left parenthesis straight B right parenthesis to the power of straight T space space space space space open square brackets table row 9 row 4 row cell negative 3 end cell end table close square brackets
equals open square brackets table row cell negative 2 end cell 0 1 row 9 2 cell negative 3 end cell row 6 1 cell negative 2 end cell end table close square brackets to the power of straight T open square brackets table row 9 row 4 row cell negative 3 end cell end table close square brackets
equals open square brackets table row cell negative 18 plus 36 minus 18 end cell row cell 0 plus 8 minus 3 end cell row cell 9 minus 12 plus 6 end cell end table close square brackets
equals open square brackets table row 0 row 5 row 3 end table close square brackets
    Hence x=0 y=5 and =3

    Question 320
    CBSEENMA12035809

    Using properties of determinants, prove that

    111+3x1+ 3y1111+3z1 = 9 (3xyz + xy + yz + zx)

    Solution

    L.H.S = 111+3x1 +3y1111+3z1C1C1 -C2; C3 C3 -C2 = 013x3y10-3z1+3z-3z = (3x3) 01xy10-z1+3z-z = 9[-1(-yz -0) + x (y +3zy + z)= 9 (yz + xy + 3xyz + xz) = 9 (yz + 3xyz + xz)=  9(3xyz + xy + yz +zx) = R.H.S

    Question 321
    CBSEENMA12035830

    Evaluate: a + ibc + id-c + ida - ib

    Solution

    a + ibc + id-c + ida - ib    =  (a + ib) (a - ib) - (c + id) (-c + id)                                 = ( a2  - i2b2) -  (-c2 +  i2d2)                                 =    ( a2  + b2) -  (-c2 -  d2)         .........( i2 = -1)                                 =   a2  + b2 +c2 +  d2)

    Question 322
    CBSEENMA12035831

    Find the co-factor of a12 in the following:

    2-3560415-7

    Solution

    2-3560415-7

    Cofactor of a12 = ( -1 )1+2 [ 6(-7) - 4(1) ]

                          = (-1) [ -42 - 4 ]

                          = 46

    Question 323
    CBSEENMA12035853

    Using properties of determinants, prove the following:

    αβγα2β2γ2β + γ     γ + α     α + β = α - β β - γ  γ - α α + β + γ

    Solution

     = α    β   γα2    β2    γ2β + γ    γ + α    α + βApplying  R3  R3 + R1 = α    β    γα2    β2     γ2α+ β + γ    α+ β + γ    α+ β + γ    = α+ β + γ α    β   γα2    β2    γ21   1    1Applying  C1C1 - C2    and   C2C2 - C3   

     

     = α + β + γ = α - β   β - γ   γα2 - β2    β2 - γ 2    γ20     0      0       = (α + β + γ ) (α - β) (β - γ ) 1  1   1α + β   β + γ     γ0     0      0          =  (α + β + γ ) (α - β) (β - γ ) 1 (β + γ ) -1 (α + β)      = (α - β) (β - γ )  (α + β + γ ) ( β + γ - α - β )     = (α - β) (β - γ ) (γ - α )  (α + β + γ )

    Hence proved.

    Question 324
    CBSEENMA12035871

    Write the value of the determinant  2    3   4 5  6   86x  9x  12x

    Solution

     = 2  3  45  6  86x  9x  12xR3  13xR3 = 2  3  45  6  82  3  4Now,   R1 =R3    = 0

    Question 325
    CBSEENMA12035886

    Using properties of determinants prove the following:

    a bca - b    b - c   c - ab + c   c + a    a + b = a3 + b3 + c3 - 3abc

    Solution

     = a  b  ca - b   b - c    c - ab + c   c + a    a + bApplying  C1  C1 + C2+C3  = a + b + c  b   c0     b - c      c - a2a + b + c    c + a    a + b = a + b + c 1    b   c0     b - c    c - a2     c + a    a + bR3  R3 - 2R1 = a + b + c 1      b     c 0     b - c    c - a0     c + a - 2b    a + b - 2c

    Expanding along  C1, We have,

    = a + b + c    b - c   a + b - 2c  -  c - a   c + a - 2b  = a + b + c    ba + b2 - 2bc - ca - cb + 2c2   c2 + ac - 2bc - ac - a2 + 2ab  = a + b + c   a2 + b2 + c2 - ca - bc - ab = a + b + c   a2 + b2 + c2 - ab - bc - ac =a3 + b3 + c3 - 3abc = R.H.S.                  

    Question 326
    CBSEENMA12035903

    Find the minor of the element of second row and third column ( a23 ) in the following determinant:

      2  -3   56   0  41   5 -7  

    Solution

    Given determinant =  2  -3   56    0  41    5-7 

    Minor of the element  a23  is  M23

    Obtained by deleting III column and II row

    M23 =  2 -31    5       = 10 - ( -3 )       = 13

    Question 327
    CBSEENMA12035928

    Using properties of determinants show the following:

     b + c 2   ab caab       a + c 2  bcac     bc   a + b 2 = 2abc ( a + b + c )3

    Solution

    Consider,

     = ( b + c )2   ab  acab    ( a + c )2  bcac    bc    ( a + b )2By performing R1  a R1,   R2  b R2,  R3  c R3  and dividing the determinant by abc, we get = 1abc a ( b + c )2   a2b  a2cab2    b ( a + c )2  b2cac2    bc2   c  ( a + b )2

     

    Now, taking  a,  b,  c  common from C1, C2,  and  C3

     = abcabc ( b + c )2   a2   a2b2   ( a + c )2   b2c2    c2   ( a + b )2  = ( b + c )2   a2   a2b2   ( c + a )2   b2c2    c2   ( a + b )2Applying  C1  C1 - C2,     C2  C2 - C3  = ( b + c )2 - a2    0     a2 b2 -( c + a )2     ( c + a )2 - b2    b20     c2 -  ( a + b )2    ( a + b )2 =  a + b + c 2   b + c - a    0    a2 b - c - a        c + a - b    b20        c - a - b     ( a + b )2

     

    Applying  R3  R3 - ( R1 + R2 ) =  a + b + c 2  b + c -a 0  a2b - c -a   c + a - b    b2 2a - 2b-2a   2ab 

    Applying  C1  C1 + C2 =  a + b + c 2  b + c - a   0 a20     c + a - b   b2-2b     -2a 2ab Applying  C3  C3 + bC2 =  a + b + c 2  b + c - a   0 a20     c + a - b   bc + ab-2b     -2a 0 

    Applying  C1   aC1   and   C2   bC2 =  a + b + c 2ab ab + ac - a20     a20     bc + ab - b2    bc + ab-2ab    -2ab      0Applying  C1   C1 - C2 =  a + b + c 2ab ab + ac - a20     a2-bc - ab + b2     bc + ab - b2    bc + ab0    -2ab      0

    Expanding along R3

    =  a + b + c 2ab    2ab  ab2c + a2b2 + abc2 + a2bc - a2bc - a3b + a2bc + a3b - a2b2  = 2 ( a + b + c )2 (  ab2c +  abc2 + a2bc )= 2 ( a + b + c )3 abc= 2 abc  ( a + b + c )3 = R.H.S.

    Question 328
    CBSEENMA12035945

    Using properties of determinants, prove that

      - a2      ab         ac     ba -b2      bc    ca  cb  - c2  = 4 a2b2c2

    Solution

      - a2     ab  ac  ba - b2     bc ca cb - c2   = abc   - a     b   c   a - b        c   a b  - c   

     

    [ Taking out   a, b,  and  c  common from  R1,  R2,  and  R3   respectively]

     

    = a2b2c2   - 1        1   1    1  - 1  1    1       1  - 1     

     

    [ Taking out   a, b,  and  c  common from  C1,  C2,  and  C3   respectively] 

     

    = a2b2c2  -1   1   1     0    0    2     0   2  0         .......... [ Applying  R2   R2 + R1  and  R3  R3 + R1 ]

     

     = a2 b2 c2   - 1   0 x 0 - 2 x 2 = a2 b2 c2  -  0 - 4  = 4 a2 b2 c2

    Hence proved.

    Question 329
    CBSEENMA12035958

    Using matrix method, solve the following system of equations:

    2x + 3y + 10z = 4,       4x - 6y + 5z,       6x + 9y - 20z;    x, y, z  0

    Solution

    The given system of equation is  2x + 3y + 10z = 4,    4x - 6y + 5z = 1,   6x  + 9y - 20z = 2

    The given system of equation can be written as 

     2       3      104  - 6        56      9  - 20  1 x  1y 1y = 412Or  AX = B,  where  A =  2       3       104  - 6         56      9  - 20 ,    X = 1 x  1y 1y,      and  B = 412 Now,   A  =  2       3       104  - 6         56       9  - 20                      = 2 ( 120 - 45 ) - 3 ( - 80 - 30 ) + 10 ( 36 + 36 )                     = 1200  0

    Hence, the unique solution of the system of equation is given by  X = A- 1 B

    Now, the cofactors of  A  are computed as:

     

    C11 = ( - 1 )2   120 - 45  = 75,             C12 = ( - 1 )3   - 80 - 30  = 110,           C13 = ( - 1 )4  36 + 36   = 72C21 = ( - 1 )3   - 60 - 90  = 150,        C22 = ( - 1 )4  - 60 - 90  = 150,             C23 = ( - 1 )5  18 - 18  = 0C31 = ( - 1 )4  15+ 60   =75,                 C32 = ( - 1 )5   10 - 40  =30,                     C33 = ( - 1 )6   - 12 - 12  = - 24

     

     Adj A =  75     110      72150     -100          075      30 - 24 T =  75     150       75110     -100          3072         0   - 24  A-1 = Adj A A  = 11200  75     150       75110     -100          3072         0   - 24 X =  A-1  B     = 11200  75     150       75110     -100          3072         0   - 24   4 1 2     =11200  3000 + 150 + 150440 - 100 + 60288 + 0 - 48   = 11200   600 400 240 

     

    X =  6001200 40012002401200   =    121315      1x1y1z   =   121315  1x = 12,      1y = 13,    and    1z = 15 x = 2,   y = 3,    and    z = 5

    Thus, solution of given system of equation is given by  x = 2,   y = 3,   z = 5.

    Question 330
    CBSEENMA12036009

    If A = open square brackets table row cell 5 straight a end cell cell negative straight b end cell row 3 2 end table close square brackets and A adj A = AAT, then 5a +b is equal to

    • -1

    • 5

    • 4

    • 5

    Solution

    B.

    5

    Given, A =open square brackets table row cell 5 straight a end cell cell negative straight b end cell row 3 2 end table close square brackets and A adj A = AAT, Clearly, A (adj A) = |A|In|
    space equals space open vertical bar table row cell 5 straight a end cell cell negative straight b end cell row 3 2 end table close vertical bar straight I subscript 2
space equals space left parenthesis 10 straight a space plus space 3 straight b right parenthesis straight I subscript 2 space equals space left parenthesis 10 straight a space plus space 3 straight b right parenthesis open square brackets table row 1 0 row 0 1 end table close square brackets
equals open square brackets table row cell 10 straight a plus 3 straight b end cell 0 row 0 cell 10 straight a plus 3 straight b end cell end table close square brackets space.... space left parenthesis straight i right parenthesis
and space AA to the power of straight T space equals space open square brackets table row cell 5 straight a end cell cell negative straight b end cell row 3 2 end table close square brackets open square brackets table row cell 5 straight a end cell 3 row cell negative straight b end cell 2 end table close square brackets
equals open square brackets table row cell 25 straight a squared plus straight b squared end cell cell 15 straight a minus 2 straight b end cell row cell 15 straight a minus 2 straight b end cell 13 end table close square brackets space... space left parenthesis ii right parenthesis
because space straight A space left parenthesis adj space straight A right parenthesis space equals space AA to the power of straight T
therefore space open square brackets table row cell 10 straight a plus 3 straight b end cell 0 row 0 cell 10 straight a plus 3 straight b end cell end table close square brackets space equals open square brackets table row cell 25 straight a squared plus straight b squared end cell cell 15 straight a minus 2 straight b end cell row cell 15 straight a minus 2 straight b end cell 13 end table close square brackets space
using space eqs space left parenthesis straight i right parenthesis space and space left parenthesis ii right parenthesis
rightwards double arrow space 15 straight a minus space 2 straight b equals space 0 space
rightwards double arrow space fraction numerator 2 straight b over denominator 15 end fraction space space space.. left parenthesis iii right parenthesis
and space 10 space straight a space plus space 3 straight b space equals space 13
On space substituting space the space value space of space apostrophe straight a apostrophe space from space Eq. space left parenthesis iii right parenthesis space in space eq space left parenthesis iv right parenthesis comma space we space get
10. open parentheses fraction numerator 2 straight b over denominator 15 end fraction close parentheses plus 3 straight b space equals space 13
rightwards double arrow space fraction numerator 20 straight b space plus space 45 straight b over denominator 15 end fraction space equals space 13 space rightwards double arrow space fraction numerator 65 straight b over denominator 15 end fraction space equals space 13
    Now, substituting the value of b in Eq. (iii) we get 
    5a = 2
    Hence, 5a + b = 2 +3 = 5

    Question 331
    CBSEENMA12036010

    The system of linear equations x+λy−z=0; λx−y−z=0; x+y−λz=0 has a non-trivial solution for

    • infinitely many values of λ.

    • exactly one value of λ.

    • exactly two values of λ.

    • exactly three values of λ.

    Solution

    D.

    exactly three values of λ.

    Given system of linear equations is 
    x+λy−z=0;
    λx−y−z=0;
    x+y−λz=0 
    Note that, given system will have a non-trivial solution only if the determinant of the coefficient matrix is zero, ie.
    open vertical bar table row 1 straight lambda cell negative 1 end cell row straight lambda cell negative 1 end cell cell negative 1 end cell row 1 1 cell negative straight lambda end cell end table close vertical bar space equals 0

rightwards double arrow space 1 space left parenthesis straight lambda space plus 1 right parenthesis minus straight lambda left parenthesis negative straight lambda squared space plus 1 right parenthesis minus 1 left parenthesis straight lambda plus 1 right parenthesis space equals 0
rightwards double arrow space space straight lambda plus 1 space plus straight lambda squared minus straight lambda minus straight lambda minus 1 space equals 0
rightwards double arrow straight lambda cubed minus straight lambda space equals space 0
rightwards double arrow straight lambda left parenthesis straight lambda squared minus 1 right parenthesis space equals 0
straight lambda space equals space 0 space or space straight lambda space plus-or-minus 1
    Hence, given system of linear equation has a non-trivial solution for exactly three values of λ.

    Question 332
    CBSEENMA12036030

    A = open square brackets table row 1 2 2 row 2 1 cell negative 2 end cell row straight a 2 straight b end table close square brackets is a matrix satisfying the equation AAT = 9I, Where I is 3 x 3 identity matrix, then the ordered pair (a,b) is equal to

    • (2,-1)

    • (-2,1)

    • (2,1)

    • (-2,-1)

    Solution

    D.

    (-2,-1)

    Given, 
    straight A space equals space open square brackets table row 1 2 2 row 2 1 cell negative 2 end cell row straight a 2 straight b end table close square brackets
straight A to the power of straight T space equals space open square brackets table row 1 2 straight a row 2 1 cell negative 2 end cell row 2 cell negative 2 end cell straight b end table close square brackets
AA to the power of straight T space equals space open square brackets table row 1 2 2 row 2 1 cell negative 2 end cell row straight a 2 straight b end table close square brackets open square brackets table row 1 2 straight a row 2 1 cell negative 2 end cell row 2 cell negative 2 end cell straight b end table close square brackets
equals space open square brackets table row 9 0 cell straight a plus 4 plus 2 straight b end cell row 0 9 cell space 2 straight a plus 2 minus 2 straight b end cell row cell straight a plus 4 plus 2 straight b end cell cell space 2 straight a plus 2 minus 2 straight b end cell cell space straight a squared plus 4 plus straight b squared end cell end table close square brackets.
    It is given that,
    open square brackets table row 9 0 cell space space space straight a plus 4 plus 2 straight b end cell row 0 9 cell space space space space 2 straight a plus 2 minus 2 straight b end cell row cell straight a plus 4 plus 2 straight b end cell cell space space 2 straight a plus 2 minus 2 straight b end cell cell space space space space straight a squared plus 4 plus straight b squared end cell end table close square brackets space equals space 9 open square brackets table row 1 0 0 row 0 1 0 row 0 0 1 end table close square brackets

rightwards double arrow
open square brackets table row 9 0 cell space space space straight a plus 4 plus 2 straight b end cell row 0 9 cell space space space space 2 straight a plus 2 minus 2 straight b end cell row cell straight a plus 4 plus 2 straight b end cell cell space space 2 straight a plus 2 minus 2 straight b end cell cell space space space space straight a squared plus 4 plus straight b squared end cell end table close square brackets space equals space 9 open square brackets table row 9 0 0 row 0 9 0 row 0 0 9 end table close square brackets
    On comparing we get,
    a+ 4 +2b = 0
    a+ 2b = -4   ... (i)
    2a + 2-2b = 0
    a-b= -1    ... (ii)
    a2 + 4 +b2 = 9  ... (iii)
    On solving eqs. (i) and (ii) we get
    a = - 2, b = - 1
    Hence, (a,b) ≡ (-2,-1)

    Question 334
    CBSEENMA12036047

    If α, β ≠ 0 and f(n) = αn+ βn and 

    open vertical bar table row 3 cell 1 plus straight f left parenthesis 1 right parenthesis space space space space end cell cell 1 plus space straight f left parenthesis 2 right parenthesis end cell row cell 1 plus straight f left parenthesis 1 right parenthesis space space space space space end cell cell 1 plus straight f left parenthesis 2 right parenthesis space space space space space space end cell cell 1 plus straight f left parenthesis 3 right parenthesis end cell row cell 1 plus straight f left parenthesis 2 right parenthesis space space space end cell cell 1 plus straight f left parenthesis 3 right parenthesis space space space space space space space end cell cell 1 plus space straight f left parenthesis 4 right parenthesis end cell end table close vertical bar
    = K(1-α)2(1-β)2(α- β)2, then K is equal to 

    • αβ 

    • 1/αβ 

    • 1

    • -1

    Solution

    C.

    1

    f(n) = αn + βn
    f(1) = α + β
    f(2) = α2 + β2 
    f(3) =α3 + β3
    f(4) = α4 + β4

    Let Δ = open vertical bar table row 3 cell 1 plus straight f left parenthesis 1 right parenthesis space space space space end cell cell 1 plus space straight f left parenthesis 2 right parenthesis end cell row cell 1 plus straight f left parenthesis 1 right parenthesis space space space space space end cell cell 1 plus straight f left parenthesis 2 right parenthesis space space space space space space end cell cell 1 plus straight f left parenthesis 3 right parenthesis end cell row cell 1 plus straight f left parenthesis 2 right parenthesis space space space end cell cell 1 plus straight f left parenthesis 3 right parenthesis space space space space space space space end cell cell 1 plus space straight f left parenthesis 4 right parenthesis end cell end table close vertical bar

    open vertical bar table row 3 cell 1 plus straight alpha space plus space straight beta space space space space end cell cell 1 plus space straight alpha squared space plus space straight beta squared space end cell row cell 1 plus straight alpha space plus space straight beta space space space space space end cell cell 1 plus straight alpha squared space plus space straight beta squared space space space space space space space end cell cell 1 plus straight alpha cubed space plus space straight beta cubed space end cell row cell 1 plus straight alpha squared space plus space straight beta squared space space end cell cell 1 plus straight alpha cubed space plus space straight beta cubed space space space space space space space space end cell cell 1 plus straight alpha to the power of 4 space plus space straight beta to the power of 4 space end cell end table close vertical bar
equals space open vertical bar table row cell 1.1 plus 1.1 plus 1.1 end cell cell 1.1 plus 1. straight alpha space plus 1 space. straight beta space space space space end cell cell 1 plus space 1. straight alpha squared space plus space 1. straight beta squared space end cell row cell 1.1 plus 1. straight alpha space plus 1. space straight beta space space space space space end cell cell 1.1 plus straight alpha. straight alpha space plus space straight beta. straight beta space space space space space space space end cell cell 1 plus straight alpha. straight alpha squared space plus space. ββ squared end cell row cell 1.1 plus 1. straight alpha squared space plus space 1. space straight beta squared space space end cell cell 1 plus straight alpha squared. straight alpha space plus space straight beta squared. straight beta space space space space space space space space end cell cell 1 plus straight alpha squared straight alpha squared space plus space straight beta squared. straight beta squared space end cell end table close vertical bar

equals space open vertical bar table row 1 1 1 row 1 straight alpha straight beta row 1 cell straight alpha squared end cell cell straight beta squared end cell end table close vertical bar open vertical bar table row 1 1 1 row 1 straight alpha straight beta row 1 cell straight alpha squared end cell cell straight beta squared end cell end table close vertical bar space equals space open vertical bar table row 1 1 1 row 1 straight alpha straight beta row 1 cell straight alpha squared end cell cell straight beta squared end cell end table close vertical bar squared
    On expanding, we get
    Δ = (1- α2 + (1-β2 )(α-β)2
    Δ =  K(1-α)2(1-β)2(α- β)2
    K=1
    Question 335
    CBSEENMA12036048

    If A is a 3x3 non- singular matrix such that AAT = ATA, then BBT is equal to

    • l +B
    • l
    • B-1

    • (B-1)T

    Solution

    B.

    l

    If A is non - singular matrix then |A| ≠0
    AAT = ATA and B = A-1AT
    BBT = (A-1AT)(A-1AT)T
    = A-1ATA(A-1)T       [∵ (AB)T= BTAT]
    =A-1AAT(A-1)T        [∵ AAT = ATA]
    =AT(A-1)T              [ ∵A-1A = l]
    =A-1A)T                 [∵ (AB)T = BTAT]
    lTl

    Question 336
    CBSEENMA12036076

    Let P and Q be 3 × 3 matrices with P ≠ Q. If P3= Qand P2Q = Q2P, then determinant of(P2+ Q2) is equal to

    • -2

    • 1

    • 0

    • -1

    Solution

    C.

    0

    P3= Q3
    P3– P2Q = Q3– Q2P
    P2(P – Q) = Q2(Q – P)
    P2(P – Q) + Q2(P – Q) = O
    (P2+ Q2)(P – Q) = O
    ⇒ |P2+ Q2| = 0

    Question 337
    CBSEENMA12036101

    The number of values of k for which the linear equations
    4x + ky + 2z = 0
    kx + 4y + z = 0
    2x + 2y + z = 0
    posses a non-zero solution is:

    • 3

    • 2

    • 1

    • 0

    Solution

    B.

    2

    increment space equals open vertical bar table row 4 straight k 2 row straight k 4 1 row 2 2 1 end table close vertical bar space equals space 0
    ⇒ 8 - k(k -2) - 2(2k - 8) = 0
    ⇒ 8 - k2 + 2k - 4k + 16 = 0
    ⇒ -k2 - 2k + 24 = 0
    ⇒ k2 + 2k - 24 = 0
    ⇒ (k + 6)(k - 4) = 0
    ⇒ k = - 6, 4
    Number of values of k is 2

    Question 338
    CBSEENMA12036102

    Consider the system of linear equation
    x1 + 2x2 + x3 = 3
    2x1 + 3x2 + x3 = 3
    3x1 + 5x2 + 2x3 = 1
    The system has

    • infinite number of solutions

    • exactly 3 solutions

    • a unique solution

    • no solution

    Solution

    D.

    no solution

    Subtracting the Eq. (ii) – Eq. (i)
    We get x1 + x2 = 0
    Subtract equations
    Eq. (iii) – 2 × eq. (ii)
    x1 + x2 = 5

    Therefore, no solutions

    Question 340
    CBSEENMA12036136

    If A, open square brackets table row 2 cell negative 3 end cell row cell negative 4 end cell 1 end table close square bracketsthen adj (3A2 + 12A) is equal to

    • open square brackets table row 72 cell negative 63 end cell row cell negative 84 end cell 51 end table close square brackets
    • open square brackets table row 72 cell negative 84 end cell row cell negative 63 end cell 51 end table close square brackets
    • open square brackets table row 51 63 row 84 72 end table close square brackets
    • open square brackets table row 51 84 row 63 72 end table close square brackets

    Solution

    C.

    open square brackets table row 51 63 row 84 72 end table close square brackets Given space straight A space equals space open square brackets table row 2 cell negative 3 end cell row cell negative 4 end cell 1 end table close square brackets
3 straight A squared space equals space open square brackets table row 16 cell negative 9 end cell row cell negative 12 end cell 13 end table close square brackets
12 space straight A space equals space open square brackets table row 24 cell negative 36 end cell row cell negative 48 end cell 12 end table close square brackets
therefore space 3 straight A squared space plus space 12 space straight A space equals space open square brackets table row 72 cell negative 63 end cell row cell negative 84 end cell 51 end table close square brackets
adj space left parenthesis 3 straight A squared space plus space 12 space straight A right parenthesis space equals space open square brackets table row 51 63 row 84 72 end table close square brackets
    Question 342
    CBSEENMA12036169

    Let A be a square matrix all of whose entries are integers. Then which one of the following is true?

    • If det A = ± 1, then A–1 exists but all its entries are not necessarily integers

    • If detA ≠ ± 1, then A–1 exists and all its entries are non-integers

    • If detA = ± 1, then A–1 exists and all its entries are integers

    • If detA = ± 1, then A–1 need not exist

    Solution

    C.

    If detA = ± 1, then A–1 exists and all its entries are integers

    Each entry of A is integer, so the cofactor of every entry is an integer and hence each entry in the adjoint of matrix A is integer. Now detA = ± 1 and A–1 =(1/ det(A)) (adj A)
    ⇒ all entries in A–1 are integers

    Question 343
    CBSEENMA12036170

    Let a, b, c be any real numbers. Suppose that there are real numbers x, y, z not all zero such that x = cy + bz, y = az + cx and z = bx + ay. Then a2 + b2 + c2 + 2abc is equal to

    • 2

    • -1

    • 0

    • 1

    Solution

    D.

    1

    The system of equations x – cy – bz = 0, cx – y + az = 0 and bx + ay – z = 0 have non-trivial solution if
    open vertical bar table row 1 cell negative straight c end cell cell negative straight b end cell row straight c cell negative 1 end cell straight a row straight b straight a cell negative 1 end cell end table close vertical bar space equals space 0 space
rightwards double arrow space 1 left parenthesis space 1 minus straight a squared right parenthesis space plus space straight c left parenthesis negative straight c minus ab right parenthesis minus straight b left parenthesis ca plus straight b right parenthesis space equals space 0 space
rightwards double arrow space straight a squared space plus straight b squared space plus space straight c squared space plus space 2 abc space equals space 1

    Question 344
    CBSEENMA12036177

    If D = open vertical bar table row 1 1 1 row 1 cell 1 plus straight x end cell 1 row 1 1 cell 1 plus straight y end cell end table close vertical barfor x ≠ 0, y ≠ 0 then D is

    • divisible by neither x nor y

    • divisible by both x and y

    • divisible by x but not y

    • divisible by y but not x

    Solution

    B.

    divisible by both x and y

    straight D space equals space open vertical bar table row 1 1 1 row 1 cell 1 plus straight x end cell 1 row 1 1 cell 1 plus straight y end cell end table close vertical bar
    C2 → C2 – C1 & C3 → C3 – C1
    open vertical bar table row 1 0 0 row 1 straight x 0 row 1 0 straight y end table close vertical bar space equals space xy

    Hence D is divisible by both x and y.
    Question 345
    CBSEENMA12036180
    Question 347
    CBSEENMA12036249

    If a1, a2, a3,…, an,… are in G.P., then the determinant

    space increment space equals space open vertical bar table row cell log space straight a subscript straight n end cell cell log space straight a subscript straight n plus 1 end subscript end cell cell log space straight a subscript straight n plus 2 end subscript end cell row cell log space straight a subscript straight n plus 3 end subscript end cell cell log space straight a subscript straight n plus 4 end subscript end cell cell log space straight a subscript straight n plus 5 end subscript end cell row cell log space straight a subscript straight n plus 6 end subscript end cell cell log space straight a subscript straight n plus 7 end subscript end cell cell log space straight a subscript straight n plus 8 end subscript end cell end table close vertical bar space is space equal space to

    • 1

    • 0

    • 4

    • 2

    Solution

    B.

    0

    C1 – C2, C2 – C3 two rows becomes identical Answer: 0

    Question 348
    CBSEENMA12036298

    If the system of linear equations
    x + ky + 3z = 0
    3x + ky – 2z = 0
    2x + 4y – 3z = 0

    has a non-zero solution (x,y,z), then xz/y2 is equal to

    • 30

    • -10

    • 10

    • -30

    Solution

    C.

    10

    System fo equation has non-zero solution

     1k33k-224-3 = 044-4k = 0 k = 11Let z = λ x = 5λ2, y = - λ2, z =λ xzy2 = 5λ2.λ-λ22 = 10

    Question 349
    CBSEENMA12036299

    If x-42x2x2xx-42x2x2xx-4 = (A +Bx)(x-A)2, then the ordered pair (A,B) is equal to

    • (4,5)

    • (-4,-5)

    • (-4,3)

    • (-4,5)

    Solution

    D.

    (-4,5)

     = x-42x2x2xx-42x2x2xx-4x = -4 makes all three row identicalhence, (x+4)2 will be factorAlso, C1C2 +C2+C2 = 5x-42x2x5x-4x-42x5x-42xx-4 5x-4 is a factor = λ(5x-4)(x+4)2 B= 5, A = - 4

    Mock Test Series

    Sponsor Area

    Sponsor Area

    NCERT Book Store

    NCERT Sample Papers

    Entrance Exams Preparation

    23