Mathematics Part I Chapter 2 Inverse Trigonometric Functions
  • Sponsor Area

    NCERT Solution For Class 12 Mathematics Mathematics Part I

    Inverse Trigonometric Functions Here is the CBSE Mathematics Chapter 2 for Class 12 students. Summary and detailed explanation of the lesson, including the definitions of difficult words. All of the exercises and questions and answers from the lesson's back end have been completed. NCERT Solutions for Class 12 Mathematics Inverse Trigonometric Functions Chapter 2 NCERT Solutions for Class 12 Mathematics Inverse Trigonometric Functions Chapter 2 The following is a summary in Hindi and English for the academic year 2021-2022. You can save these solutions to your computer or use the Class 12 Mathematics.

    Question 1
    CBSEENMA12032611

    Evaluates :

    open vertical bar table row cell straight a plus ib space space space space space straight c plus id end cell row cell negative straight c plus id space space space space space straight a minus ib space space space end cell end table close vertical bar

    Solution

    Consider open vertical bar table row cell straight a plus ib space space space space space straight c plus id end cell row cell negative straight c plus id space space space space space straight a minus ib space space space end cell end table close vertical bar = (a + i b) (a - i b)-(c + i b)(- c + i d)
                                                = (a2 - ib) - (i2 d2 - c2)
                                                = (a2 + b) - (- d2 - c2)                        [ because i2 = - 1 ]
                                                = (a2 + b2 + c2 + d2)  
                                              

    Question 2
    CBSEENMA12032612

    Evaluate

    open vertical bar table row cell 2 space space space space space 4 end cell row cell negative 1 space space space space 2 end cell end table close vertical bar

    Solution

    Let    increment space equals space open vertical bar table row cell 2 space space space space space 4 end cell row cell negative 1 space space space space 2 end cell end table close vertical bar = (2) (2) - (4) (- 1) = 4 + 4 = 8

    Question 3
    CBSEENMA12032613

    Evaluate  open vertical bar table row 2 cell space space 4 end cell row cell negative 5 end cell cell negative 1 end cell end table close vertical bar


    Solution

    Let increment equals open vertical bar table row cell space space space 2 end cell cell space space 4 end cell row cell negative 5 end cell cell negative 1 end cell end table close vertical bar=(2) (- 1) - (4) (- 5) =  - 2 + 20 = 18

    Question 4
    CBSEENMA12032614

    Evaluate  open vertical bar table row straight x cell straight x plus 1 end cell row cell straight x minus 1 end cell straight x end table close vertical bar


    Solution
     increment equals open vertical bar table row straight x cell straight x plus 1 end cell row cell straight x minus 1 end cell straight x end table close vertical bar
    =(x) (x) - (x + 1) (x - 1) (x - 1) = x2 - (x- 1) = x2 - x2 + 1 = 1
    Question 5
    CBSEENMA12032615

    Evaluates :

    open vertical bar table row cell sin space 30 degree end cell cell cos space 30 degree end cell row cell negative sin space 60 degree end cell cell cos space 60 degree end cell end table close vertical bar

    Solution
    Let space increment space equals space open vertical bar table row cell sin space 30 degree end cell cell cos space 30 degree end cell row cell negative sin space 60 degree end cell cell cos space 60 degree end cell end table close vertical bar
space space space space space space space space space equals space sin space 30 degree space cos space 60 degree space plus cos space 30 degree space sin space 60 degree space equals sin space left parenthesis 30 degree space plus space 60 degree right parenthesis
space space space space space space space space space equals space sin space 90 degree space equals space 1
    Question 6
    CBSEENMA12032617

    Evaluate :

    open vertical bar table row cell 2 space cos space straight theta end cell cell negative 2 space sin space straight theta end cell row cell sin space straight theta end cell cell cos space straight theta end cell end table close vertical bar

    Solution
    Let space space space space space space space space space space space space space space space space space space increment space equals space open vertical bar table row cell 2 space cos space straight theta end cell cell negative 2 space sin space straight theta end cell row cell sin space straight theta end cell cell cos space straight theta end cell end table close vertical bar
space space space space space space space space space space space space space space space space space space space space space space space space space space equals space left parenthesis 2 space cos space straight theta right parenthesis space left parenthesis cos space straight theta right parenthesis space minus space left parenthesis negative space 2 space sin space straight theta right parenthesis space left parenthesis sin space straight theta right parenthesis equals space 2 space cos squared space straight theta space space plus space 2 space sin squared space straight theta space
space space space space space space space space space space space space space space space space space space space space space space space space space space equals space 2 space left parenthesis cos squared straight theta space plus space sin squared space straight theta right parenthesis equals 2 left parenthesis 1 right parenthesis equals 2 space space space space space
    Question 7
    CBSEENMA12032619

    Evaluate

    open vertical bar table row cell cos space straight theta end cell cell negative space sin space straight theta end cell row cell sin space straight theta end cell cell cos space straight theta end cell end table close vertical bar

    Solution
    Let space increment space equals open vertical bar table row cell cos space straight theta end cell cell negative space sin space straight theta end cell row cell sin space straight theta end cell cell cos space straight theta end cell end table close vertical bar equals cos squared space straight theta plus sin squared space straight theta equals 1
    Question 8
    CBSEENMA12032620

    Evaluate

    open vertical bar table row cell straight x squared minus straight x plus 1 end cell cell space space space space space straight x minus 1 end cell row cell straight x plus 1 end cell cell space space space space straight x plus 1 end cell end table close vertical bar

    Solution
    Let space increment equals open vertical bar table row cell straight x squared minus straight x plus 1 end cell cell space space space space space straight x minus 1 end cell row cell straight x plus 1 end cell cell space space space space straight x plus 1 end cell end table close vertical bar equals left parenthesis straight x squared minus straight x plus 1 right parenthesis left parenthesis straight x plus 1 right parenthesis minus left parenthesis straight x minus 1 right parenthesis left parenthesis straight x plus 1 right parenthesis space
space space space space space space space space equals straight x cubed minus straight x squared plus straight x plus straight x squared minus straight x plus 1 minus straight x squared plus 1 equals negative straight x cubed minus straight x squared plus 2 space space
    Question 9
    CBSEENMA12032622
    Question 10
    CBSEENMA12032623
    Question 11
    CBSEENMA12032624
    Question 12
    CBSEENMA12032625
    Question 14
    CBSEENMA12032628
    Question 15
    CBSEENMA12032631

    Find the principal value of cot–1 open parentheses negative fraction numerator 1 over denominator square root of 3 end fraction close parentheses

    Solution
    Let space straight y equals space c o t to the power of negative 1 end exponent open parentheses negative fraction numerator 1 over denominator square root of 3 end fraction close parentheses space where space 0 less than y less than straight pi
therefore space space space cot space straight y space equals space minus fraction numerator 1 over denominator square root of 3 end fraction space where space 0 less than straight y less than straight pi
therefore space space space cot space straight y space equals space minus space cot straight pi over 3 equals cot open parentheses straight pi minus straight pi over 3 close parentheses equals cot fraction numerator 2 straight pi over denominator 3 end fraction space where space 0 less than straight y less than straight pi
therefore space space space space space straight y equals fraction numerator 2 straight pi over denominator 3 end fraction
    therefore space space space  required principal value = fraction numerator 2 straight pi over denominator 3 end fraction.
    Question 16
    CBSEENMA12032634

    Find the principal values of the following

    sin to the power of negative 1 end exponent open parentheses negative 1 half close parentheses

    Solution
    Let space straight y space equals space sin to the power of negative 1 end exponent open parentheses negative 1 half close parentheses space space where space minus straight pi over 2 space less or equal than space straight y space less or equal than space straight pi over 2
therefore space space sin space straight y space equals space minus 1 half space space space space space space space where space minus straight pi over 2 space less or equal than space straight y space less or equal than space straight pi over 2
therefore space space straight y equals negative straight pi over 6 space space space space space space space space space space space space space space open square brackets because space sin space open parentheses negative straight pi over 6 close parentheses equals negative sin straight pi over 6 equals negative 1 half close square brackets
    therefore required principal value = space minus straight pi over 6
    Question 17
    CBSEENMA12032635

    Find the principal values of the following

    cos to the power of negative 1 end exponent open parentheses fraction numerator square root of 3 over denominator 2 end fraction close parentheses

    Solution
    Let space straight y equals cos to the power of negative 1 end exponent open parentheses fraction numerator square root of 3 over denominator 2 end fraction close parentheses space space space space space space space where space 0 less or equal than straight y less or equal than straight pi
therefore space space space cos space straight y equals fraction numerator square root of 3 over denominator 2 end fraction space space space space space space space space space space space where space 0 space less or equal than space straight y less or equal than straight pi
therefore space space space space space straight y equals straight pi over 6
    therefore  required principal value = straight pi over 6

    Sponsor Area

    Question 18
    CBSEENMA12032637

    Find the principal values of the following

    cosec-1(2)

    Solution

    Let y == cosec-1(2)               where straight y element of open square brackets fraction numerator negative straight pi over denominator 2 end fraction comma space 0 close square brackets union open parentheses 0 comma space straight pi over 2 close parentheses
    therefore   cosec y = 2                    where straight y element of open square brackets fraction numerator negative straight pi over denominator 2 end fraction comma space 0 close square brackets union open parentheses 0 comma space straight pi over 2 close parentheses
    therefore space space space space space space space space space space space space space space space space space space space y equals straight pi over 6
    therefore     required  prinicipal value = straight pi over 6

    Question 19
    CBSEENMA12032638

    Find the principal values of the following

    tan to the power of negative 1 end exponent left parenthesis negative square root of 3 right parenthesis

    Solution
    Let space straight y space equals space tan to the power of negative 1 end exponent left parenthesis negative square root of 3 right parenthesis space space space space space space space space space where space minus straight pi over 2 less than straight y less than straight pi over 2
therefore space space space tan space y space equals space minus square root of 3 space space space space space space space space space space space space where space minus straight pi over 2 space less than straight y less than straight pi over 2
therefore space space space tan space straight y space equals space minus tan straight pi over 3 equals tan open parentheses negative straight pi over 3 close parentheses space where space minus straight pi over 2 less than straight y less than straight pi over 2
therefore space space space space straight y equals negative straight pi over 3
    therefore   required principal value = negative straight pi over 3.
    Question 20
    CBSEENMA12032640

    Find the principal values of the following

    cos to the power of negative 1 end exponent open parentheses negative 1 half close parentheses

    Solution
    Let equals cos to the power of negative 1 end exponent open parentheses negative 1 half close parentheses equals space straight y space where space 0 space less or equal than space straight y space less or equal than space straight pi
therefore space space space space cos space straight y space equals space minus 1 half space space where space 0 space less or equal than space straight y space less or equal than space straight pi
rightwards double arrow space space space space space straight y equals fraction numerator 2 straight pi over denominator 3 end fraction space space space space space space space space space space space space space space space space space space open square brackets because space space space cos fraction numerator 2 straight pi over denominator 3 end fraction equals cos space open parentheses straight pi minus straight pi over 3 close parentheses equals negative cos straight pi over 3 equals negative 1 half close square brackets
    therefore     required principal value = fraction numerator 2 straight pi over denominator 3 end fraction
    Question 21
    CBSEENMA12032643

    Find the principal values of the following

    tan-1(- 1)


    Solution

    Let y = tan-1(- 1)                             where negative straight pi over 2 space less than space y space less than space straight pi over 2
    therefore space space tan y = -1                                 where negative straight pi over 2 less than straight y less than straight pi over 2
    therefore space space space space space straight y equals negative straight pi over 4 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets because space tan space open parentheses negative straight pi over 4 close parentheses equals negative tan straight pi over 4 equals negative 1 close square brackets
    therefore     required principal value = negative straight pi over 4

    Question 22
    CBSEENMA12032644

    Find the principal values of the following

    sec to the power of negative 1 end exponent open parentheses fraction numerator 2 over denominator square root of 3 end fraction close parentheses


    Solution
    Let space straight y space equals sec to the power of negative 1 end exponent open parentheses fraction numerator 2 over denominator square root of 3 end fraction close parentheses space space space space where space space straight y element of open square brackets 0 comma straight pi over 2 close square brackets union open square brackets straight pi over 2 comma straight pi close square brackets
therefore space space space space space sec space straight y equals fraction numerator 2 over denominator square root of 3 end fraction space space space where space space straight y element of open square brackets 0 comma straight pi over 2 close square brackets union open square brackets straight pi over 2 comma straight pi close square brackets
therefore space space space straight y equals straight pi over 3
    therefore  required principal value = straight pi over 3
    Question 23
    CBSEENMA12032646

    Find the principal values of the following

    cot to the power of negative 1 end exponent open parentheses square root of 3 close parentheses


    Solution

    Let y = cot to the power of negative 1 end exponent open parentheses square root of 3 close parentheses    where 0 < y < straight pi
    therefore    cot y=square root of 3     where 0 < y < straight pi
    therefore space space space space space space space space space space space space space straight y equals straight pi over 6
    therefore    requiredf principal value = straight pi over 6

    Question 24
    CBSEENMA12032648

    Find the principal values of the following

    cos to the power of negative 1 end exponent open parentheses negative fraction numerator 1 over denominator square root of 2 end fraction close parentheses


    Solution
    Let space space space straight y space equals cos to the power of negative 1 end exponent open parentheses negative fraction numerator 1 over denominator square root of 2 end fraction close parentheses space space where space 0 less or equal than straight y less or equal than straight pi
therefore space space space space space cos space straight y space equals space minus fraction numerator 1 over denominator square root of 2 end fraction space space where space 0 less or equal than straight y less or equal than straight pi
therefore space space space space space cos space straight y space equals negative cos straight pi over 4 equals space cos space open parentheses straight pi minus straight pi over 4 close parentheses equals space cos space fraction numerator 3 straight pi over denominator 4 end fraction
therefore space space space space space straight y equals fraction numerator 3 straight pi over denominator 4 end fraction
    therefore space space space space space  required principal value = fraction numerator 3 straight pi over denominator 4 end fraction
    Question 25
    CBSEENMA12032649

    Find the principal values of the following

    cos e c to the power of negative 1 end exponent left parenthesis negative square root of 2 right parenthesis


    Solution
    Let space straight y space equals cosec to the power of negative 1 end exponent left parenthesis negative square root of 2 right parenthesis space space space where space straight y element of space open square brackets negative straight pi over 2 comma space 0 close square brackets union open square brackets 0 comma straight pi over 2 close square brackets
therefore space space space space space cosec space straight y space equals space minus square root of 2 space space space space space where space space open square brackets negative straight pi over 2 comma space 0 close square brackets union open square brackets 0 comma straight pi over 2 close square brackets
therefore space space space space space space cosec space straight y space equals space minus space cosec space straight pi over 4 equals space cosec space open parentheses negative straight pi over 4 close parentheses space space space where space space open square brackets negative straight pi over 2 comma space 0 close square brackets union open square brackets 0 comma straight pi over 2 close square brackets
therefore space space space space space space straight y space equals space minus straight pi over 4
    therefore   required principal value = negative straight pi over 4
    Question 26
    CBSEENMA12032652

    Evaluate

    sin open square brackets 2 space cos to the power of negative 1 end exponent open parentheses negative 3 over 5 close parentheses close square brackets

    Solution
    Let space straight y equals cos to the power of negative 1 end exponent open parentheses negative 3 over 5 close parentheses
therefore space space space cos space straight y equals negative 3 over 5 space and space straight y element of space left square bracket 0 comma space straight pi right square bracket
therefore space space space sin space straight y space is space plus space ve
sin space straight y space equals space square root of 1 minus cos squared end root space straight y equals square root of 1 minus open parentheses negative 3 over 5 close parentheses squared end root equals square root of 1 minus 9 over 25 end root equals 4 over 5
    Not given expression = 
    sin open square brackets 2 space cos to the power of negative 1 end exponent open parentheses negative 3 over 5 close parentheses close square brackets equals space s n space left square bracket 2 space y right square bracket space equals space 2 space sin space y space cos space y equals 2 open parentheses 4 over 5 close parentheses open parentheses negative 3 over 5 close parentheses equals negative 24 over 25 space space space space space
    Question 27
    CBSEENMA12032654

    Evaluate  sin[ tan-1 (- 1) ]



    Solution

    sin[ tan-1 (- 1) ] is a number lying between straight pi over 2 space and space straight pi over 2 [ by definition ]
    and tan x = -1 when x = negative straight pi over 4
    therefore space space space space tan to the power of negative 1 end exponent left parenthesis negative 1 right parenthesis space equals space minus straight pi over 4
    Now sin [ tan-1 (- 1) = sin open parentheses negative straight pi over 4 close parentheses equals negative fraction numerator 1 over denominator square root of 2 end fraction

    Question 28
    CBSEENMA12032656

    Find the value of tan-1 open square brackets 2 space cos space open parentheses 2 space sin to the power of negative 1 end exponent 1 half close parentheses close square brackets

    Solution
    Let space space space space straight y space equals space sin to the power of negative 1 end exponent 1 half space space space space space space where space space minus straight pi over 2 less or equal than straight r less or equal than straight pi over 2
therefore space space space space space space sin space space straight y space equals space 1 half space space space space space space where space space minus straight pi over 2 less or equal than straight r less or equal than straight pi over 2
therefore space space space space space space space straight y space equals straight pi over 6
therefore space space space space space space space tan to the power of negative 1 end exponent open square brackets 2 space cos space open parentheses 2 space sin to the power of negative 1 end exponent space 1 half close parentheses close square brackets equals space tan to the power of negative 1 end exponent space open square brackets 2 space cos space open parentheses 2 cross times straight pi over 6 close parentheses close square brackets
space space space space space space space space space space space space tan space to the power of negative 1 end exponent open square brackets 2 space cos straight pi over 3 close square brackets equals tan to the power of negative 1 end exponent open square brackets 2 cross times 1 half close square brackets equals tan to the power of negative 1 end exponent left parenthesis 1 right parenthesis equals straight pi over 4
    Question 29
    CBSEENMA12032659

    Find the value of the following :

    space space space space space space space space tan to the power of negative 1 end exponent left parenthesis 1 right parenthesis plus cos to the power of negative 1 end exponent open parentheses negative 1 half close parentheses plus sin to the power of negative 1 end exponent open parentheses negative 1 half close parentheses

    Solution

    Let y = tan-1(1)     where negative straight pi over 2 less than y less than straight pi over 2
    therefore      tan  y = 1    where  negative straight pi over 2 less than straight y less than straight pi over 2
    therefore space space space space space space space space straight y space equals straight pi over 4 space space space space rightwards double arrow space space tan to the power of negative 1 end exponent left parenthesis 1 right parenthesis equals straight pi over 4
Again space let space straight z space equals space cos to the power of negative 1 end exponent open parentheses negative 1 half close parentheses space space where space space 0 less or equal than straight z less or equal than straight pi
therefore space space space space cos space straight z equals negative 1 half space space space space where space 0 less or equal than straight z less or equal than straight pi
therefore space space space space cos space straight z space equals space minus 1 half space space space where space 0 less or equal than straight z less or equal than straight pi
therefore space space space space cos space straight z space equals space minus space cos straight pi over 3 equals cos open parentheses straight pi minus straight pi over 3 close parentheses equals cos fraction numerator 2 straight pi over denominator 3 end fraction
Again space let space straight l space equals space sin to the power of negative 1 end exponent open parentheses negative 1 half close parentheses space space where space minus straight pi over 2 less or equal than straight l less or equal than straight pi over 2
therefore space space space space sin space straight l space equals 1 half space space space space space space where space space straight pi over 2 less or equal than straight l less or equal than straight pi over 2
therefore space space space space space sin space space straight l equals space sin straight pi over 6 space equals space sin space open parentheses negative straight pi over 6 close parentheses
therefore space space space space space straight s space straight l space equals space minus straight pi over 6 space space rightwards double arrow space space sin to the power of negative 1 end exponent open parentheses negative 1 half close parentheses equals straight pi over 6
Consider space tan to the power of negative 1 end exponent left parenthesis 1 right parenthesis plus cos to the power of negative 1 end exponent open parentheses negative 1 half close parentheses equals straight pi over 6
space space space space space space space space space space space space space equals straight pi over 4 plus fraction numerator 2 straight pi over denominator 3 end fraction minus straight pi over 6 equals fraction numerator 3 straight pi plus 8 straight pi minus 2 straight pi over denominator 12 end fraction equals fraction numerator 9 straight pi over denominator 12 end fraction equals fraction numerator 3 straight pi over denominator 4 end fraction

    Question 30
    CBSEENMA12032661

    Find the value of the following :

    cos to the power of negative 1 end exponent open parentheses 1 half close parentheses plus 2 space sin to the power of negative 1 end exponent open parentheses 1 half close parentheses

    Solution

    Let  straight y equals cos to the power of negative 1 end exponent open parentheses 1 half close parentheses space space space space space space space space space where space 0 less or equal than straight y less or equal than straight pi
therefore space space space space space space cos space straight y equals 1 half space space space space space space where space 0 less or equal than straight y less or equal than straight pi
therefore space space space space space space cos space space straight y space equals space cos space straight pi over 3
therefore space space space space space space straight y equals straight pi over 3 space space space space space space space rightwards double arrow space space space space cos to the power of negative 1 end exponent open parentheses 1 half close parentheses equals straight pi over 3
Again space let space straight z equals space sin to the power of negative 1 end exponent open parentheses 1 half close parentheses space space space space space space space where space minus straight pi over 2 less or equal than straight z less or equal than straight pi over 2
therefore space space space space space space sin space straight z equals 1 half space space space where space minus straight pi over 2 space less or equal than space straight z space less or equal than space straight pi over 2
therefore space space space space space space sin space straight z space equals space sin space straight pi over 6
therefore space space space space space straight z equals straight pi over 6 space space rightwards double arrow space space sin to the power of negative 1 end exponent open parentheses 1 half close parentheses equals straight pi over 6
Consider space cos to the power of negative 1 end exponent open parentheses 1 half close parentheses plus 2 space sin to the power of negative 1 end exponent open parentheses 1 half close parentheses equals straight pi over 3 plus 2 open parentheses straight pi over 6 close parentheses equals straight pi over 3 plus straight pi over 3 equals fraction numerator 2 straight pi over denominator 3 end fraction

    Question 31
    CBSEENMA12032662

    Show that cos (sin–1.x) = sin (cos–1x) = square root of 1 minus straight x squared end root space for space open vertical bar straight x close vertical bar space space less or equal than space 1

    Solution

    Let sin-1 x=Let space space space sin to the power of negative 1 end exponent space straight x space equals space straight theta
therefore space space space space straight x element of space left square bracket negative 1 comma space 1 right square bracket space and space straight theta element of open square brackets negative straight pi over 2 comma space straight pi over 2 close square brackets
therefore space space space straight x equals sin space straight theta space and space straight theta element of space open square brackets negative straight pi over 2 comma space straight pi over 2 close square brackets
therefore space space space cos space straight theta space is space plus space ve
Now space cos space straight theta space equals space square root of 1 minus sin squared space straight theta end root equals square root of 1 minus straight x squared end root
    [ + ve sign taken before square root]
    therefore space space space cos space left parenthesis sin to the power of negative 1 end exponent straight x right parenthesis equals square root of 1 minus straight x squared end root

    Again, let cos –1x = ϕwhere x ∈ [– 1, 1 ] and ϕ ∈ [0,π]
    ∴ x = cos ϕ where ϕ ∈ [0, π]
    ∴sin ϕ is + ve

    sin space straight ϕ space equals space square root of 1 minus cos squared space straight ϕ end root space equals square root of 1 minus straight x squared end root
therefore space space space space sin space left parenthesis cos to the power of negative 1 end exponent straight x right parenthesis equals square root of 1 minus straight x squared end root
    (+ ve sign taken before under root)
    Question 32
    CBSEENMA12032664
    Question 33
    CBSEENMA12032667

    tan to the power of negative 1 end exponent square root of 3 minus s e c to the power of negative 1 end exponent left parenthesis negative 2 right parenthesis is equal

    (A) straight pi    (B) negative straight pi over 3   (C) straight pi over 3   (D) fraction numerator 2 straight pi over denominator 3 end fraction

    Solution

    Let y = tan to the power of negative 1 end exponent open parentheses square root of 3 close parentheses space space space space space space space space space space space space space space space space space space space space space space space space space where space minus straight pi over 2 less than straight y less than straight pi over 2
therefore space space space tan space straight y space square root of 3 space space space space space space space space space space space space space space space space space space space space space where space minus straight pi over 2 less than straight y less than straight pi over 2
therefore space space space straight y equals straight pi over 3 space space rightwards double arrow space tan to the power of negative 1 end exponent open parentheses square root of 3 close parentheses equals straight pi over 3
Again space let space see to the power of negative 1 end exponent equals straight z space space space space space space space space space space space space space where space straight z element of open square brackets 0 comma space straight x over 2 close square brackets union open square brackets 0 comma space straight x over 2 close square brackets

therefore space space space space see space straight z space equals space minus 2 space space space space space space space space space space space space space space where space straight z element of open square brackets 0 comma space straight x over 2 close square brackets union open square brackets 0 comma space straight x over 2 close square brackets space
therefore space space space space space space space straight z equals fraction numerator 2 straight pi over denominator 3 end fraction space space space space space rightwards double arrow space space space space space sec to the power of negative 1 end exponent left parenthesis negative 2 right parenthesis equals fraction numerator 2 straight pi over denominator 3 end fraction
therefore space space space space space space space tan to the power of negative 1 end exponent space square root of 3 space space sec to the power of negative 1 end exponent left parenthesis negative 2 right parenthesis equals straight pi over 3 minus fraction numerator 2 straight pi over denominator 3 end fraction equals negative straight pi over 3 space space space space space space space space space space space space
               ∴       (B) is correct answer.

    Question 34
    CBSEENMA12032669

    Find the value of sin–1 open parentheses sin space fraction numerator 3 straight x over denominator 5 end fraction close parentheses.

    Solution
    sin to the power of negative 1 end exponent open parentheses sin space fraction numerator 3 straight pi over denominator 5 end fraction close parentheses equals sin to the power of negative 1 end exponent open square brackets sin open parentheses straight pi minus fraction numerator 2 straight pi over denominator 5 end fraction close parentheses close square brackets
space space space space space space space space space space space space space space space space space space equals space sin to the power of negative 1 end exponent open square brackets sin fraction numerator 2 straight pi over denominator 5 end fraction close square brackets equals fraction numerator 2 straight pi over denominator 5 end fraction
    Note space colon space sin to the power of negative 1 end exponent left parenthesis sin space straight x right parenthesis equals straight x space where space straight x element of open square brackets negative straight pi over 2 comma space straight pi over 2 close square brackets
space space space space space space space Now space sin to the power of negative 1 end exponent space open parentheses sin space fraction numerator 3 straight pi over denominator 5 end fraction close parentheses not equal to space fraction numerator 3 straight pi over denominator 5 end fraction as fraction numerator 3 straight pi over denominator 5 end fraction not an element of open square brackets negative straight pi over 2 comma space straight pi over 2 close square brackets space space space space space space space space space space space space space space space space space space space space space space space space space space space space
    Question 35
    CBSEENMA12032671
    Question 36
    CBSEENMA12032672
    Question 37
    CBSEENMA12032674
    Question 38
    CBSEENMA12032675
    Question 39
    CBSEENMA12032677

    Sponsor Area

    Question 40
    CBSEENMA12032678

    If space sin open parentheses sin to the power of negative 1 end exponent 1 fifth plus cos to the power of negative 1 end exponent straight x close parentheses equals 1  then find the value of x.

    Solution

    The given equation is
    space sin open parentheses sin to the power of negative 1 end exponent 1 fifth plus cos to the power of negative 1 end exponent straight x close parentheses equals 1 space space space space space space space space space space space space or space space sin to the power of negative 1 end exponent 1 fifth plus cos to the power of negative 1 end exponent straight x equals straight pi over 2
or space space sin to the power of negative 1 end exponent 1 fifth equals straight pi over 2 minus cos to the power of negative 1 end exponent straight x space space space space space space space space space space space space or space sin to the power of negative 1 end exponent 1 fifth equals sin to the power of negative 1 end exponent straight x
rightwards double arrow space space space space space space space space straight x equals 1 fifth

    Question 41
    CBSEENMA12032679

    Prove the following :

    3 space sin to the power of negative 1 end exponent straight x equals sin to the power of negative 1 end exponent left parenthesis 3 straight x minus 4 straight x cubed right parenthesis comma space straight x element of open square brackets negative 1 half comma 1 half close square brackets

    Solution

    Put .x = cosθ
    ∴L.H.S. = 3cos –1(cosθ) = 3 θ
    R.H.S. = cos –1(4x3 – 3 x) = cos –1(4 cos3 θ – 3 cos θ)
    = cos –1(cos 3 θ) = 3 θ
    ∴L.H.S. = R.H.S.

    Question 42
    CBSEENMA12032680

    Prove the following :

    3 space cos to the power of negative 1 end exponent straight x equals cos to the power of negative 1 end exponent thin space left parenthesis 4 straight x cubed minus 3 straight x right parenthesis comma space straight x element of open square brackets 1 half comma space 1 close square brackets

    Solution

    Put x = sin θ
    ∴L.H.S. = 3 sin –1x = 3 sin–1(sin θ) = 3 θ
    R.H.S. = sin–1(3 x – 4 x3)
    = sin–1(3 sin θ – 4 sin3  θ)
    = sin–1(sin 3 θ) = 3 θ
    ∴L.H.S. = R.H.S.

    Question 43
    CBSEENMA12032681

    Prove space that space fraction numerator 9 straight pi over denominator 8 end fraction minus 9 over 4 space sin to the power of negative 1 end exponent 1 third equals 9 over 4 sin to the power of negative 1 end exponent fraction numerator 2 square root of 2 over denominator 3 end fraction.

    Solution
    straight L. straight H. straight S. space equals space fraction numerator 9 straight pi over denominator 8 end fraction minus 9 over 4 sin to the power of negative 1 end exponent open parentheses 1 third close parentheses equals 9 over 4 open curly brackets straight pi over 2 minus sin to the power of negative 1 end exponent 1 third close curly brackets
space space space space space space space space space space equals space 9 over 4 space open curly brackets cos to the power of negative 1 end exponent open parentheses 1 third close parentheses close curly brackets space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets because space sin to the power of negative 1 end exponent space straight x plus space cos to the power of negative 1 end exponent space straight x equals straight x over 2 close square brackets
space space space space space space space space space space equals 9 over 4 space sin to the power of negative 1 end exponent square root of 1 minus open parentheses 1 third close parentheses squared end root space space space space space space space space space space space space left square bracket because space cos to the power of negative 1 end exponent space straight x space equals space sin to the power of negative 1 end exponent space square root of 1 minus straight x squared end root space for space 0 less or equal than straight x space less or equal than space 1 space right square bracket
space space space space space space space space space space equals space 9 over 4 space sin to the power of negative 1 end exponent space open parentheses square root of 8 over 9 end root close parentheses equals 9 over 4 space sin to the power of negative 1 end exponent space open parentheses fraction numerator 2 square root of 2 over denominator 3 end fraction close parentheses equals space straight R. straight H. straight S.
    Question 44
    CBSEENMA12032683

    Show that tan to the power of negative 1 end exponent 1 half plus tan to the power of negative 1 end exponent 2 over 11 equals tan to the power of negative 1 end exponent 3 over 4.

    Solution
    tan to the power of negative 1 end exponent 1 half plus tan to the power of negative 1 end exponent 2 over 11 equals tan to the power of negative 1 end exponent open square brackets fraction numerator begin display style 1 half plus 2 over 11 end style over denominator 1 minus begin display style 1 half end style cross times begin display style 2 over 11 end style end fraction close square brackets equals tan to the power of negative 1 end exponent open square brackets fraction numerator begin display style fraction numerator 11 plus 4 over denominator 22 end fraction end style over denominator begin display style fraction numerator 22 minus 2 over denominator 22 end fraction end style end fraction close square brackets
space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space tan to the power of negative 1 end exponent open parentheses 15 over 20 close parentheses equals space tan to the power of negative 1 end exponent open parentheses 3 over 4 close parentheses space rightwards double arrow space straight R. straight H. straight S.
therefore space space space space straight L. straight H. straight S. space equals space straight R. straight H. straight S
    Question 45
    CBSEENMA12032720

    Prove that sin to the power of negative 1 end exponent space straight x plus space cos to the power of negative 1 end exponent space straight x equals straight pi over 2

    Solution
    Let sin–1x =θ
    therefore space space space space space straight x space equals space sinθ space space space space space space space space space space space space space space space rightwards double arrow space straight x equals cos open parentheses straight pi over 2 minus straight theta close parentheses
rightwards double arrow space space space cos to the power of negative 1 space end exponent straight x equals straight pi over 2 minus straight theta space space space space space space space rightwards double arrow space cos to the power of negative 1 end exponent straight x equals straight pi over 2 minus sin to the power of negative 1 end exponent straight x
rightwards double arrow space space cos to the power of negative 1 end exponent space straight x plus sin to the power of negative 1 end exponent space straight x space equals space straight pi over 2
    Question 46
    CBSEENMA12032721

    Prove that tan to the power of negative 1 end exponent straight x plus cot to the power of negative 1 end exponent straight x equals straight pi over 2 comma space straight x element of straight R

    Solution

    Let tan to the power of negative 1 end exponent straight x equals straight theta space so space that space minus straight pi over 2 less than straight theta less than straight pi over 2
    rightwards double arrow straight pi over 2 greater than negative straight theta greater than negative straight pi over 2 space space space space space space space space space space rightwards double arrow straight pi over 2 plus straight pi over 2 greater than straight pi over 2 minus straight theta greater than straight pi over 2 minus straight pi over 2
rightwards double arrow space straight pi greater than straight pi over 2 minus straight theta greater than 0 space space space space space space space space space space space space space rightwards double arrow space straight pi over 2 minus straight theta element of left parenthesis 0 comma straight pi right parenthesis
because space space space space tan to the power of negative 1 end exponent straight x equals straight theta space space space space space space space space space space space space space space space space
therefore space space space space space straight x equals tan space straight theta space space space space space space rightwards double arrow space space space straight x equals cot open parentheses straight pi over 2 minus straight theta close parentheses. space But space straight x over 2 minus straight theta element of left parenthesis 0 comma straight pi right parenthesis
therefore space space space space space cot to the power of negative 1 end exponent straight x equals straight pi over 2 minus straight theta
rightwards double arrow space space space space cos to the power of negative 1 end exponent straight x equals straight pi over 2 minus tan to the power of negative 1 end exponent straight x space space space space space space rightwards double arrow space tan to the power of negative 1 end exponent straight x plus cot to the power of negative 1 end exponent straight x equals straight pi over 2 space for all space straight x

    Question 47
    CBSEENMA12032722

    Prove that cos e c to the power of negative 1 end exponent x plus s e c to the power of negative 1 end exponent x equals straight pi over 2 comma space open vertical bar x close vertical bar greater or equal than 1

    Solution

     Let space cosec to the power of negative 1 end exponent straight x equals straight theta space space space space space space space space space space space space space space rightwards double arrow space space straight x equals sec open parentheses straight pi over 2 minus straight theta close parentheses
rightwards double arrow space space space sec to the power of negative 1 end exponent straight x equals straight pi over 2 minus straight theta space space space space space space space space rightwards double arrow space sec to the power of negative 1 end exponent straight x equals straight pi over 2 minus cosec to the power of negative 1 end exponent straight x
rightwards double arrow space space space sec to the power of negative 1 end exponent straight x plus cosec to the power of negative 1 end exponent straight x equals straight pi over 2

    Question 48
    CBSEENMA12032724

    Prove that sin to the power of negative 1 end exponent x plus sin to the power of negative 1 end exponent x y equals sin to the power of negative 1 end exponent open square brackets x square root of 1 minus y squared end root plus square root of 1 minus x squared end root close square brackets

    Solution

    Put sin–1.x = θ, sin–1 y = ϕ
    ∴x = sin θ, y = sin ϕ
    Now sin (θ + ϕ) = sin θ cos ϕ + cos θ sinϕ
    therefore space space sin left parenthesis straight theta plus straight ϕ right parenthesis sinθ square root of 1 minus sin squared straight ϕ end root plus square root of 1 minus sin squared straight theta. sinϕ end root
rightwards double arrow space space space straight theta plus straight ϕ equals sin to the power of negative 1 end exponent open square brackets sinθ square root of 1 minus sin squared straight ϕ end root plus sinϕ square root of 1 minus sin squared straight theta end root close square brackets
rightwards double arrow space space space sin to the power of negative 1 end exponent straight x plus sin to the power of negative 1 end exponent straight y equals sin to the power of negative 1 end exponent open square brackets straight x square root of 1 minus straight y squared end root plus straight y square root of 1 minus straight x squared end root close square brackets

    Question 49
    CBSEENMA12032726

    Prove that sin to the power of negative 1 end exponent x minus sin to the power of negative 1 end exponent y equals sin to the power of negative 1 end exponent open square brackets x square root of 1 minus y squared end root minus y square root of 1 minus x squared end root close square brackets

    Solution

    Put sin to the power of negative 1 end exponent straight x equals straight theta comma space sin to the power of negative 1 end exponent straight y equals straight ϕ
    therefore space space space space space space straight x equals sinθ comma space straight y equals sinϕ
Now space sin space left parenthesis straight theta minus straight ϕ right parenthesis equals sin space straight theta space cos space straight ϕ minus cosθ space sin space straight ϕ
therefore space space space space space sin left parenthesis straight theta minus straight ϕ right parenthesis space sin space straight theta square root of 1 minus sin squared straight ϕ end root minus sinϕ square root of 1 minus sin squared straight ϕ end root
rightwards double arrow space space space space left parenthesis straight theta minus straight ϕ right parenthesis space equals sin to the power of 1 open square brackets sinθ square root of 1 minus sin squared straight ϕ end root minus sinϕ square root of 1 minus sin squared straight theta end root close square brackets
rightwards double arrow space space space space sin to the power of negative 1 end exponent straight x minus sin to the power of negative 1 end exponent straight y equals sin to the power of negative 1 end exponent open square brackets straight x square root of 1 minus straight y squared end root minus straight y square root of 1 minus straight x squared end root close square brackets

    Question 50
    CBSEENMA12032729

    Prove that cos to the power of negative 1 end exponent x plus cos to the power of negative 1 end exponent y equals cos to the power of negative 1 end exponent open square brackets x y minus square root of left parenthesis 1 minus x squared right parenthesis left parenthesis 1 minus y squared right parenthesis end root close square brackets

    Solution

    Put cos-1x=straight theta, cos-1y=straight ϕ
    therefore  x=cos straight theta, y=cos straight ϕ
    Now space cos space left parenthesis straight theta plus straight ϕ right parenthesis equals cosθ space cosϕ minus sin space straight theta space sin space straight theta
therefore space space cos left parenthesis straight theta plus straight ϕ right parenthesis equals cos space straight theta space cos space straight ϕ minus square root of 1 minus cos squared straight theta end root space square root of 1 minus cos squared space straight ϕ end root
therefore space space left parenthesis straight theta plus straight ϕ right parenthesis equals cos to the power of negative 1 end exponent open square brackets cos space straight theta space cos space straight ϕ minus square root of 1 minus cos squared straight theta end root space square root of 1 minus cos squared space straight ϕ end root close square brackets
rightwards double arrow space space cos to the power of negative 1 end exponent straight x plus cos to the power of 1 space straight y equals cos to the power of negative 1 end exponent open square brackets straight x space straight y minus square root of 1 minus straight x squared end root square root of 1 minus straight y squared end root close square brackets
cos to the power of negative 1 end exponent straight x plus cos to the power of 1 space straight y equals cos to the power of negative 1 end exponent open square brackets straight x space straight y minus square root of left parenthesis 1 minus straight x squared right parenthesis end root square root of left parenthesis 1 minus straight y squared right parenthesis end root close square brackets

    Question 51
    CBSEENMA12032731

    Prove that cos to the power of negative 1 end exponent x minus cos to the power of negative 1 end exponent y equals cos to the power of negative 1 end exponent open square brackets x space y plus square root of left parenthesis 1 minus x squared right parenthesis left parenthesis 1 minus y squared right parenthesis end root close square brackets

    Solution
    Put space cos to the power of negative 1 end exponent straight x equals straight theta comma space cos to the power of negative 1 end exponent straight y equals straight ϕ
therefore space space space space space straight x equals cos space straight theta comma space straight y equals cos space straight ϕ
Now space cos space left parenthesis straight theta minus straight ϕ right parenthesis equals cos space straight theta space cos space straight ϕ space plus space sin space straight theta space sin space straight ϕ
therefore space space space space cos left parenthesis straight theta minus straight ϕ right parenthesis space cos space straight theta space cos space straight ϕ space plus square root of 1 minus cos squared space straight theta end root square root of 1 minus cos squared space straight ϕ end root
therefore space space space space straight theta space minus space straight ϕ space cos to the power of negative 1 end exponent space open square brackets cos space straight theta space cos space straight ϕ plus square root of left parenthesis 1 minus cos squared space straight theta right parenthesis left parenthesis 1 minus cos squared space straight ϕ right parenthesis end root close square brackets
rightwards double arrow space space space cos to the power of negative 1 end exponent space straight x minus cos to the power of negative 1 end exponent space straight y equals cos to the power of negative 1 end exponent space open square brackets straight x space straight y plus square root of left parenthesis 1 minus straight x squared right parenthesis space left parenthesis 1 minus straight y squared end root close square brackets
    Question 52
    CBSEENMA12032735

    Prove that : tan to the power of negative 1 end exponent open parentheses 1 half close parentheses plus tan to the power of negative 1 end exponent open parentheses 1 over 8 close parentheses equals straight pi over 4

    Solution
    straight L. straight H. straight S. equals space tan to the power of negative 1 end exponent open parentheses 1 half close parentheses plus tan to the power of negative 1 end exponent open parentheses 1 fifth close parentheses plus tan to the power of negative 1 end exponent open parentheses 1 over 8 close parentheses
space space space space space space space space space space equals open square brackets tan to the power of negative 1 end exponent open parentheses 1 half close parentheses plus tan to the power of negative 1 end exponent open parentheses 15 over blank close parentheses close square brackets plus tan to the power of negative 1 end exponent open parentheses 1 over 8 close parentheses
space space space space space space space space space space equals tan to the power of negative 1 end exponent open square brackets fraction numerator begin display style 1 half end style plus begin display style 1 fifth end style over denominator 1 minus open parentheses begin display style 1 half end style close parentheses open parentheses begin display style 1 fifth end style close parentheses end fraction close square brackets plus tan to the power of negative 1 end exponent open parentheses 1 over 8 close parentheses
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets because space tan to the power of negative 1 end exponent straight x plus tan to the power of negative 1 end exponent straight y equals tan to the power of negative 1 end exponent open parentheses fraction numerator straight x plus straight y over denominator 1 minus xy end fraction close parentheses close square brackets
space space space space space space space space space space equals tan to the power of negative 1 end exponent open square brackets fraction numerator 5 plus 2 over denominator 10 minus 1 end fraction close square brackets plus tan to the power of negative 1 end exponent open parentheses 1 over 8 close parentheses equals tan to the power of negative 1 end exponent open parentheses 1 over 8 close parentheses
space space space space space space space space space space equals space tan to the power of negative 1 end exponent space open square brackets fraction numerator begin display style 7 over 9 end style plus begin display style 1 over 8 end style over denominator 1 minus open parentheses begin display style 7 over 9 end style close parentheses open parentheses begin display style 1 over 8 end style close parentheses end fraction close square brackets equals tan to the power of negative 1 end exponent open square brackets fraction numerator 56 plus 9 over denominator 72 minus 7 end fraction close square brackets equals tan to the power of negative 1 end exponent open parentheses 65 over 65 close parentheses
space space space space space space space space space space equals space tan to the power of negative 1 end exponent left parenthesis 1 right parenthesis equals straight pi over 4 equals straight R. straight H. straight S.
    Question 53
    CBSEENMA12032736

    Prove space that space tan to the power of negative 1 end exponent 1 fifth plus tan to the power of negative 1 end exponent 1 over 7 plus tan to the power of negative 1 end exponent 1 third plus tan to the power of negative 1 end exponent 1 over 8 equals straight pi over 4.

    Solution
    straight L. straight H. straight S. equals open parentheses tan to the power of negative 1 end exponent 1 fifth plus tan to the power of negative 1 end exponent 1 over 7 close parentheses plus open parentheses tan to the power of negative 1 end exponent 1 third plus tan to the power of negative 1 end exponent 1 over 8 close parentheses
equals space tan to the power of negative 1 end exponent open parentheses fraction numerator begin display style 1 fifth end style plus begin display style 1 over 7 end style over denominator 1 minus begin display style 1 fifth end style space begin display style 1 over 7 end style end fraction close parentheses plus tan to the power of negative 1 end exponent open parentheses fraction numerator begin display style 1 third end style plus begin display style 1 over 8 end style over denominator 1 minus begin display style 1 third end style space begin display style 1 over 8 end style end fraction close parentheses equals tan to the power of negative 1 end exponent open parentheses fraction numerator begin display style fraction numerator 7 plus 5 over denominator 35 end fraction end style over denominator begin display style fraction numerator 35 minus 1 over denominator 24 end fraction end style end fraction close parentheses plus tan to the power of negative 1 end exponent open parentheses fraction numerator begin display style fraction numerator 8 plus 3 over denominator 24 end fraction end style over denominator begin display style fraction numerator 24 minus 1 over denominator 24 end fraction end style end fraction close parentheses
equals space tan to the power of negative 1 end exponent open parentheses 12 over 24 close parentheses plus tan to the power of negative 1 end exponent open parentheses 11 over 23 close parentheses equals tan to the power of negative 1 end exponent open parentheses 6 over 17 close parentheses plus tan to the power of negative 1 end exponent open parentheses 11 over 23 close parentheses
equals space tan to the power of negative 1 end exponent open parentheses fraction numerator begin display style 6 over 17 end style plus begin display style 11 over 13 end style over denominator 1 minus begin display style 6 over 17 end style cross times begin display style 11 over 23 end style end fraction close parentheses equals tan to the power of negative 1 end exponent open parentheses 6 over 17 close parentheses plus tan to the power of negative 1 end exponent open parentheses 11 over 23 close parentheses
equals space tan to the power of negative 1 end exponent open parentheses 325 over 325 close parentheses equals tan to the power of negative 1 end exponent space 1 equals straight pi over 4 equals straight R. straight H. straight S.
    Question 54
    CBSEENMA12032738

    Prove that tan to the power of negative 1 end exponent space straight t plus tan to the power of negative 1 end exponent fraction numerator 2 space straight l over denominator 1 minus straight t squared end fraction equals tan to the power of negative 1 end exponent fraction numerator 3 straight t minus straight t cubed over denominator 1 minus 3 straight t squared end fraction. straight t greater than 0

    Solution
    straight L. straight H. straight S. equals tan to the power of negative 1 end exponent space straight t plus tan to the power of negative 1 end exponent fraction numerator 2 straight t over denominator 1 minus straight t squared end fraction equals tan to the power of negative 1 end exponent open square brackets fraction numerator straight t plus begin display style fraction numerator 2 straight t over denominator 1 minus straight t squared end fraction end style over denominator 1 minus straight t cross times begin display style fraction numerator 2 space straight t over denominator 1 minus straight t squared end fraction end style end fraction close square brackets
space space space space space space space space space space equals tan to the power of negative 1 end exponent open square brackets fraction numerator straight t left parenthesis 1 minus straight t squared right parenthesis plus 2 straight t over denominator 1 minus straight t squared minus 2 straight t squared end fraction close square brackets
space space space space space space space space space space equals tan to the power of 1 open square brackets fraction numerator straight t minus straight t cubed plus 2 straight t over denominator 1 minus 3 straight t squared end fraction close square brackets equals tan to the power of negative 1 end exponent open parentheses fraction numerator 3 straight t minus straight t cubed over denominator straight t minus 3 straight t squared end fraction close parentheses equals straight R. straight H. straight S.
    Question 55
    CBSEENMA12032741

    Prove that tan to the power of negative 1 end exponent 1 fourth plus tan to the power of negative 1 end exponent 2 over 9 equals 1 half cos to the power of negative 1 end exponent 3 over 5

    Solution
    tan to the power of negative 1 end exponent 1 fourth plus tan to the power of negative 1 end exponent 2 over 9 equals tan to the power of negative 1 end exponent open square brackets fraction numerator begin display style 1 fourth plus 2 over 9 end style over denominator 1 minus begin display style 1 fourth end style cross times begin display style 2 over 9 end style end fraction close square brackets equals tan to the power of negative 1 end exponent open parentheses 1 half close parentheses
space space space space space space space space space space equals tan to the power of negative 1 end exponent open parentheses 17 over 34 close parentheses equals tan to the power of negative 1 end exponent open parentheses 1 half close parentheses
therefore space space space space space tan to the power of negative 1 end exponent 1 fourth plus tan to the power of negative 1 end exponent 2 over 9 equals tan to the power of negative 1 end exponent open parentheses 1 half close parentheses space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
Put space 1 half space cos to the power of negative 1 end exponent 3 over 5 equals straight theta
therefore space space space cos to the power of negative 1 end exponent 3 over 5 equals 2 space straight theta space space space space rightwards double arrow space space cos space 2 space straight theta space equals space 3 over 5
rightwards double arrow space space space space space space fraction numerator 1 minus tan squared space straight theta over denominator 1 plus tan squared space straight theta end fraction space space space rightwards double arrow space space 3 plus 3 space tan squared space straight theta equals 5 minus 5 space tan squared space straight theta
rightwards double arrow space space space space space space space tan squared space straight theta equals 1 fourth space space space rightwards double arrow space tan space straight theta space equals 1 half space space rightwards double arrow space space straight theta equals tan to the power of negative 1 end exponent space 1 half
therefore space space space space space we space have space 1 half space cos to the power of negative 1 end exponent 3 over 5 equals tan to the power of negative 1 end exponent space 1 half space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis
    From (1) and (2), we get   tan to the power of negative 1 end exponent 1 fourth plus tan to the power of negative 1 end exponent 2 over 9 equals 1 half cos to the power of negative 1 end exponent 3 over 5
    Question 56
    CBSEENMA12032742

    Prove that tan to the power of negative 1 end exponent 1 over 7 plus tan to the power of negative 1 end exponent 2 over 9 equals 1 half cos to the power of negative 1 end exponent 3 over 5

    Solution
    straight L. straight H. straight S. equals tan to the power of negative 1 end exponent 1 over 7 plus tan to the power of negative 1 end exponent 1 over 13 equals tan to the power of negative 1 end exponent open square brackets fraction numerator begin display style 1 over 7 end style plus begin display style 1 over 13 end style over denominator 1 minus begin display style 1 over 7 end style cross times begin display style 1 third end style end fraction close square brackets
space space space space space space space space space space space space space space equals tan to the power of negative 1 end exponent open square brackets fraction numerator begin display style fraction numerator 13 plus 7 over denominator 91 end fraction end style over denominator begin display style fraction numerator 91 minus 1 over denominator 91 end fraction end style end fraction close square brackets equals tan to the power of negative 1 end exponent open parentheses 20 over 90 close parentheses equals tan to the power of negative 1 end exponent open parentheses 2 over 9 close parentheses equals straight R. straight H. straight S.
    Question 57
    CBSEENMA12032745

    Prove that cot to the power of negative 1 end exponent open parentheses fraction numerator ab plus 1 over denominator straight a minus straight b end fraction close parentheses plus cot to the power of negative 1 end exponent open parentheses fraction numerator bc plus 1 over denominator straight b minus straight c end fraction close parentheses plus cot to the power of negative 1 end exponent open parentheses fraction numerator ca plus 1 over denominator straight c minus straight a end fraction close parentheses equals 0

    Solution

     Consider space tan to the power of negative 1 end exponent space 1 plus tan to the power of negative 1 end exponent space 2 plus tan to the power of negative 1 end exponent space 3 space equals space tan to the power of negative 1 end exponent space open square brackets fraction numerator 1 plus 2 plus 3 minus 1 cross times 2 cross times 3 over denominator 1 minus 2 cross times 2 minus 2 cross times 3 minus 3 cross times 1 end fraction close square brackets
space space space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets because space tan to the power of negative 1 end exponent space x plus tan to the power of negative 1 end exponent space y space tan to the power of negative 1 end exponent space z equals space tan space fraction numerator x plus y plus z minus x space y space z over denominator 1 minus x space y space minus space y space z space minus space z space x end fraction close square brackets
space space space space space space space space space space space space space space equals space tan to the power of negative 1 end exponent space left parenthesis 0 right parenthesis space equals straight pi

    [ ∵ tan –1 0;≠ 0 as all the terms on L.H.S. are positive and their sum cannot be zero.]
    ∴ tan –1 1 + tan –1 2 + tan –1 3 = straight pi
    Again space 2 space open square brackets tan to the power of negative 1 end exponent space 1 plus space tan to the power of negative 1 end exponent 1 half plus tan to the power of negative 1 end exponent 1 third close square brackets equals 2 open square brackets open parentheses tan to the power of negative 1 end exponent 1 plus 1 half plus tan to the power of negative 1 end exponent 1 third close parentheses close square brackets
space space space space space space space equals 2 open square brackets tan to the power of negative 1 end exponent 1 plus tan to the power of negative 1 end exponent fraction numerator begin display style 1 half end style plus begin display style 1 third end style over denominator 1 minus begin display style 1 half end style cross times begin display style 1 third end style end fraction close square brackets equals 2 left square bracket tan to the power of 1 space 1 plus space tan to the power of negative 1 end exponent space 1 right square bracket equals 2 open square brackets straight pi over 4 plus straight pi over 4 close square brackets equals 2 cross times straight pi over 2 equals straight pi
therefore space space space space space space 2 open square brackets tan to the power of negative 1 end exponent rightwards arrow tan to the power of negative 1 end exponent 1 half plus tan to the power of negative 1 end exponent 1 third close square brackets equals straight pi space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis 
    From (1) and (2) we get
    tan to the power of negative 1 end exponent space 1 plus tan to the power of negative 1 end exponent space 2 space plus space tan to the power of negative 1 end exponent space 3 equals straight pi equals 2 open square brackets tan to the power of negative 1 end exponent space 1 plus tan to the power of negative 1 end exponent space 1 half plus tan to the power of negative 1 end exponent 1 third close square brackets
straight L. straight H. straight S. space equals space cot to the power of negative 1 end exponent open parentheses fraction numerator ab plus 1 over denominator straight a minus straight b end fraction close parentheses equals cot to the power of negative 1 end exponent open parentheses fraction numerator bc plus 1 over denominator straight b minus straight c end fraction close parentheses plus cot to the power of negative 1 end exponent open parentheses fraction numerator ca plus 1 over denominator straight c minus straight a end fraction close parentheses
space space space space space space space equals tan to the power of negative 1 end exponent open parentheses fraction numerator 1 minus straight b over denominator ab plus 1 end fraction close parentheses plus tan to the power of negative 1 end exponent open parentheses fraction numerator straight b minus straight c over denominator bc plus 1 end fraction close parentheses plus tan to the power of negative 1 end exponent open parentheses fraction numerator straight c minus straight a over denominator ca plus 1 end fraction close parentheses space space space space space space open square brackets because space cot to the power of negative 1 end exponent space straight x equals tan to the power of negative 1 end exponent space 1 over straight x close square brackets
space space space space space space space equals space left parenthesis space tan to the power of negative 1 end exponent straight a minus tan to the power of negative 1 end exponent space straight b right parenthesis plus left parenthesis tan to the power of negative 1 end exponent space straight b minus tan to the power of negative 1 end exponent straight c right parenthesis plus left parenthesis tan to the power of negative 1 end exponent straight c minus tan to the power of negative 1 end exponent straight a right parenthesis
space space space space space space space equals space 0 equals space straight R. straight H. straight S.  

    Question 58
    CBSEENMA12032747

    Prove that 2 space tan to the power of negative 1 end exponent 1 half plus tan to the power of negative 1 end exponent 1 over 7 equals tan to the power of negative 1 end exponent 31 over 17.

    Solution

     L italic. H italic. S italic. italic space italic space 2 space tan to the power of negative 1 end exponent 1 half plus tan to the power of negative 1 end exponent 1 over 7
space space space space space space space space space space space equals tan to the power of negative 1 end exponent open square brackets fraction numerator 2 cross times begin display style 1 half end style over denominator 1 minus open parentheses begin display style 1 half end style close parentheses squared end fraction close square brackets plus tan to the power of negative 1 end exponent 1 over 7 space space space space space space space space space space space space space space space space space space space space space space space space open square brackets because space 2 space tan to the power of negative 1 end exponent space straight x space equals space tan to the power of negative 1 end exponent space fraction numerator 2 straight x over denominator 1 minus straight x squared end fraction close square brackets
space space space space space space space space space space space equals space tan to the power of negative 1 end exponent fraction numerator 1 over denominator 1 minus begin display style 1 fourth end style end fraction plus tan to the power of negative 1 end exponent 1 over 7 equals tan to the power of negative 1 end exponent 4 over 3 plus tan to the power of negative 1 end exponent 1 over 7
space space space space space space space space space space space equals space tan to the power of negative 1 end exponent open square brackets fraction numerator begin display style 4 over 3 plus 1 over 7 end style over denominator 1 minus begin display style 4 over 3 end style cross times begin display style 1 over 7 end style end fraction close square brackets equals space tan to the power of negative 1 end exponent open square brackets fraction numerator 28 plus 3 over denominator 21 minus 4 end fraction close square brackets equals tan to the power of negative 1 end exponent 31 over 17
space space space space space space space space space space space space equals space straight R. space straight H. space straight S.

    Question 59
    CBSEENMA12032748

    Find the value of tan 1 half open square brackets sin to the power of negative 1 end exponent fraction numerator 2 straight x over denominator 1 plus straight x squared end fraction plus cos to the power of negative 1 end exponent fraction numerator 1 minus straight y squared over denominator 1 plus straight y squared end fraction close square brackets comma space open vertical bar straight x close vertical bar less than 1 comma space straight y greater than 0 space and space straight x space straight y space less than 1

    Solution
    straight L. straight H. straight S. space equals 2 space tan to the power of negative 1 end exponent 1 half open square brackets sin to the power of negative 1 end exponent fraction numerator 2 straight x over denominator 1 plus straight x squared end fraction plus cos to the power of negative 1 end exponent fraction numerator 1 minus straight y squared over denominator 1 plus straight y squared end fraction close square brackets equals tan open square brackets 1 half sin to the power of negative 1 end exponent fraction numerator 2 straight x over denominator 1 plus straight x squared end fraction plus 1 half cos fraction numerator 1 minus straight y squared over denominator 1 plus straight y squared end fraction close square brackets
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space tan space left square bracket space tan to the power of negative 1 end exponent space straight x plus tan to the power of negative 1 end exponent space straight y space right square bracket
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space tan space open square brackets tan to the power of negative 1 end exponent open parentheses fraction numerator straight x plus straight y over denominator 1 minus xy end fraction close parentheses close square brackets equals fraction numerator straight x plus straight y over denominator 1 minus xy end fraction space where space straight x space straight y space less than 1

space space space space space space space space space space space
    Question 60
    CBSEENMA12032750

    Solve tan to the power of negative 1 end exponent 2 x plus tan to the power of negative 1 end exponent 3 x equals straight pi over 4.

    Solution
    tan to the power of negative 1 end exponent 2 x plus tan to the power of negative 1 end exponent 3 x equals straight pi over 4 space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space tan to the power of negative 1 end exponent open square brackets fraction numerator 2 x plus 3 x over denominator 1 minus 2 x.3 x end fraction close square brackets
rightwards double arrow space space space space fraction numerator 5 x over denominator 1 minus 6 x squared end fraction equals tan straight pi over 4 space space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space fraction numerator 5 x over denominator 1 minus 6 x squared end fraction equals 1 space
rightwards double arrow space space space 5 x equals 1 minus 6 x squared space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space 6 x squared plus 5 x minus 1 equals 0 space
rightwards double arrow space space space left parenthesis 6 x minus 1 right parenthesis left parenthesis x plus 1 right parenthesis equals 0 space space space space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space space space space x equals 1 over 6. negative 1 space space space

    Now x = – 1 does not satisfy the given equation as the L.H.S. of the equation becomes negative

    therefore space space space straight x equals 1 over 6 is the only solution of the given equation.
    Question 61
    CBSEENMA12032751

    Solve : tan to the power of negative 1 end exponent open parentheses fraction numerator 1 plus x over denominator 1 minus x end fraction close parentheses equals straight pi over 4 plus tan to the power of negative 1 end exponent comma space x comma space o less than x less than 1.

    Solution
    The given equation is
    tan to the power of negative 1 end exponent open parentheses fraction numerator 1 plus x over denominator 1 minus x end fraction close parentheses equals straight pi over 4 plus tan to the power of negative 1 end exponent x space space space space space space space space space space space space space space o t space tan to the power of negative 1 end exponent open parentheses fraction numerator 1 plus x over denominator 1 minus x end fraction close parentheses minus tan to the power of negative 1 end exponent space x space equals space straight pi over 4
tan to the power of negative 1 end exponent open square brackets fraction numerator begin display style fraction numerator 1 plus x over denominator 1 minus x end fraction end style minus x over denominator 1 plus open parentheses begin display style fraction numerator 1 plus x over denominator 1 minus x end fraction end style close parentheses left parenthesis x right parenthesis end fraction close square brackets equals straight pi over 4 space space space space space space space space space space space space space space space space space space open square brackets because space space tan to the power of negative 1 end exponent x minus tan to the power of negative 1 end exponent space y space equals space tan to the power of negative 1 end exponent open parentheses fraction numerator x minus y over denominator 1 plus x space y end fraction close parentheses close square brackets
therefore space space space space space tan to the power of negative 1 end exponent open square brackets fraction numerator 1 plus x minus x left parenthesis 1 minus x right parenthesis over denominator 1 minus x plus x left parenthesis 1 plus x right parenthesis end fraction close square brackets equals straight pi over 4
therefore space space space space space space space tan to the power of negative 1 end exponent left parenthesis 1 right parenthesis equals straight pi over 4
therefore space space space space space space space straight pi over 4 equals straight pi over 4
    ∴ equation has infinitely many solutions.
    Question 62
    CBSEENMA12032752

    Solve, the following equations;
    2 tan–1(cos x) = tan–1t (2 cosec x)

    Solution
    2 tan –1(cos x) = tan –1(2 cosec x)

    rightwards double arrow space space space tan to the power of negative 1 end exponent open parentheses fraction numerator 2 space cos space straight x space over denominator 1 minus space cos squared space straight x end fraction close parentheses equals space tan to the power of negative 1 end exponent open parentheses fraction numerator 2 over denominator sin space straight x end fraction close parentheses space space space space space space space space space space space space open square brackets space because space 2 space tan to the power of negative 1 end exponent space straight x equals space tan to the power of negative 1 end exponent space fraction numerator 2 straight x over denominator 1 minus straight x squared end fraction close square brackets

rightwards double arrow space space space tan to the power of negative 1 end exponent open parentheses fraction numerator 2 space cos space straight x over denominator sin squared space straight x end fraction close parentheses equals space tan to the power of negative 1 end exponent open parentheses fraction numerator 2 over denominator sin space straight x end fraction close parentheses space space space space space space space space space space space space space space space space space rightwards double arrow space fraction numerator 2 space cos space straight x over denominator sin squared space straight x end fraction equals fraction numerator 2 over denominator sin space straight x end fraction
rightwards double arrow space space space 2 space cos space straight x space equals space 2 space sin space straight x space space space space space space space space space space space space rightwards double arrow space space space tan space straight x space equals space 1 space space space space space space space rightwards double arrow space space straight x equals straight pi over 4 space space
    Question 63
    CBSEENMA12032754

    Solve, the following equations;

    tan to the power of negative 1 end exponent open parentheses fraction numerator 1 minus x over denominator 1 plus x end fraction close parentheses equals 1 half tan to the power of negative 1 end exponent space x comma space left parenthesis x space greater than space 0 right parenthesis

    Solution
    The given equation is

    tan to the power of negative 1 end exponent open parentheses fraction numerator 1 minus straight x over denominator 1 plus straight x end fraction close parentheses equals 1 half space tan to the power of negative 1 end exponent space straight x space space space space space space space space space space or space space space 2 space tan to the power of negative 1 end exponent open parentheses fraction numerator 1 minus straight x over denominator 1 plus straight x end fraction close parentheses equals tan to the power of negative 1 end exponent straight x
or space space space space tan to the power of negative 1 end exponent space open square brackets fraction numerator 2 open parentheses begin display style fraction numerator 1 minus straight x over denominator 1 plus straight x end fraction end style close parentheses over denominator 1 minus open parentheses begin display style fraction numerator 1 minus straight x over denominator 1 plus straight x end fraction end style close parentheses squared end fraction close square brackets space tan to the power of negative 1 end exponent straight x space space space space space space space space space space space space space space space space space space space space open square brackets because space 2 space tan space straight theta equals space tan to the power of negative 1 end exponent space fraction numerator 2 straight theta over denominator 1 minus straight theta squared end fraction close square brackets
or space space space space tan to the power of negative 1 end exponent open square brackets fraction numerator 2 left parenthesis 1 minus straight x right parenthesis left parenthesis 1 plus straight x right parenthesis over denominator left parenthesis 1 plus straight x right parenthesis squared minus left parenthesis 1 minus straight x right parenthesis squared end fraction close square brackets equals space tan to the power of negative 1 end exponent space straight x
therefore space space space tan to the power of negative 1 end exponent space open square brackets fraction numerator 2 left parenthesis 1 minus straight x squared right parenthesis over denominator 4 space straight x end fraction close square brackets equals tan to the power of negative 1 end exponent space straight x
therefore space space space space fraction numerator 2 left parenthesis 1 minus straight x squared right parenthesis over denominator 4 straight x end fraction equals straight x space space space space space space space space space space space space space space space space space space space rightwards double arrow space space space space space 1 minus straight x squared equals 2 space straight x squared
therefore space space space space space 3 space straight x squared equals 1 space space space space space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space space space space space straight x squared equals 1 third
therefore space space space space space space space space space space space straight x equals fraction numerator 1 over denominator square root of 3 end fraction
    Question 64
    CBSEENMA12032755

    cos to the power of negative 1 end exponent x plus sin to the power of negative 1 end exponent fraction numerator 1 over denominator square root of 5 end fraction equals straight pi over 4

    Solution
    cos to the power of negative 1 end exponent straight x plus sin to the power of negative 1 end exponent fraction numerator 1 over denominator square root of 5 end fraction equals straight pi over 4
    rightwards double arrow space space cos to the power of negative 1 end exponent straight x equals straight pi over 4 minus sin to the power of negative 1 end exponent fraction numerator 1 over denominator square root of 5 end fraction space space space space space space space space space rightwards double arrow space cos to the power of negative 1 end exponent straight x equals cos to the power of negative 1 end exponent space fraction numerator 1 over denominator square root of 2 end fraction minus cos to the power of negative 1 end exponent space square root of 1 minus 1 fifth end root
rightwards double arrow space space cos to the power of negative 1 end exponent space straight x equals cos to the power of negative 1 end exponent space fraction numerator 1 over denominator square root of 2 end fraction minus cos to the power of negative 1 end exponent space fraction numerator 2 over denominator square root of 5 end fraction
rightwards double arrow space space cos to the power of negative 1 end exponent straight x equals cos to the power of negative 1 end exponent space open square brackets fraction numerator 1 over denominator square root of 2 end fraction cross times fraction numerator 1 over denominator square root of 5 end fraction plus square root of open parentheses 1 minus 1 half close parentheses open parentheses 1 minus 4 over 5 close parentheses end root close square brackets
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets because space space cos to the power of negative 1 end exponent space straight x minus cos to the power of negative 1 end exponent space straight y equals space cos to the power of negative 1 end exponent open parentheses straight x space straight y plus square root of 1 minus straight x squared end root square root of 1 minus straight y squared end root close parentheses close square brackets
rightwards double arrow space space cos to the power of negative 1 end exponent space straight x space equals space cos to the power of negative 1 end exponent space open parentheses fraction numerator 2 over denominator square root of 10 end fraction plus fraction numerator 1 over denominator square root of 10 end fraction close parentheses space space space rightwards double arrow space space straight x equals fraction numerator 2 over denominator square root of 10 end fraction plus fraction numerator 1 over denominator square root of 10 end fraction equals fraction numerator 3 over denominator square root of 10 end fraction
    Question 65
    CBSEENMA12032757

    tan to the power of negative 1 end exponent fraction numerator x minus 1 over denominator x minus 2 end fraction plus tan to the power of negative 1 end exponent fraction numerator x plus 1 over denominator x plus 2 end fraction equals straight pi over 4.

    Solution
    tan to the power of negative 1 end exponent fraction numerator straight x minus 1 over denominator straight x minus 2 end fraction plus tan to the power of negative 1 end exponent fraction numerator straight x plus 1 over denominator straight x plus 2 end fraction equals straight pi over 4
rightwards double arrow space space tan to the power of negative 1 end exponent open square brackets fraction numerator begin display style fraction numerator straight x minus 1 over denominator straight x plus 2 end fraction end style plus begin display style fraction numerator straight x plus 1 over denominator straight x plus 2 end fraction end style over denominator 1 minus begin display style fraction numerator straight x minus 1 over denominator straight x plus 2 end fraction end style cross times begin display style fraction numerator straight x plus 1 over denominator straight x plus 2 end fraction end style end fraction close square brackets equals straight pi over 4
rightwards double arrow space space space fraction numerator left parenthesis straight x minus 1 right parenthesis left parenthesis straight x plus 2 right parenthesis plus left parenthesis straight x minus 2 right parenthesis left parenthesis straight x plus 1 right parenthesis over denominator left parenthesis straight x minus 2 right parenthesis left parenthesis straight x plus 2 right parenthesis minus left parenthesis straight x minus 1 right parenthesis left parenthesis straight x plus 1 right parenthesis end fraction equals tan straight pi over 4 space space space space space space rightwards double arrow space space space fraction numerator straight x squared plus straight x minus 2 plus straight x squared minus straight x minus 2 over denominator straight x squared minus 4 minus straight x squared plus 1 end fraction
rightwards double arrow space space fraction numerator 2 space straight x squared minus 4 over denominator negative 3 end fraction equals 1 space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space rightwards double arrow space 2 space straight x squared minus 4 equals negative 3 space space space rightwards double arrow space 2 space straight x squared equals 1
rightwards double arrow space space straight x squared equals 1 half space space space space space rightwards double arrow space straight x equals 1 plus-or-minus fraction numerator 1 over denominator square root of 2 end fraction
    Question 66
    CBSEENMA12032759

    Find the value of tan open parentheses space sin to the power of negative 1 end exponent 3 over 5 plus cot to the power of negative 1 end exponent 3 over 2 close parentheses

    Solution
    Put space sin to the power of negative 1 end exponent 3 over 5 equals straight theta. space Then space sin space straight theta space equals space 3 over 5
therefore space space space space space cos space straight theta space equals square root of 1 minus sin squared space straight theta end root space equals square root of 1 minus 9 over 25 end root equals square root of 16 over 25 end root equals 4 over 5
therefore space space space space space tan space straight theta space equals space fraction numerator sin space straight theta over denominator cos space straight theta end fraction equals fraction numerator begin display style 3 over 5 end style over denominator begin display style 4 over 5 end style end fraction equals 3 over 5 cross times 5 over 4 equals 3 over 4
Again space put space space space space cot to the power of negative 1 end exponent 3 over 5 equals straight ϕ. space Then space space cos space straight ϕ equals 3 over 2
therefore space space space space space space tan space straight ϕ space equals space 2 over 3
Now space tan open parentheses sin to the power of negative 1 end exponent 3 over 5 plus cot to the power of negative 1 end exponent 3 over 5 close parentheses equals tan space left parenthesis straight theta plus straight ϕ right parenthesis equals fraction numerator tan space straight theta space plus space tan space straight ϕ over denominator 1 minus space tan space straight theta space tan space straight ϕ end fraction
space space space space space space space space space space space space space space space space space space space space space space space equals fraction numerator begin display style 3 over 4 end style plus begin display style 2 over 3 end style over denominator 1 minus begin display style 3 over 4 end style cross times begin display style 2 over 3 end style end fraction space space space space space space space space space space space space space space space open square brackets because space tan space straight theta equals 3 over 4. space tan space straight ϕ equals 2 over 3 close square brackets
space space space space space space space space space space space space space space space space space space space space space space space equals space fraction numerator 9 plus 8 over denominator 12 minus 6 end fraction equals 17 over 6
    Question 67
    CBSEENMA12032761

    Prove that 2 space sin to the power of negative 1 end exponent 3 over 5 equals tan to the power of negative 1 end exponent 24 over 7.

    Solution
    Let space sin to the power of negative 1 end exponent 3 over 5 equals straight theta. space Then space sin space straight theta equals 3 over 5
therefore space space space cos space straight theta space equals square root of 1 minus sin squared space straight theta end root equals square root of 1 minus 9 over 25 end root equals square root of 16 over 25 end root equals 4 over 5
therefore space space space tan space straight theta space equals space fraction numerator sin space straight theta over denominator cos space straight theta end fraction equals 3 over 5 cross times 5 over 4 equals 3 over 4 space space space space rightwards double arrow space space straight theta equals space tan to the power of negative 1 end exponent space 3 over 4
Now comma space space space 2 space sin to the power of negative 1 end exponent 3 over 5 equals 2 space straight theta equals 2 space tan to the power of negative 1 end exponent space 3 over 4
space space space space space space space space space space space space space space space equals space tan to the power of negative 1 end exponent open parentheses fraction numerator 2 cross times begin display style 3 over 4 end style over denominator 1 minus begin display style 9 over 16 end style end fraction close parentheses equals tan to the power of negative 1 end exponent open parentheses fraction numerator begin display style 6 over 4 end style over denominator begin display style 7 over 16 end style end fraction close parentheses equals tan to the power of negative 1 end exponent open parentheses 6 over 4 cross times 16 over 7 close parentheses equals tan to the power of negative 1 end exponent 24 over 7
therefore space space space space space space 2 space sin to the power of negative 1 end exponent 3 over 5 equals tan to the power of negative 1 end exponent 24 over 7
    Question 68
    CBSEENMA12032763

    Show that sin to the power of negative 1 end exponent 3 over 5 minus sin to the power of negative 1 end exponent 8 over 17 equals cos to the power of negative 1 end exponent 84 over 85.

    Solution
    Let space sin to the power of negative 1 end exponent 3 over 5 equals straight x space and space sin to the power of negative 1 end exponent 8 over 17 equals straight y
therefore space space space space space space sin space straight x equals 3 over 5 space and space sin space straight y space equals space 8 over 17
Now space space space space cos space straight x equals square root of 1 minus sin squared space straight x end root equals square root of 1 minus 9 over 25 end root equals square root of 16 over 25 end root equals 4 over 5
and space space space space space space cos space straight y equals square root of 1 minus sin squared space straight y end root equals square root of 1 minus 64 over 289 end root equals square root of 225 over 289 end root equals 15 over 17
    Now     cos(x  - y) = cos x cos y + sin x sin y
                    equals 4 over 5 cross times 15 over 17 plus 3 over 5 cross times 8 over 17 equals 60 over 85 plus 24 over 85 equals fraction numerator 60 plus 24 over denominator 85 end fraction equals 84 over 85
therefore space space space space space straight x minus straight y equals cos to the power of negative 1 end exponent 84 over 85
sin to the power of negative 1 end exponent 3 over 5 asterisk times sin to the power of negative 1 end exponent 8 over 17 minus cos to the power of negative 1 end exponent 84 over 85
    Question 69
    CBSEENMA12032764

    Prove that cos to the power of negative 1 end exponent 4 over 5 plus cos to the power of negative 1 end exponent 12 over 13 equals cos to the power of negative 1 end exponent 12 over 13 equals cos to the power of negative 1 end exponent 33 over 65.

    Solution
    cos open square brackets cos to the power of negative 1 end exponent 4 over 5 plus cos to the power of negative 1 end exponent 12 over 13 close square brackets
equals cos open parentheses cos to the power of negative 1 end exponent 4 over 5 close parentheses cos open parentheses cos to the power of negative 1 end exponent 12 over 13 close parentheses minus sin open parentheses cos to the power of negative 1 end exponent 4 over 5 close parentheses sin open parentheses cos to the power of negative 1 end exponent 12 over 13 close parentheses
equals c o s open parentheses c o s to the power of negative 1 end exponent 4 over 5 close parentheses c o s open parentheses c o s to the power of negative 1 end exponent 12 over 13 close parentheses minus square root of 1 minus cos squared open parentheses cos to the power of negative 1 end exponent 4 over 5 close parentheses end root square root of 1 minus cos squared open parentheses cos to the power of negative 1 end exponent 12 over 13 close parentheses end root
equals 4 over 5 cross times 12 over 13 minus square root of 1 minus open parentheses 4 over 5 close parentheses squared end root square root of 1 minus open parentheses 13 over 13 close parentheses squared end root equals 4 over 5 cross times 12 over 13 minus 3 over 5 cross times 5 over 13 equals 48 over 65 minus 15 over 65 equals 33 over 65
therefore space space cos space open square brackets cos to the power of negative 1 end exponent 4 over 5 plus cos to the power of negative 1 end exponent 12 over 13 close square brackets equals 33 over 65 space space space space rightwards double arrow space space cos to the power of negative 1 end exponent 4 over 5 plus cos to the power of negative 1 end exponent 12 over 13 equals cos to the power of negative 1 end exponent open parentheses 33 over 65 close parentheses
    Question 70
    CBSEENMA12032766

    Prove that cos to the power of negative 1 end exponent 12 over 13 plus sin to the power of negative 1 end exponent 3 over 5 equals sin to the power of negative 1 end exponent 56 over 65.

    Solution
    sin open square brackets cos to the power of negative 1 end exponent 12 over 13 plus sin to the power of negative 1 end exponent 3 over 5 close square brackets
equals space sin open parentheses cos to the power of negative 1 end exponent 12 over 13 close parentheses cos open parentheses sin to the power of negative 1 end exponent 3 over 5 close parentheses plus cos open parentheses c o s to the power of negative 1 end exponent 12 over 13 close parentheses c o s open parentheses s i n to the power of negative 1 end exponent 3 over 5 close parentheses
equals square root of 1 minus cos squared open parentheses cos to the power of negative 1 end exponent 12 over 13 close parentheses end root square root of 1 minus sin squared open parentheses sin to the power of negative 1 end exponent 3 over 5 close parentheses end root plus cos open parentheses cos to the power of negative 1 end exponent 13 over 13 close parentheses sin open parentheses sin to the power of negative 1 end exponent 3 over 5 close parentheses
equals space square root of 1 minus open parentheses 12 over 13 close parentheses squared end root square root of 1 minus open parentheses 3 over 5 close parentheses squared end root plus 12 over 13 cross times 3 over 5 equals 5 over 13 cross times 4 over 5 plus 12 over 13 cross times 3 over 5 equals 20 over 65 plus 36 over 65 equals 56 over 65
therefore space space space sin open square brackets cos to the power of negative 1 end exponent 12 over 13 plus sin to the power of negative 1 end exponent 3 over 5 close square brackets equals 56 over 65 space space rightwards double arrow space space cos to the power of negative 1 end exponent 12 over 13 plus sin to the power of negative 1 end exponent 3 over 5 equals sin to the power of negative 1 end exponent 3 over 5 equals sin to the power of negative 1 end exponent open parentheses 56 over 65 close parentheses
    Question 71
    CBSEENMA12032770

    Show that sin to the power of negative 1 end exponent 12 over 13 plus cos to the power of negative 1 end exponent 4 over 5 plus tan to the power of negative 1 end exponent 63 over 16 equals straight pi.

    Solution
    Let space sin to the power of negative 1 end exponent 12 over 13 equals straight x comma space cos to the power of negative 1 end exponent 4 over 5 equals straight y comma space space space tan to the power of negative 1 end exponent 63 over 16 equals straight z
therefore space space space sin space straight x equals 12 over 13 comma space cos space straight y equals 4 over 5 comma space space tan space straight z equals 63 over 16
therefore space space space cos space straight x equals square root of 1 minus sin squared space straight x end root equals square root of 1 minus 144 over 169 end root equals square root of 25 over 169 end root equals 5 over 13
therefore space space space tan space straight x equals fraction numerator sin space straight x over denominator cos space straight x end fraction equals 12 over 13 cross times 13 over 5 equals 12 over 5
Again space sin space straight y space equals space square root of 1 minus cos squared space straight y end root equals square root of 1 minus 16 over 25 end root equals square root of 9 over 25 end root equals 3 over 5
therefore space space space tan space straight y space equals space fraction numerator sin space straight y over denominator space cos space straight y end fraction equals 3 over 5 cross times 5 over 4 equals 3 over 4
therefore space space cos space straight x space equals space 5 over 13 comma space sin space straight y equals 3 over 5 comma space tan space straight x space equals 12 over 5 space and space tan space straight y space equals space 3 over 4
Now space space space tan space left parenthesis straight x plus straight y right parenthesis equals fraction numerator tan space straight x plus tan space straight y over denominator 1 asterisk times tan space straight x space tan space straight y end fraction equals fraction numerator begin display style 12 over 5 end style plus begin display style 3 over 4 end style over denominator 1 minus begin display style 12 over 5 end style cross times begin display style 3 over 4 end style end fraction equals fraction numerator 48 plus 15 over denominator 20 minus 36 end fraction equals negative 63 over 16
therefore space space space space space space space space space space space space space tan space space left parenthesis straight x plus straight y right parenthesis space space space equals space minus space tan space straight z
where space space space space space space space space tan space straight z equals 63 over 16 space space space straight i. straight e. space space space straight z equals space tan to the power of negative 1 end exponent open parentheses 63 over 16 close parentheses
    i.e.  tan (x + y) = tan (- z) or tan (x + y) = tan open parentheses straight pi minus straight z close parentheses
    therefore   x + y = - z or x + y = straight pi minus straight z
    Since x, y and x are positive , straight x plus straight y not equal to negative straight z
    therefore   x + y + z = straight pi
    or space space space space space space sin to the power of negative 1 end exponent 12 over 13 plus cos to the power of negative 1 end exponent 4 over 5 plus tan to the power of negative 1 end exponent 63 over 16 equals straight pi
    Question 72
    CBSEENMA12032772

    Prove that : tan to the power of negative 1 end exponent 63 over 16 equals sin to the power of negative 1 end exponent 5 over 13 plus cos to the power of negative 1 end exponent 3 over 5

    Solution
    Let space sin to the power of negative 1 end exponent open parentheses 5 over 13 close parentheses equals straight theta space space space and space cos to the power of negative 1 end exponent open parentheses 3 over 5 close parentheses equals straight ϕ
Now space space space space space space tan space straight theta equals fraction numerator sin space straight theta over denominator cos space straight theta end fraction equals fraction numerator sin open parentheses sin to the power of negative 1 end exponent open parentheses begin display style 5 over 13 end style close parentheses close parentheses over denominator cos open parentheses sin to the power of negative 1 end exponent open parentheses begin display style 5 over 13 end style close parentheses close parentheses end fraction
space space space space space space space space space space space space space space space space space space space equals fraction numerator sin open parentheses sin to the power of negative 1 end exponent begin display style 5 over 13 end style close parentheses over denominator square root of 1 minus sin squared open parentheses sin to the power of negative 1 end exponent begin display style 5 over 13 end style close parentheses end root end fraction equals fraction numerator begin display style 5 over 13 end style over denominator square root of 1 minus open parentheses begin display style 5 over 13 end style close parentheses squared end root end fraction equals fraction numerator begin display style 5 over 13 end style over denominator begin display style 12 over 13 end style end fraction equals 5 over 12
and space space space space space space space space tan space straight ϕ space fraction numerator sin space straight ϕ over denominator cos space straight ϕ end fraction equals fraction numerator sin open parentheses cos to the power of negative 1 end exponent open parentheses begin display style 3 over 5 end style close parentheses close parentheses over denominator cos open parentheses cos to the power of negative 1 end exponent open parentheses begin display style 3 over 5 end style close parentheses close parentheses end fraction
space space space space space space space space space space space space equals fraction numerator square root of 1 minus cos squared open parentheses cos to the power of negative 1 end exponent begin display style 3 over 5 end style close parentheses end root over denominator cos open parentheses cos to the power of negative 1 end exponent begin display style 3 over 5 end style close parentheses end fraction equals fraction numerator square root of 1 minus open parentheses begin display style 3 over 5 end style close parentheses squared end root over denominator begin display style 3 over 5 end style end fraction equals fraction numerator begin display style 4 over 5 end style over denominator begin display style 3 over 5 end style end fraction equals 4 over 3
therefore space space space space space space space space space tan space left parenthesis straight theta plus straight ϕ right parenthesis equals fraction numerator tan space straight theta plus space tan space straight ϕ over denominator 1 minus tan space straight theta space tan space straight ϕ end fraction equals fraction numerator begin display style 5 over 12 end style plus begin display style 4 over 3 end style over denominator 1 minus 5 over 12 cross times 4 over 3 end fraction equals fraction numerator 15 plus 48 over denominator 36 minus 20 end fraction equals 63 over 16
therefore space space space space space space space space space straight theta space plus space straight ϕ space equals space tan to the power of negative 1 end exponent open parentheses 63 over 16 close parentheses
therefore space space space space space space space space space sin to the power of negative 1 end exponent open parentheses 5 over 13 close parentheses plus cos to the power of negative 1 end exponent open parentheses 3 over 5 close parentheses equals tan to the power of negative 1 end exponent open parentheses 63 over 16 close parentheses space or space tan to the power of negative 1 end exponent open parentheses 63 over 16 close parentheses equals sin to the power of negative 1 end exponent open parentheses 5 over 13 close parentheses plus cos to the power of negative 1 end exponent open parentheses 3 over 5 close parentheses.
    Question 73
    CBSEENMA12032773

    Simplify tan to the power of negative 1 end exponent open square brackets fraction numerator straight a space cos space straight x minus straight b space sin space straight x over denominator straight b space cos space straight x plus straight a space sin space straight x end fraction close square brackets comma space if space straight a over straight b space tan space straight x greater than negative 1.

    Solution
    tan to the power of negative 1 end exponent open square brackets fraction numerator straight a space cos space straight x minus straight b space sin space straight x over denominator straight b space cos space straight x plus straight a space sin space straight x end fraction close square brackets equals tan to the power of negative 1 end exponent open square brackets fraction numerator begin display style fraction numerator straight a space cos space straight x minus straight b space sin space straight x over denominator straight b space cos space straight x end fraction end style over denominator begin display style fraction numerator straight b space cos space straight x plus straight a space sin space straight x over denominator straight b space cos space straight x end fraction end style end fraction close square brackets
equals space tan to the power of negative 1 end exponent open square brackets fraction numerator begin display style straight a over straight b end style minus tan space straight x over denominator 1 plus begin display style straight a over straight b end style space tan space straight x end fraction close square brackets equals tan to the power of negative 1 end exponent straight a over straight b minus tan to the power of negative 1 end exponent left parenthesis tan space straight x right parenthesis equals tan to the power of negative 1 end exponent straight a over straight b minus straight x.
    Question 74
    CBSEENMA12032775

    Shoe that sin to the power of negative 1 end exponent open parentheses 2 space x square root of 1 minus x squared end root close parentheses equals 2 space sin to the power of negative 1 end exponent x comma space space minus fraction numerator 1 over denominator square root of 2 end fraction less or equal than space x space less or equal than fraction numerator 1 over denominator square root of 2 end fraction

    Solution
    Put x = sin θ
    straight L. straight H. straight S. space equals sin to the power of negative 1 end exponent open parentheses 2 straight x square root of 1 minus straight x squared end root close parentheses equals sin to the power of negative 1 end exponent open parentheses 2 space sin space straight theta square root of 1 minus sin squared space straight theta end root close parentheses
space space space space space space space space space space equals space sin to the power of negative 1 end exponent space left parenthesis 2 space sin space straight theta space cos space straight theta right parenthesis equals sin to the power of negative 1 end exponent left parenthesis sin space 2 space straight theta right parenthesis equals 2 space straight theta equals 2 space sin to the power of negative 1 end exponent space straight x space equals space straight R. straight H. straight S.
    Question 75
    CBSEENMA12032777

    Shoe that sin to the power of negative 1 end exponent open parentheses 2 space x square root of 1 minus x squared end root close parentheses equals 2 space cos to the power of negative 1 end exponent space x comma space fraction numerator 1 over denominator square root of 2 end fraction space less or equal than x less or equal than 1

    Solution
    Pur space straight x space equals space straight theta space
therefore space space straight L. straight H. straight S. space equals space sin to the power of negative 1 end exponent open parentheses 2 space straight x space square root of 1 minus straight x squared end root close parentheses equals sin to the power of negative 1 end exponent open parentheses 2 space cos space straight theta space square root of 1 minus cos squared space straight theta end root close parentheses
space space space space space space space space space space space space space space space space equals space sin to the power of negative 1 end exponent left parenthesis 2 space cos space straight theta space sin space straight theta right parenthesis space equals space sin to the power of negative 1 end exponent space left parenthesis sin space 2 space straight theta right parenthesis
space space space space space space space space space space space space space space space space equals space 2 space straight theta space equals space 2 space cos to the power of negative 1 end exponent space straight x space equals space straight R. straight H. straight S.
therefore space space space space straight L. straight H. straight S. space equals space straight R. straight H. straight S.
    Question 76
    CBSEENMA12032778

    Prove sin space left parenthesis 2 space sin to the power of negative 1 end exponent space straight x right parenthesis equals space 2 space straight x square root of 1 minus straight x squared end root

    Solution
    Put x = sin θ or θ = sin –1x'
    therefore space space straight L. straight H. straight S. space space equals space sin left parenthesis 2 space sin to the power of negative 1 end exponent space straight x right parenthesis space equals space sin space left parenthesis 2 space straight theta right parenthesis
space space space space space space space space space space space space space space space space equals space 2 space sin space straight theta space cos space straight theta space equals space sin space straight theta space square root of 1 minus sin squared space straight theta end root equals 2 space straight x space square root of 1 minus straight x squared end root equals space straight R. straight H. straight S.
    Question 77
    CBSEENMA12032780

    Prove cos to the power of negative 1 end exponent space x equals 2 space sin to the power of negative 1 end exponent space square root of fraction numerator 1 minus x over denominator 2 end fraction end root equals 2 space cos to the power of negative 1 end exponent square root of fraction numerator 1 plus x over denominator 2 end fraction end root

    Solution

    Put x = cos straight theta
    therefore space space space space cos to the power of negative 1 end exponent straight x equals cos to the power of negative 1 end exponent left parenthesis cos space straight theta right parenthesis equals straight theta
space space space space space space Also space 2 space sin to the power of negative 1 end exponent space square root of fraction numerator 1 minus straight x over denominator 2 end fraction end root equals 2 space sin to the power of negative 1 end exponent square root of fraction numerator 1 minus cosθ over denominator 2 end fraction end root space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
space space equals 2 space sin to the power of negative 1 end exponent square root of fraction numerator open parentheses 2 space sin squared begin display style straight theta over 2 end style close parentheses over denominator 2 end fraction end root equals 2 space sin to the power of negative 1 end exponent open parentheses sin straight theta over 2 close parentheses equals 2 open parentheses straight theta over 2 close parentheses equals straight theta
therefore space space 2 space sin to the power of negative 1 end exponent space square root of fraction numerator 1 minus straight x over denominator 2 end fraction end root equals straight theta
Again space space space 2 space cos to the power of negative 1 end exponent space square root of fraction numerator 1 plus straight x over denominator 2 end fraction end root equals 2 space cos to the power of negative 1 end exponent square root of fraction numerator 1 plus cos space straight theta over denominator 2 end fraction end root equals 2 space cos to the power of negative 1 end exponent square root of fraction numerator open parentheses 2 space cos squared begin display style straight theta over 2 end style close parentheses over denominator 2 end fraction end root
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space 2 space cos to the power of negative 1 end exponent open parentheses cos straight theta over 2 close parentheses equals 2 open parentheses straight theta over 2 close parentheses equals straight theta
therefore space space space space space space space 2 space cos to the power of negative 1 end exponent square root of fraction numerator 1 plus straight x over denominator 2 end fraction end root equals straight theta
    From (1), (2) and (3), we get
        cos to the power of negative 1 end exponent space x space equals space 2 space sin to the power of negative 1 end exponent space square root of fraction numerator 1 minus x over denominator 2 end fraction end root equals 2 space cos to the power of negative 1 end exponent space square root of fraction numerator 1 plus x over denominator 2 end fraction end root

    Question 78
    CBSEENMA12032781

    Prove tan to the power of negative 1 end exponent square root of x equals 1 half cos to the power of negative 1 end exponent open parentheses fraction numerator 1 minus x over denominator 1 plus x end fraction close parentheses

    Solution
    Put space straight x equals tan squared space straight theta space or space square root of straight x equals tan space straight theta space or space straight theta equals tan to the power of negative 1 end exponent square root of straight x
straight R. straight H. straight S. space equals 1 half cos to the power of negative 1 end exponent open parentheses fraction numerator 1 minus straight x over denominator 1 plus straight x end fraction close parentheses equals 1 half cos to the power of negative 1 end exponent open parentheses fraction numerator 1 minus tan squared space straight theta over denominator 1 plus tan squared space straight theta end fraction close parentheses
space space space space space space space space space space space equals 1 half space cos to the power of negative 1 end exponent left parenthesis cos space 2 space straight theta right parenthesis equals 1 half left parenthesis 2 space straight theta right parenthesis equals straight theta equals tan to the power of negative 1 end exponent square root of straight x equals straight L. straight H. straight S.
    Question 79
    CBSEENMA12032782

    Prove 2 space tan to the power of negative 1 end exponent space straight x space equals space sin to the power of negative 1 end exponent fraction numerator 2 straight x over denominator 1 plus straight x squared end fraction equals tan to the power of negative 1 end exponent fraction numerator 2 straight x over denominator 1 minus straight x squared end fraction

    Solution

    Put x = tan straight theta
    Now space 2 space tan to the power of negative 1 end exponent space straight x equals 2 space tan to the power of negative 1 end exponent space straight x equals 2 space tan to the power of negative 1 end exponent left parenthesis tan space straight theta right parenthesis equals 2 space straight theta
therefore space space space 2 space tan to the power of negative 1 end exponent space straight x equals 2 space straight theta space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space.... left parenthesis 1 right parenthesis
Also space space space sin to the power of negative 1 end exponent space fraction numerator 2 space straight x over denominator 1 plus straight x squared end fraction equals sin to the power of negative 1 end exponent open parentheses fraction numerator 2 space tan space straight theta over denominator 1 plus tan space straight theta end fraction close parentheses equals sin to the power of negative 1 end exponent left parenthesis sin space 2 space straight theta right parenthesis equals 2 space straight theta
therefore space space space space space space sin to the power of negative 1 end exponent open parentheses fraction numerator 2 straight x over denominator 1 plus straight x squared end fraction close parentheses equals 2 space straight theta space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis
Again space tan to the power of negative 1 end exponent space fraction numerator 2 space straight x over denominator 1 minus straight x squared end fraction equals tan to the power of negative 1 end exponent open parentheses fraction numerator 2 space tan space straight theta over denominator 1 minus tan space straight theta end fraction close parentheses equals sin to the power of negative 1 end exponent left parenthesis sin space 2 space straight theta right parenthesis
therefore space space space space tan to the power of negative 1 end exponent open parentheses fraction numerator 2 space straight x over denominator 1 minus straight x squared end fraction close parentheses equals 2 space straight theta space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space.... left parenthesis 3 right parenthesis
    From (1), (2), (3) we get,
    2 space tan to the power of negative 1 end exponent space straight x equals sin to the power of negative 1 end exponent space open parentheses fraction numerator 2 space straight x over denominator 1 plus straight x squared end fraction close parentheses equals tan to the power of negative 1 end exponent open parentheses fraction numerator 2 straight x over denominator 1 minus straight x squared end fraction close parentheses

    Sponsor Area

    Question 80
    CBSEENMA12032783

    Prove 2 space tan to the power of negative 1 end exponent space 1 over straight x equals sin to the power of negative 1 end exponent space fraction numerator 2 straight x over denominator 1 plus straight x squared end fraction

    Solution
    Put space 1 over straight x equals tan space straight theta
straight L. straight H. straight S. space equals space sin to the power of negative 1 end exponent open parentheses fraction numerator 2 space straight x over denominator straight x squared plus 1 end fraction close parentheses equals sin to the power of negative 1 end exponent open parentheses fraction numerator begin display style 2 over straight x end style over denominator 1 plus begin display style 1 over straight x squared end style end fraction close parentheses equals sin to the power of negative 1 end exponent open parentheses fraction numerator 2 space tan space straight theta over denominator 1 plus space tan squared space straight theta end fraction close parentheses equals sin to the power of negative 1 end exponent left parenthesis sin space 2 space straight theta right parenthesis equals 2 space straight theta
therefore space space space straight L. straight H. straight S. space equals space straight R. straight H. straight S.
    Question 81
    CBSEENMA12032785
    Question 82
    CBSEENMA12032786

    Write tan to the power of negative 1 end exponent open square brackets fraction numerator 3 straight a squared space straight x minus straight x cubed over denominator straight a left parenthesis straight a cubed minus 3 straight x squared right parenthesis end fraction close square brackets comma space straight a greater than 0 comma space space minus fraction numerator straight a over denominator square root of 3 end fraction less or equal than straight x less or equal than fraction numerator straight a over denominator square root of 3 end fraction in the simplest form.

    Solution
    Let space space straight theta equals tan to the power of negative 1 end exponent open square brackets fraction numerator 3 straight a squared space straight x minus straight x cubed over denominator straight a left parenthesis straight a squared minus 3 straight x squared right parenthesis end fraction close square brackets equals tan open square brackets fraction numerator 3 begin display style straight x over straight a end style minus begin display style straight x cubed over straight a cubed end style over denominator 1 minus begin display style fraction numerator 3 space straight x squared over denominator straight a squared end fraction end style end fraction close square brackets
                                                                        ( Dividing num. and deno by a3)
    Put  straight x over straight a equals tan space a
    therefore space space space space space space space space space space space space straight theta equals tan to the power of negative 1 end exponent open square brackets fraction numerator 3 space tan space straight a space minus space tan cubed space straight a over denominator 1 minus 3 space tan squared space straight a end fraction close square brackets equals tan to the power of negative 1 end exponent space left parenthesis tan space 3 straight a right parenthesis space equals space 3 space straight a
therefore space space space space space space space space space space space space straight theta space equals space 3 space tan to the power of negative 1 end exponent space straight x over straight a
    Question 83
    CBSEENMA12032788

    Write the following in the simplest form : 

    cot to the power of negative 1 end exponent open parentheses fraction numerator 1 over denominator square root of straight x squared minus 1 end root end fraction close parentheses comma space open vertical bar straight x close vertical bar greater than 1

    Solution
    Put x = sec θ

    therefore space space space space cot to the power of negative 1 end exponent open parentheses fraction numerator 1 over denominator square root of straight x squared minus 1 end root end fraction close parentheses equals cot to the power of negative 1 end exponent open parentheses fraction numerator 1 over denominator square root of sec squared space straight theta minus 1 end root end fraction close parentheses equals cot to the power of negative 1 end exponent open parentheses fraction numerator 1 over denominator tan space straight theta end fraction close parentheses
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals space cot to the power of negative 1 end exponent left parenthesis cot space straight theta right parenthesis equals straight theta equals sec to the power of negative 1 end exponent straight x
therefore space space space cot to the power of negative 1 end exponent open parentheses fraction numerator 1 over denominator square root of straight x squared minus 1 end root end fraction close parentheses equals sec to the power of negative 1 end exponent straight x
    Question 84
    CBSEENMA12032789

    Write the following in the simplest form :tan to the power of negative 1 end exponent open parentheses fraction numerator straight x over denominator square root of straight a squared minus straight x squared end root end fraction close parentheses comma space open vertical bar straight x close vertical bar less than straight a


    Solution
    Put x = a sin θ
    therefore space space tan to the power of negative 1 end exponent space open parentheses fraction numerator straight x over denominator square root of straight a squared minus straight x squared end root end fraction close parentheses equals tan to the power of negative 1 end exponent open parentheses fraction numerator straight a space sin space straight theta over denominator square root of straight a squared minus straight a squared space sin squared space straight theta end root end fraction close parentheses equals tan to the power of negative 1 end exponent space square root of 1 minus straight z squared end root
space space space space equals space tan to the power of negative 1 end exponent left parenthesis tan space straight theta right parenthesis equals straight theta
space space space space equals space sin to the power of negative 1 end exponent straight x over straight a space space space space space space space space space space space space space space space space space space space space open square brackets because space straight x equals straight a space sin space straight theta comma space space therefore space sin space straight theta space equals straight x over straight a space space rightwards double arrow space straight theta equals sin to the power of negative 1 end exponent straight x over straight a close square brackets
therefore space space space tan to the power of negative 1 end exponent space open parentheses fraction numerator straight x over denominator square root of straight a squared minus straight x squared end root end fraction close parentheses equals sin to the power of negative 1 end exponent straight x over straight a
    Question 85
    CBSEENMA12032792
    Question 86
    CBSEENMA12032793
    Question 87
    CBSEENMA12032794

    Simplify

    cos to the power of negative 1 end exponent open square brackets square root of fraction numerator 1 plus cos space 3 x over denominator 1 minus cos space 3 x end fraction end root close square brackets

    Solution
    Let space space space space straight z equals cot to the power of negative 1 end exponent open square brackets square root of fraction numerator 1 plus cos space 3 straight x over denominator 1 minus cos space 3 straight x end fraction end root close square brackets
therefore space space space space straight z equals cot to the power of negative 1 end exponent open square brackets square root of fraction numerator 2 space cos squared begin display style 3 over 2 end style straight x over denominator 2 space sin squared space begin display style 3 over 2 end style straight x end fraction end root close square brackets equals cot to the power of negative 1 end exponent open parentheses cot 3 over 2 straight x close parentheses equals 3 over 2 straight x
    Question 88
    CBSEENMA12032796

    Simplify

    tan to the power of negative 1 end exponent open parentheses fraction numerator square root of 1 plus x squared end root minus 1 over denominator x end fraction close parentheses

    Solution
    Let space straight z equals tan to the power of negative 1 end exponent space open parentheses fraction numerator square root of 1 plus straight x squared end root minus 1 over denominator straight x end fraction close parentheses
Put space space space straight x equals tan space straight theta
therefore space space space space straight z equals tan to the power of negative 1 end exponent space open parentheses fraction numerator square root of 1 plus tan squared space straight theta end root over denominator tan space straight theta end fraction close parentheses equals tan to the power of negative 1 end exponent open parentheses fraction numerator sec space straight theta minus 1 over denominator tan space straight theta end fraction close parentheses equals tan to the power of negative 1 end exponent space open square brackets fraction numerator begin display style fraction numerator 1 over denominator cos space straight theta end fraction minus 1 end style over denominator begin display style fraction numerator sin space straight theta over denominator cos space straight theta end fraction end style end fraction close square brackets
space space space space space space space space space equals tan to the power of negative 1 end exponent open parentheses fraction numerator 1 minus cos space theta over denominator sin space theta end fraction close parentheses equals tan to the power of negative 1 end exponent open square brackets fraction numerator 2 space sin squared space begin display style theta over 2 end style over denominator 2 space sin space begin display style theta over 2 end style space cos space begin display style theta over 2 end style end fraction close square brackets
space space space space space space space space space equals space tan to the power of negative 1 end exponent open parentheses tan space theta over 2 close parentheses equals theta over 2 equals 1 half tan to the power of negative 1 end exponent space x
space space space space space space space space space
    Question 89
    CBSEENMA12032797

    Simplify

    tan to the power of negative 1 end exponent open parentheses fraction numerator square root of 1 plus x squared end root minus 1 over denominator x end fraction close parentheses

    Solution
    Let space straight z equals bold tan to the power of bold minus bold 1 end exponent open parentheses fraction numerator square root of bold 1 bold plus bold x to the power of bold 2 end root bold minus bold 1 over denominator bold x end fraction close parentheses
Put space space space space space space space straight x equals tan space straight theta
therefore space space space space space space straight z equals tan to the power of negative 1 end exponent open parentheses fraction numerator square root of 1 plus tan squared space straight theta minus 1 end root over denominator tan space straight theta end fraction close parentheses equals tan to the power of negative 1 end exponent open parentheses fraction numerator sec space straight theta minus 1 over denominator tan space straight theta end fraction close parentheses equals tan to the power of negative 1 end exponent open square brackets fraction numerator begin display style fraction numerator 1 over denominator cos space straight theta end fraction end style minus 1 over denominator begin display style fraction numerator sin space straight theta over denominator cos space straight theta end fraction end style end fraction close square brackets
space space space space space space space space space space equals space tan to the power of negative 1 end exponent open parentheses fraction numerator 1 minus cos space straight theta over denominator sin space straight theta end fraction close parentheses equals tan to the power of negative 1 end exponent open square brackets fraction numerator 2 space sin squared space begin display style straight theta over 2 end style over denominator 2 space sin space begin display style straight theta over 2 end style space cos space begin display style straight theta over 2 end style end fraction close square brackets
space space space space space space space space space space equals tan to the power of negative 1 end exponent open parentheses tan straight theta over 2 close parentheses equals straight theta over 2 equals 1 half tan to the power of negative 1 end exponent space straight x
    Question 90
    CBSEENMA12032800

    Simplify

    cot to the power of negative 1 end exponent open parentheses square root of 1 plus straight x squared end root minus straight x close parentheses

    Solution
    Let space space space straight z equals space cot to the power of negative 1 end exponent space open parentheses square root of 1 plus straight x squared end root minus straight x close parentheses
Put space space space straight x equals tan space straight theta
therefore space space space space straight z equals cot to the power of negative 1 end exponent space open parentheses square root of 1 plus tan squared space straight theta end root minus tan space straight theta close parentheses equals cot to the power of negative 1 end exponent left parenthesis sec space straight theta minus tan space straight theta right parenthesis
space space space space space space space space equals cot to the power of negative 1 end exponent open parentheses fraction numerator 1 over denominator cos space straight theta end fraction minus fraction numerator sin space straight theta over denominator cos space straight theta end fraction close parentheses equals cot to the power of negative 1 end exponent open parentheses fraction numerator 1 minus sin space straight theta over denominator cos space straight theta end fraction close parentheses
space space space space space space space space equals space cot to the power of negative 1 end exponent open square brackets fraction numerator cos squared begin display style straight theta over 2 end style plus sin squared begin display style straight theta over 2 end style minus 2 space cos begin display style straight theta over 2 end style space sin space begin display style straight theta over 2 end style over denominator cos squared begin display style straight theta over 2 end style minus sin squared begin display style straight theta over 2 end style end fraction close square brackets
space space space space space space space space equals space cot to the power of negative 1 end exponent open square brackets fraction numerator open parentheses cos begin display style straight theta over 2 end style minus sin begin display style straight theta over 2 end style close parentheses squared over denominator open parentheses cos begin display style straight theta over 2 end style plus sin begin display style straight theta over 2 end style close parentheses space open parentheses cos straight theta over 2 plus sin straight theta over 2 close parentheses end fraction close square brackets
space space equals space cot to the power of negative 1 end exponent open square brackets fraction numerator cos begin display style straight theta over 2 end style minus sin begin display style straight theta over 2 end style over denominator cos begin display style straight theta over 2 end style plus sin begin display style straight theta over 2 end style end fraction close square brackets equals cos to the power of negative 1 end exponent open square brackets fraction numerator 1 minus tan begin display style straight theta over 2 end style over denominator 1 plus tan begin display style straight theta over 2 end style end fraction close square brackets
space equals space cot to the power of minus open square brackets cot open parentheses straight pi over 4 plus straight theta over 2 close parentheses close square brackets equals straight pi over 4 plus straight theta over 2 equals straight pi over 4 plus 1 half tan to the power of negative 1 end exponent straight x
    Question 91
    CBSEENMA12032802

    Simplify

    cot to the power of negative 1 end exponent open parentheses square root of 1 plus straight x squared end root plus straight x close parentheses

    Solution
    Let space space space space straight z equals cot to the power of negative 1 end exponent open parentheses square root of 1 plus straight x squared end root plus straight x close parentheses
Put space straight x equals tan space straight theta
therefore space space space straight z equals cot to the power of negative 1 end exponent open parentheses square root of 1 plus tan squared space straight theta end root plus tan space straight theta close parentheses equals cot to the power of negative 1 end exponent
space space equals cot to the power of negative 1 end exponent open parentheses fraction numerator 1 over denominator cos space straight theta end fraction plus fraction numerator sin space straight theta over denominator cos space straight theta end fraction close parentheses equals cot to the power of negative 1 end exponent open parentheses fraction numerator 1 plus sin space straight theta over denominator cos space straight theta end fraction close parentheses
space space equals cot to the power of negative 1 end exponent open parentheses fraction numerator cos squared begin display style straight theta over 2 end style plus sin squared begin display style straight theta over 2 end style plus 2 space cos begin display style straight theta over 2 end style sin begin display style straight theta over 2 end style over denominator cos squared begin display style straight theta over 2 end style minus sin squared begin display style straight theta over 2 end style end fraction close parentheses equals cot to the power of negative 1 end exponent open square brackets fraction numerator open parentheses cos begin display style straight theta over 2 end style plus sin begin display style straight theta over 2 end style close parentheses squared over denominator open parentheses cos begin display style straight theta over 2 end style plus sin begin display style straight theta over 2 end style close parentheses open parentheses cos straight theta over 2 minus sin straight theta over 2 close parentheses end fraction close square brackets
space equals space cot to the power of negative 1 end exponent open square brackets fraction numerator cos begin display style straight theta over 2 end style plus sin begin display style straight theta over 2 end style over denominator cos begin display style straight theta over 2 end style minus sin begin display style straight theta over 2 end style end fraction close square brackets equals cot to the power of negative 1 end exponent open square brackets fraction numerator 1 plus tan begin display style straight theta over 2 end style over denominator 1 minus tan begin display style straight theta over 2 end style end fraction close square brackets
equals cot to the power of negative 1 end exponent open square brackets cot open parentheses straight pi over 4 minus straight theta over 2 close parentheses close square brackets equals straight pi over 4 minus straight theta over 2 equals straight pi over 4 minus 1 half tan to the power of negative 1 end exponent space straight x
    Question 92
    CBSEENMA12032805

    Prove that tan to the power of negative 1 end exponent x plus tan to the power of negative 1 end exponent fraction numerator 2 space x over denominator 1 minus x squared end fraction equals tan to the power of negative 1 end exponent open parentheses fraction numerator 3 x minus x cubed over denominator 1 minus 3 x squared end fraction close parentheses equals tan to the power of negative 1 end exponent open parentheses fraction numerator 3 x minus x cubed over denominator 1 minus 3 x squared end fraction close parentheses comma open vertical bar x close vertical bar less than fraction numerator 1 over denominator square root of 3 end fraction.

    Solution
    Put x = tan θ
    straight L. straight H. straight S. space equals space tan to the power of negative 1 end exponent space straight x plus tan to the power of negative 1 end exponent open parentheses fraction numerator 2 straight x over denominator 1 minus straight x squared end fraction close parentheses
space space space space space space space space space equals space tan to the power of negative 1 end exponent left parenthesis tan space straight theta right parenthesis plus tan to the power of negative 1 end exponent open parentheses fraction numerator 2 space tan space straight theta over denominator 1 minus tan squared space straight theta end fraction close parentheses
space space space space space space space space space equals space tan to the power of negative 1 end exponent left parenthesis tan space straight theta right parenthesis plus tan to the power of negative 1 end exponent 9 tan space 2 space straight theta right parenthesis equals straight theta plus 2 space straight theta equals 3 space straight theta
straight R. straight H. straight S space equals tan to the power of negative 1 end exponent open parentheses fraction numerator 3 straight x minus straight x cubed over denominator 1 minus 3 straight x squared end fraction close parentheses equals tan to the power of negative 1 end exponent open parentheses fraction numerator 3 space tan space straight theta minus tan cubed space straight theta over denominator 1 minus 3 space tan squared space straight theta end fraction close parentheses
space space space space space space space space space equals space tan to the power of negative 1 end exponent left parenthesis tan space 3 straight theta right parenthesis equals 3
therefore space space straight L. straight H. straight S. space equals space straight R. straight H. straight S.
    Question 93
    CBSEENMA12032812

    Show space that space tan to the power of negative 1 end exponent open square brackets fraction numerator square root of 1 plus straight x squared end root plus square root of 1 minus straight x squared end root over denominator square root of 1 plus straight x squared end root minus square root of 1 minus straight x squared end root end fraction close square brackets equals straight pi over 4 plus 1 half cos to the power of negative 1 end exponent space straight x squared.

    Solution
    Put x2 = cos θ
    straight L. straight H. straight S. space equals tan to the power of negative 1 end exponent open square brackets fraction numerator square root of 1 plus straight x squared end root plus square root of 1 minus straight x squared end root over denominator square root of 1 plus straight x squared end root minus square root of 1 minus straight x squared end root end fraction close square brackets equals tan to the power of negative 1 end exponent space open square brackets fraction numerator square root of 1 plus cos space straight theta end root plus square root of 1 minus cos space straight theta end root over denominator square root of 1 plus cos space straight theta end root minus square root of 1 minus cos space straight theta end root end fraction close square brackets
space space space space space space space space space space equals tan to the power of negative 1 end exponent space open square brackets fraction numerator square root of 2 space cos squared begin display style straight theta over 2 end style end root plus square root of 2 space sin squared begin display style straight theta over 2 end style end root over denominator square root of 2 space cos squared begin display style straight theta over 2 end style end root minus square root of 2 space sin squared begin display style straight theta over 2 end style end root end fraction close square brackets equals tan to the power of negative 1 end exponent open square brackets fraction numerator square root of 2 cos begin display style straight theta over 2 end style plus square root of 2 sin begin display style straight theta over 2 end style over denominator square root of 2 cos begin display style straight theta over 2 end style minus square root of 2 sin begin display style straight theta over 2 end style end fraction close square brackets
space space space space space space space space space space equals space tan to the power of negative 1 end exponent open square brackets fraction numerator cos begin display style straight theta over 2 end style plus sin begin display style straight theta over 2 end style over denominator cos straight theta over 2 minus sin straight theta over 2 end fraction close square brackets equals tan to the power of negative 1 end exponent open square brackets fraction numerator 1 plus tan begin display style straight theta over 2 end style over denominator 1 minus tan begin display style straight theta over 2 end style end fraction close square brackets equals tan to the power of negative 1 end exponent open square brackets tan open parentheses straight pi over 4 plus straight theta over 2 close parentheses close square brackets
space space space space space space space space space space equals space straight pi over 4 plus straight theta over 2 equals straight pi over 4 plus 1 half cos to the power of negative 1 end exponent straight x squared space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space left square bracket because space cos space straight theta equals straight x squared right square bracket
space space space space space space space space space space equals straight R. straight H. straight S.
    Question 94
    CBSEENMA12032814

    Prove space that space cot to the power of negative 1 end exponent open square brackets fraction numerator square root of 1 plus sin space straight x end root plus square root of 1 minus sin space straight x end root over denominator square root of 1 plus sin space straight x end root minus square root of 1 minus sin space straight x end root end fraction close square brackets equals straight x over 2 comma space space straight x space element of space open parentheses 0 comma space straight pi over 4 close parentheses.

    Solution
    straight L. straight H. straight S. space equals space cot to the power of negative 1 end exponent open square brackets fraction numerator square root of 1 plus sin space straight x end root plus square root of 1 minus sin space straight x end root over denominator square root of 1 plus sin space straight x end root plus square root of 1 minus sin space straight x end root end fraction close square brackets

space space space space space space space space space space space equals space cot to the power of negative 1 end exponent open square brackets fraction numerator square root of cos squared begin display style straight x over 2 end style plus sin squared begin display style straight x over 2 end style plus 2 space sin space begin display style straight x over 2 end style cos begin display style straight x over 2 end style end root plus square root of cos squared begin display style straight x over 2 end style plus sin squared begin display style straight x over 2 end style minus 2 space sin begin display style straight x over 2 end style cos begin display style straight x over 2 end style end root over denominator square root of cos squared straight x over 2 plus sin squared straight x over 2 plus 2 space sin space straight x over 2 cos straight x over 2 end root minus square root of cos squared straight x over 2 plus sin squared straight x over 2 minus 2 space sin straight x over 2 cos straight x over 2 end root end fraction close square brackets

space space space space space space space space space space equals space cot to the power of negative 1 end exponent open square brackets fraction numerator square root of open parentheses cos begin display style straight x over 2 end style plus sin begin display style straight x over 2 end style close parentheses squared end root plus square root of open parentheses cos straight x over 2 minus sin straight x over 2 close parentheses squared end root over denominator square root of open parentheses cos straight x over 2 plus sin straight x over 2 close parentheses squared end root plus square root of open parentheses cos straight x over 2 minus sin straight x over 2 close parentheses squared end root end fraction close square brackets

space space space space space space space space space space space space space space space space equals space open square brackets fraction numerator open parentheses cos straight x over 2 plus sin straight x over 2 close parentheses plus open parentheses cos straight x over 2 minus sin straight x over 2 close parentheses over denominator open parentheses cos straight x over 2 plus sin straight x over 2 close parentheses plus open parentheses cos straight x over 2 minus sin straight x over 2 close parentheses end fraction close square brackets

space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets because space 0 space less than space straight x space less than straight pi over 2 space rightwards double arrow space 0 less than straight pi over 2 less than straight pi over 4 rightwards double arrow cos straight x over 2 greater than sin straight x over 2 close square brackets

space space space space space space space space space space equals space cot to the power of negative 1 end exponent open parentheses fraction numerator 2 space cos space begin display style straight x over 2 end style over denominator 2 space sin space begin display style straight x over 2 end style end fraction close parentheses equals cot to the power of negative 1 end exponent open parentheses cot space straight x over 2 close parentheses equals straight x over 2
space space space space space space space space space space equals space straight R. straight H. straight S.
space
    Question 95
    CBSEENMA12032816

    If tan–1.x + tan–1y + tan –1z = straight pi, prove that x + y + z = x y z.

    Solution
    ∵ tan–1x + tan–1y + tan–1z = straight pi
    therefore space space space space space tan to the power of negative 1 end exponent open square brackets fraction numerator straight x plus straight y plus straight z minus straight x space straight y space straight z over denominator 1 minus straight x space straight y space straight i space straight y space straight z space minus space straight z space straight x end fraction close square brackets equals straight pi space space space space space rightwards double arrow space space space fraction numerator straight x plus straight y plus straight z minus straight x space straight y space straight z over denominator 1 minus straight x space straight y minus space straight y space straight z minus straight z space straight x end fraction equals tan space straight pi
rightwards double arrow space space space fraction numerator straight x plus straight y plus straight z minus space straight x space straight y space straight z over denominator 1 minus straight x space straight y minus space straight y space straight z minus space straight z space straight x end fraction equals 0 space space space rightwards double arrow space space straight x plus straight y plus straight x minus straight x space straight y space straight z space equals 0 space space space rightwards double arrow space straight x plus straight y plus straight z equals space straight x space straight y space straight z

    Question 96
    CBSEENMA12032818

    If space cos to the power of negative 1 end exponent straight x over straight a plus cos to the power of negative 1 end exponent straight y over straight b equals straight a comma space space prove space that space straight x squared over straight a squared minus fraction numerator 2 space straight x space straight y over denominator straight a space straight b end fraction cos space straight a plus straight y squared over straight b squared equals sini squared straight a.

    Solution
    because space space cos to the power of negative 1 end exponent straight x over straight a plus cos to the power of negative 1 end exponent straight x over straight b equals straight a

therefore space space space cos to the power of negative 1 end exponent open square brackets straight x over straight a. straight y over straight b minus square root of open parentheses 1 minus straight x squared over straight a squared close parentheses open parentheses 1 minus straight x squared over straight a squared close parentheses end root close square brackets equals straight a

rightwards double arrow space space space space space fraction numerator straight x space straight y over denominator straight a space straight b end fraction minus square root of open parentheses 1 minus straight x squared over straight a squared close parentheses open parentheses 1 minus straight x squared over straight a squared close parentheses end root equals cos space straight a space space space rightwards double arrow space space fraction numerator straight x space straight y over denominator straight a space straight b end fraction minus cos space straight a equals square root of open parentheses 1 minus straight x squared over straight a squared close parentheses open parentheses 1 minus straight x squared over straight a squared close parentheses end root

rightwards double arrow space space space space open parentheses fraction numerator straight x space straight y over denominator straight a space straight b end fraction minus cos space straight a close parentheses squared equals open parentheses 1 minus straight x squared over straight a squared close parentheses open parentheses 1 minus straight y squared over straight b squared close parentheses

rightwards double arrow space space space space fraction numerator straight x squared space straight y squared over denominator straight a squared space straight b squared end fraction minus fraction numerator 2 space straight x space straight y space over denominator straight a space straight b end fraction cos space straight a plus cos squared straight a equals 1 minus straight x squared over straight a squared minus straight y squared over straight b squared plus fraction numerator straight x squared space straight y squared over denominator straight a squared space straight b squared end fraction

rightwards double arrow space fraction numerator straight x squared space straight y squared over denominator straight a squared space straight b squared end fraction minus fraction numerator 2 space straight x space straight y over denominator straight a space straight b end fraction cos space straight a plus cos squared space straight a equals 1 minus straight x squared over straight a squared minus straight y squared over straight b squared plus fraction numerator bold x to the power of bold 2 bold space bold y to the power of bold 2 over denominator bold a to the power of bold 2 bold space bold b to the power of bold 2 end fraction

rightwards double arrow space space straight x squared over straight a squared minus fraction numerator 2 xy over denominator ab end fraction cos space straight a plus straight y squared over straight b squared equals 1 minus cos squared space straight a
rightwards double arrow space space space straight x squared over straight a squared minus fraction numerator 2 xy over denominator ab end fraction cos space straight a plus straight y squared over straight b squared equals sin squared space straight a
    Question 97
    CBSEENMA12032820

    If cos –1x + cos–1y + cos–1z = π prove that x2 + y2 + z2 + 2 x y z = 1.

    Solution

    cos–x + cos–1y+ cos–1z = π
    ⇒ cos–1x + cos–1y = π – cos–1z
    rightwards double arrow space space space space cos to the power of negative 1 end exponent open square brackets straight x space straight y minus square root of left parenthesis 1 minus straight x squared right parenthesis left parenthesis 1 minus straight y squared right parenthesis end root close square brackets equals straight pi minus cos to the power of negative 1 end exponent straight z
rightwards double arrow space space space space straight x space straight y minus square root of left parenthesis 1 minus straight x squared right parenthesis left parenthesis 1 minus straight y squared right parenthesis end root equals cos left parenthesis straight pi minus cos to the power of negative 1 end exponent straight z right parenthesis
rightwards double arrow space space space space straight x space straight y minus square root of left parenthesis 1 minus straight x squared right parenthesis left parenthesis 1 minus straight y squared right parenthesis end root equals negative cos left parenthesis cos to the power of negative 1 end exponent straight z right parenthesis
rightwards double arrow space space space space xy minus square root of left parenthesis 1 minus straight x squared right parenthesis left parenthesis 1 minus straight y squared right parenthesis end root equals negative straight z space space space space space space space rightwards double arrow space space straight x space straight y plus straight z equals square root of left parenthesis 1 minus straight x squared right parenthesis left parenthesis 1 minus straight y squared right parenthesis end root
rightwards double arrow space space space left parenthesis straight x space straight y space plus straight z right parenthesis squared equals left parenthesis 1 minus straight x squared right parenthesis left parenthesis 1 minus straight y squared right parenthesis
rightwards double arrow space space space straight x squared space straight y squared space plus straight z squared plus 2 space straight x space straight y space straight z equals 1 minus straight x squared minus straight y squared plus straight x squared space straight y squared
rightwards double arrow space space straight x squared plus straight y squared plus straight z squared plus 2 space straight x space straight y space straight z space equals 1

    Question 98
    CBSEENMA12032823

    If sin–1'x + sin–1 y + sin–1 z = π. show that

    straight x square root of 1 minus straight x squared end root plus straight y square root of 1 minus straight y squared end root plus straight z square root of 1 minus straight z squared end root equals 2 space straight x space straight y space straight z

    Solution

    We are given that
    sin–1x + sin–y+sin–1z = π
    Put x = sin A,y = sin B, z = sin C
    ∴     sin x = A, sin–1 y = B, sin–1z = C
    ∴ we have
    A + B + C = straight pi
    straight L. straight H. straight S. space equals space square root of 1 minus straight x squared end root plus straight y square root of 1 minus straight y to the power of 2 degree end exponent end root plus straight z square root of 1 minus straight z squared end root
space space space space space space space space space space equals sin space straight A square root of 1 minus sin squared space straight A end root plus sin space straight B square root of 1 minus sin squared space straight B end root plus sin space straight C square root of 1 minus sin squared space straight C end root
space space space space space space space space space space equals space sin space straight A. space cos space straight A space plus space sin space space straight B. space cos space straight B plus space sin space straight C space. space cos space straight C
space space space space space space space space space space equals 1 half left square bracket 2 space sin space straight A. cos space straight A plus 2 space sin space straight B. space cos space straight B plus 2 space sin space straight C. space cos space straight C right square bracket
space space space space space space space space space space equals 1 half left square bracket left parenthesis sin space 2 space straight A plus space sin space 2 space straight B right parenthesis plus sin space 2 space straight C right square bracket equals 1 half left square bracket 2 space sin space left parenthesis straight A plus straight B right parenthesis cos left parenthesis straight A minus straight B right parenthesis plus sin space 2 space straight C right square bracket
space space space space space space space space space space equals space 1 half left square bracket 2 space sin left parenthesis 180 degree minus straight C right parenthesis space cos space left parenthesis straight A minus straight B right parenthesis plus sin space 2 straight C right square bracket space space space space space space space space space space space space space space space left square bracket because space of space left parenthesis 1 right parenthesis right square bracket
space space space space space space space space space space equals space 1 half space left square bracket 2 space sin space straight C. space cos space left parenthesis straight A minus straight B right parenthesis plus cos space straight C right curly bracket
space space space space space space space space space space equals space sin space straight C left square bracket cos left parenthesis straight A minus straight B right parenthesis plus cos left curly bracket 180 degree minus left parenthesis straight A plus straight B right parenthesis right curly bracket right square bracket space space space space space space space space space space space space space space space space space left square bracket because space of space left parenthesis 1 right parenthesis right square bracket
space space space space space space space space space space equals space sin space straight C left square bracket cos left parenthesis straight A minus straight B right parenthesis minus cos left parenthesis straight A plus straight B right parenthesis right square bracket minus sinC left square bracket 2 space sin space straight A space sin space straight B right square bracket
space space space space space space space space space space equals space 2 space sin space straight A space sin space straight B space sin space straight C equals space 2 space xyz
space space space space space space space space space space equals space straight R. straight H. straight S.

    Question 99
    CBSEENMA12032825

    cos to the power of negative 1 end exponent open parentheses cos fraction numerator 7 space straight pi over denominator 6 end fraction close parentheses space is equal to
    • fraction numerator 7 straight pi over denominator 6 end fraction
    • fraction numerator 5 straight pi over denominator 6 end fraction
    • straight pi over 3
    • straight pi over 6

    Solution

    B.

    fraction numerator 5 straight pi over denominator 6 end fraction
    Question 100
    CBSEENMA12032826

    sin open square brackets straight pi over 3 minus sin to the power of negative 1 end exponent open parentheses negative 1 half close parentheses close square brackets is equal to
    • 1 half
    • 1 third
    • 1 fourth
    • 1

    Solution

    D.

    1

    Question 101
    CBSEENMA12032827

    tan to the power of negative 1 end exponent square root of 3 minus c o t to the power of negative 1 end exponent left parenthesis negative square root of 3 right parenthesis is equal to
    • straight pi
    • negative straight pi over 2
    • 0

    • 2 square root of 3

    Solution

    B.

    negative straight pi over 2
    Question 102
    CBSEENMA12032828

    sin (tan–x), | x | < 1 is equal to
    • fraction numerator straight x over denominator square root of 1 minus straight x squared end root end fraction
    • fraction numerator 1 over denominator square root of 1 minus straight x squared end root end fraction
    • fraction numerator 1 over denominator square root of 1 minus straight x squared end root end fraction
    • fraction numerator straight x over denominator square root of 1 minus straight x squared end root end fraction

    Solution

    D.

    fraction numerator straight x over denominator square root of 1 minus straight x squared end root end fraction Put tan–1 x = θ, | x | < 1

    therefore space space space space space space space straight x equals tan space straight theta comma space space open vertical bar straight theta close vertical bar less than straight pi over 4
therefore space space space space space space sin left parenthesis tan to the power of negative 1 end exponent space straight x right parenthesis equals sin space straight theta space equals fraction numerator sin space straight theta over denominator cos space straight theta end fraction cos space straight theta equals tan space straight theta space cos space straight theta space equals fraction numerator tan space straight theta over denominator sec space straight theta end fraction
space space space space space space space space equals fraction numerator tsn space straight theta over denominator square root of 1 plus tan squared space straight theta end root end fraction space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space left square bracket because space sec space straight theta space greater than space 0 space abd space open vertical bar straight theta close vertical bar space less than straight pi over 4 right square bracket
space therefore space space space sin space left parenthesis tan to the power of negative 1 end exponent space straight x right parenthesis space equals space fraction numerator straight x over denominator square root of 1 plus straight x squared end root end fraction
therefore space space space space left parenthesis straight D right parenthesis space is space correct space answer.
    Question 103
    CBSEENMA12035631

    Solve space for space straight x space colon space tan to the power of negative 1 end exponent space left parenthesis straight x space plus 1 right parenthesis space plus space tan to the power of negative 1 end exponent straight x space plus tan to the power of negative 1 end exponent space left parenthesis straight x plus 1 right parenthesis space equals space tan to the power of negative 1 end exponent 3 straight x.

    Solution
    Given space that comma
tan to the power of negative 1 end exponent space left parenthesis straight x minus 1 right parenthesis space plus space tan to the power of negative 1 end exponent space straight x space plus space tan to the power of negative 1 end exponent space left parenthesis straight x plus 1 right parenthesis space equals space tan to the power of negative 1 end exponent 3 straight x

rightwards double arrow space space tan to the power of negative 1 end exponent space left parenthesis straight x minus 1 right parenthesis space plus space tan to the power of negative 1 end exponent space left parenthesis straight x plus 1 right parenthesis space equals space tan to the power of negative 1 end exponent space 3 straight x space minus tan to the power of negative 1 end exponent space straight x space.... space left parenthesis straight i right parenthesis
we space know space that comma space tan to the power of negative 1 end exponent space straight A space plus space tan to the power of negative 1 end exponent space straight B space equals space tan to the power of negative 1 end exponent open parentheses fraction numerator straight A plus straight B over denominator 1 plus AB end fraction close parentheses
and comma space tan to the power of negative 1 end exponent straight A space minus space tan to the power of negative 1 end exponent straight B space equals space tan to the power of negative 1 end exponent space open parentheses fraction numerator straight A minus straight B over denominator 1 plus AB end fraction close parentheses
Thus comma space tan to the power of negative 1 end exponent left parenthesis straight x minus 1 right parenthesis space plus space tan to the power of negative 1 end exponent space left parenthesis straight x plus 1 right parenthesis space equals space tan to the power of negative 1 end exponent space equals space open parentheses fraction numerator straight x minus 1 plus straight x plus 1 over denominator 1 minus left parenthesis straight x minus 1 right parenthesis left parenthesis straight x plus 1 right parenthesis end fraction close parentheses
equals space space tan to the power of negative 1 end exponent space open parentheses fraction numerator 2 straight x over denominator 1 minus left parenthesis straight x to the power of 2 minus end exponent 1 right parenthesis end fraction close parentheses

equals space tan to the power of negative 1 end exponent space open parentheses fraction numerator 2 straight x over denominator 2 minus straight x squared end fraction close parentheses space space.. space left parenthesis ii right parenthesis
Similarly comma space tan to the power of negative 1 end exponent 3 straight x space minus space tan to the power of negative 1 end exponent space straight x space space equals space space tan to the power of negative 1 end exponent space open parentheses fraction numerator 3 straight x minus straight x over denominator 1 plus 3 straight x left parenthesis straight x right parenthesis end fraction close parentheses
equals space space tan to the power of negative 1 end exponent open parentheses fraction numerator 2 straight x over denominator 1 plus 3 straight x squared end fraction close parentheses space.. space left parenthesis iii right parenthesis

From space space equ. space left parenthesis straight i right parenthesis space comma space left parenthesis ii right parenthesis space and space left parenthesis iii right parenthesis comma space we space have comma

tan to the power of negative 1 end exponent space open parentheses fraction numerator 2 straight x over denominator 2 minus straight x squared end fraction close parentheses space space equals space tan to the power of negative 1 end exponent space open parentheses fraction numerator 2 straight x over denominator 1 plus 3 straight x squared end fraction close parentheses space

rightwards double arrow space fraction numerator 2 straight x over denominator 2 minus straight x squared end fraction space equals fraction numerator 2 straight x over denominator 1 plus 3 straight x squared end fraction

cross space multiply space the space above space equ.

rightwards double arrow space 2 minus straight x squared space equals space 1 plus 3 straight x squared

rightwards double arrow space 4 straight x squared minus 1

rightwards double arrow space 4 straight x squared space equals 1

rightwards double arrow space straight x space equals space plus for minus of space 1 half
    Question 104
    CBSEENMA12035632

    Prove space that space tan to the power of negative 1 end exponent space open parentheses fraction numerator 6 straight x minus 8 straight x cubed over denominator 1 minus 12 straight x squared end fraction close parentheses minus tan to the power of negative 1 end exponent space open parentheses fraction numerator 4 straight x over denominator 1 minus 4 straight x squared end fraction close parentheses space equals space tan to the power of negative 1 end exponent space 2 straight x semicolon space vertical line 2 straight x vertical line less than fraction numerator 1 over denominator square root of 3 end fraction

    Solution

    Taking L.H.S,
    tan to the power of negative 1 end exponent open parentheses fraction numerator 6 straight x minus 8 straight x cubed over denominator 1 minus 12 straight x squared end fraction close parentheses space minus space tan to the power of negative 1 end exponent open parentheses fraction numerator 4 straight x over denominator 1 minus 4 straight x squared end fraction close parentheses

We space know space that comma
tan to the power of negative 1 end exponent space left parenthesis straight A right parenthesis space minus space tan to the power of negative 1 end exponent space left parenthesis straight B right parenthesis space equals space tan to the power of negative 1 end exponent open parentheses fraction numerator straight A plus straight B over denominator 1 plus AB end fraction close parentheses

Thus comma space straight L. straight H. straight S space equals space tan to the power of negative 1 end exponent open parentheses fraction numerator begin display style fraction numerator 6 straight x minus 8 straight x cubed over denominator 1 minus 12 straight x squared end fraction end style minus begin display style fraction numerator 4 straight x over denominator 1 minus 4 straight x squared end fraction end style over denominator 1 plus open parentheses begin display style fraction numerator 6 straight x minus 8 straight x cubed over denominator 1 minus 12 straight x squared end fraction end style close parentheses open parentheses begin display style fraction numerator 4 straight x over denominator 1 minus 4 straight x squared end fraction end style close parentheses end fraction close parentheses

equals space tan to the power of negative 1 end exponent open parentheses fraction numerator begin display style fraction numerator left parenthesis 6 straight x minus 8 straight x cubed right parenthesis left parenthesis 1 minus 4 straight x squared right parenthesis minus 4 straight x left parenthesis 1 minus 12 straight x squared right parenthesis over denominator left parenthesis 1 minus 12 straight x squared right parenthesis left parenthesis 1 minus 4 straight x right parenthesis squared end fraction end style over denominator begin display style fraction numerator 4 straight x left parenthesis 6 straight x minus 8 straight x cubed right parenthesis over denominator left parenthesis 1 minus 12 straight x squared right parenthesis left parenthesis 1 minus 4 straight x squared right parenthesis end fraction end style end fraction close parentheses space

equals space tan to the power of negative 1 end exponent open parentheses fraction numerator left parenthesis 6 straight x minus 24 straight x cubed minus 8 straight x cubed plus 32 straight x to the power of 5 minus 4 straight x plus 48 straight x cubed over denominator 1 minus 4 straight x squared minus 12 straight x squared plus 48 straight x to the power of 4 plus 24 straight x squared minus 32 straight x to the power of 4 end fraction close parentheses

equals space tan to the power of negative 1 end exponent open parentheses fraction numerator 32 straight x to the power of 5 plus 16 straight x to the power of 6 plus 2 straight x over denominator 16 straight x to the power of 4 plus 8 straight x squared plus 1 end fraction close parentheses

equals space tan to the power of negative 1 end exponent open parentheses fraction numerator 2 straight x left parenthesis 16 straight x to the power of 4 plus 2 straight x over denominator 16 straight x to the power of 4 plus 8 straight x squared plus 1 end fraction close parentheses

equals space tan to the power of negative 1 end exponent open parentheses fraction numerator 2 straight x left parenthesis 16 straight x to the power of 4 plus 8 straight x squared plus 1 over denominator 16 straight x to the power of 4 plus 8 straight x squared plus 1 end fraction close parentheses

equals space tan to the power of negative 1 end exponent space 2 straight x

Thus comma space straight L. straight H. straight S space equals space straight R. straight H. straight S

    Question 105
    CBSEENMA12035673

    Solve the following for x:

    sin to the power of negative 1 end exponent left parenthesis 1 minus straight x right parenthesis minus 2 sin to the power of negative 1 end exponent straight x equals straight pi over 2

    Solution
    sin to the power of negative 1 end exponent left parenthesis 1 minus straight x right parenthesis minus 2 sin to the power of negative 1 end exponent straight x space equals space straight pi over 2
rightwards double arrow space space sin to the power of negative 1 end exponent left parenthesis 1 minus straight x right parenthesis space equals space straight pi over 2 plus 2 sin to the power of negative 1 end exponent straight x
rightwards double arrow space space left parenthesis 1 minus straight x right parenthesis space equals space sin left parenthesis straight pi over 2 plus 2 sin to the power of negative 1 end exponent straight x right parenthesis
space rightwards double arrow space space left parenthesis 1 minus straight x right parenthesis space equals space cos left parenthesis 2 sin to the power of negative 1 end exponent straight x right parenthesis
space rightwards double arrow space space left parenthesis 1 minus straight x right parenthesis space equals space cos left parenthesis cos to the power of negative 1 end exponent left parenthesis 1 minus 2 straight x squared right parenthesis right parenthesis
space rightwards double arrow space left parenthesis 1 minus straight x right parenthesis equals space left parenthesis 1 minus 2 straight x squared right parenthesis
space rightwards double arrow space 1 minus straight x equals 1 minus 2 straight x squared
space space rightwards double arrow 2 straight x squared minus straight x space equals space 0
therefore straight x space equals 0 comma space space straight x space equals space 1 half
space space space space space
    Question 106
    CBSEENMA12035674

    Show that:
    2 sin to the power of negative 1 end exponent open parentheses 3 over 5 close parentheses minus tan to the power of negative 1 end exponent open parentheses 17 over 31 close parentheses equals space straight pi over 4

    Solution
    2 sin to the power of negative 1 end exponent open parentheses 3 over 5 close parentheses minus tan to the power of negative 1 end exponent open parentheses 17 over 31 close parentheses space equals straight pi over 4
straight L. straight H. straight S. comma
space space space equals cos to the power of negative 1 end exponent open parentheses 1 minus 2 cross times 9 over 25 close parentheses minus tan to the power of negative 1 end exponent open parentheses 17 over 31 close parentheses
space space space equals cos to the power of negative 1 end exponent open parentheses 7 over 25 close parentheses minus tan to the power of negative 1 end exponent open parentheses 17 over 31 close parentheses
space space space space equals tan to the power of negative 1 end exponent open parentheses 24 over 7 close parentheses minus tan to the power of negative 1 end exponent open parentheses 17 over 31 close parentheses
space space space space space equals tan to the power of negative 1 end exponent open parentheses 24 over 7 close parentheses minus tan to the power of negative 1 end exponent open parentheses 17 over 31 close parentheses
space space space space space equals tan to the power of negative 1 end exponent open parentheses fraction numerator begin display style 24 over 7 end style minus begin display style 17 over 31 end style over denominator 1 plus begin display style 24 over 7 end style cross times begin display style 17 over 31 end style end fraction close parentheses
space space space space space equals tan to the power of negative 1 end exponent open parentheses fraction numerator 24 cross times 31 minus 17 cross times 7 over denominator 31 cross times 7 plus 24 cross times 17 end fraction close parentheses
space space space space space space equals tan to the power of negative 1 end exponent open parentheses 625 over 625 close parentheses
space space space space space space equals tan to the power of negative 1 end exponent 1
space space space space space space equals straight pi over 4
space space space space space equals straight R. straight H. straight S space space
space space space Hence space Proved
    Question 107
    CBSEENMA12035691

    If space tan to the power of negative 1 end exponent straight x plus tan to the power of negative 1 end exponent straight y space equals space straight pi over 4 comma space xy less than 1 comma space then space write space the space value space of space straight x plus straight y plus xy.

    Solution

    Given that tan to the power of negative 1 end exponent straight x plus tan to the power of negative 1 end exponent straight y space equals straight pi over 4 space and space xy less than 1.
    We need to find the value of x+y+xy.
    tan to the power of negative 1 end exponent straight x plus tan to the power of negative 1 end exponent straight y space equals space straight pi over 4
    rightwards double arrow space tan to the power of negative 1 end exponent open parentheses fraction numerator straight x plus straight y over denominator 1 minus xy end fraction close parentheses space equals space straight pi over 4 space open square brackets because space xy less than 1 close square brackets
rightwards double arrow space tan open square brackets tan to the power of negative 1 end exponent open parentheses fraction numerator straight x plus straight y over denominator 1 minus xy end fraction close parentheses close square brackets space equals space tan open parentheses straight pi over 4 close parentheses
rightwards double arrow space space fraction numerator straight x plus straight y over denominator 1 minus xy end fraction equals 1
rightwards double arrow straight x plus straight y space equals space 1 minus xy
rightwards double arrow space straight x plus straight y plus xy equals space space 1

    Question 108
    CBSEENMA12035707

    Prove that
    tan to the power of negative 1 end exponent open square brackets fraction numerator square root of 1 plus straight x end root minus square root of 1 minus straight x end root over denominator square root of 1 plus straight x end root plus square root of 1 minus straight x end root end fraction close square brackets space equals space straight pi over 4 minus 1 half cos to the power of negative 1 end exponent straight x comma space space fraction numerator negative 1 over denominator square root of 2 end fraction less or equal than straight x less or equal than 1

    Solution

    We need to prove that
    tan to the power of negative 1 end exponent open square brackets fraction numerator square root of 1 plus straight x end root minus square root of 1 minus straight x end root over denominator square root of 1 plus straight x end root plus square root of 1 minus straight x end root end fraction close square brackets equals space straight pi over 4 minus 1 half cos to the power of negative 1 end exponent straight X minus fraction numerator 1 over denominator square root of 2 end fraction less or equal than straight x less or equal than 1
    Consider x = cos2t;
    straight L. straight H. straight S. space equals space tan to the power of negative 1 end exponent open square brackets fraction numerator square root of 1 plus cos 2 straight t end root minus square root of 1 minus cos 2 straight t end root over denominator square root of 1 plus cos 2 straight t end root plus square root of 1 minus cos 2 straight t end root end fraction close square brackets
equals tan to the power of negative 1 end exponent open square brackets fraction numerator square root of 2 cost minus space square root of 2 sint over denominator square root of 2 cost plus square root of 2 sint end fraction close square brackets
equals tan to the power of negative 1 end exponent open square brackets fraction numerator 1 minus tant over denominator 1 plus tant end fraction close square brackets
equals tan to the power of negative 1 end exponent open square brackets fraction numerator tan begin display style straight pi over 4 end style minus tant over denominator 1 plus tan begin display style straight pi over 4 end style cross times tant end fraction close square brackets
equals tan to the power of negative 1 end exponent open square brackets tan open parentheses straight pi over 4 minus straight t close parentheses close square brackets
equals straight pi over 4 minus straight t
equals straight pi over 4 minus 1 half cos to the power of negative 1 end exponent straight x
equals straight R. straight H. straight S.

    Question 109
    CBSEENMA12035708
    Question 110
    CBSEENMA12035724
    Question 111
    CBSEENMA12035725

    Write the value of open parentheses 2 tan to the power of negative 1 end exponent 1 fifth close parentheses

    Solution

    We know: 
    2 tan to the power of negative 1 end exponent straight x space equals space tan to the power of negative 1 end exponent fraction numerator 2 straight x over denominator 1 minus straight x squared end fraction
rightwards double arrow space 2 tan to the power of negative 1 end exponent 1 fifth space equals space tan to the power of negative 1 end exponent fraction numerator 2 open parentheses begin display style 1 fifth end style close parentheses over denominator 1 minus open parentheses begin display style 1 fifth end style close parentheses squared end fraction space equals space tan to the power of negative 1 end exponent fraction numerator begin display style 2 over 5 end style over denominator begin display style 24 over 25 end style end fraction equals tan to the power of negative 1 end exponent 5 over 12
therefore space space tan open parentheses 2 tan to the power of negative 1 end exponent 1 fifth close parentheses space equals space tan open parentheses tan to the power of negative 1 end exponent 5 over 12 close parentheses equals 5 over 12

    Question 112
    CBSEENMA12035735

    Find the value of the following:
    tan 1 half open square brackets sin to the power of negative 1 end exponent fraction numerator 2 straight x over denominator 1 plus straight x squared end fraction plus cos to the power of negative 1 end exponent fraction numerator 1 minus straight y squared over denominator 1 plus straight y squared end fraction close square brackets comma space open vertical bar straight x close vertical bar space less than 1 comma space space straight y greater than 0 space and space xy less than 1

    Solution

    We know that:
    sin to the power of negative 1 end exponent fraction numerator 2 straight x over denominator 1 plus straight x squared end fraction equals 2 tan to the power of negative 1 end exponent straight x space for space open vertical bar straight x close vertical bar less or equal than 1 space... left parenthesis 1 right parenthesis
cos to the power of negative 1 end exponent fraction numerator 1 minus straight y squared over denominator 1 plus straight y squared end fraction equals 2 tan to the power of negative 1 end exponent straight y space for space straight y greater than 0 space... left parenthesis 2 right parenthesis
therefore space space sin to the power of negative 1 end exponent fraction numerator 2 straight x over denominator 1 plus straight x squared end fraction plus cos to the power of negative 1 end exponent fraction numerator 1 minus straight y squared over denominator 1 plus straight y squared end fraction equals 2 tan to the power of negative 1 end exponent straight x plus 2 tan to the power of negative 1 end exponent straight y.
rightwards double arrow space tan 1 half open square brackets sin to the power of negative 1 end exponent fraction numerator 2 straight x over denominator 1 plus straight x squared end fraction plus cos to the power of negative 1 end exponent fraction numerator 1 minus straight y squared over denominator 1 plus straight y squared end fraction close square brackets
    equals tan 1 half left parenthesis 2 tan to the power of negative 1 end exponent straight x plus 2 tan to the power of negative 1 end exponent straight y right parenthesis
equals tan left parenthesis tan to the power of negative 1 end exponent straight x plus tan to the power of negative 1 end exponent straight y right parenthesis
equals tan open parentheses tan to the power of negative 1 end exponent fraction numerator straight x plus straight y over denominator 1 minus xy end fraction close parentheses space space open square brackets because tan to the power of negative 1 end exponent straight x plus tan to the power of negative 1 end exponent straight y equals tan to the power of negative 1 end exponent fraction numerator straight x plus straight y over denominator 1 minus xy end fraction comma space for space xy less than 1 close square brackets
equals fraction numerator straight x plus straight y over denominator 1 minus xy end fraction

    Question 113
    CBSEENMA12035736

    Prove that tan to the power of negative 1 end exponent open parentheses 1 half close parentheses plus tan to the power of negative 1 end exponent open parentheses 1 fifth close parentheses plus tan to the power of negative 1 end exponent open parentheses 1 over 8 close parentheses space equals straight pi over 4

    Solution

    We know that:
    tan to the power of negative 1 end exponent straight x plus tan to the power of negative 1 end exponent straight y space equals space tan to the power of negative 1 end exponent fraction numerator straight x plus straight y over denominator 1 minus xy end fraction comma space xy less than 1
    We have:
    tan to the power of negative 1 end exponent open parentheses 1 half close parentheses plus tan to the power of negative 1 end exponent open parentheses 1 fifth close parentheses plus tan to the power of negative 1 end exponent open parentheses 1 over 8 close parentheses
equals open square brackets tan to the power of negative 1 end exponent open parentheses 1 half close parentheses plus tan to the power of negative 1 end exponent open parentheses 1 fifth close parentheses plus tan to the power of negative 1 end exponent open parentheses 1 over 8 close parentheses close square brackets
equals tan to the power of negative 1 end exponent open parentheses fraction numerator begin display style 1 half end style plus begin display style 1 fifth end style over denominator 1 minus begin display style 1 half end style cross times begin display style 1 fifth end style end fraction close parentheses plus tan to the power of negative 1 end exponent open parentheses 1 over 8 close parentheses space space space open parentheses because space space 1 half cross times 1 fifth less than 1 close parentheses
equals tan to the power of negative 1 end exponent open parentheses 7 over 9 close parentheses plus tan to the power of negative 1 end exponent open parentheses 1 over 8 close parentheses
    equals tan to the power of negative 1 end exponent fraction numerator begin display style 7 over 9 end style plus begin display style 1 over 8 end style over denominator 1 minus begin display style 7 over 9 end style cross times begin display style 1 over 8 end style end fraction
equals tan to the power of negative 1 end exponent fraction numerator 56 plus 9 over denominator 72 minus 7 end fraction space open parentheses because 7 over 9 cross times 1 over 8 less than 1 close parentheses
equals tan to the power of negative 1 end exponent 65 over 65 equals tan to the power of negative 1 end exponent 1 equals straight pi over 4
Hence comma space tan to the power of negative 1 end exponent open parentheses 1 half close parentheses plus tan to the power of negative 1 end exponent open parentheses 1 fifth close parentheses plus tan to the power of negative 1 end exponent open parentheses 1 over 8 close parentheses equals straight pi over 4

    Question 114
    CBSEENMA12035762

    If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of the z-axis.

    Solution

    suppose the direction cosines of the line be l,m,and n.
    we know that l2 + m2+n2 = 1
    Let the line make angle θ with the positive direction of the z-axis.
    α = 90°, β = 60° γ = θ
    Thus,
    cos2 90 + cos260 + cos2θ =1
    rightwards double arrow space 0 space plus space open parentheses 1 half close parentheses squared space plus space cos squared straight theta space equals space 1
rightwards double arrow space cos squared space straight theta space equals space 1 minus 1 fourth
rightwards double arrow space cos squared space straight theta space equals 3 over 4
rightwards double arrow space cos space straight theta space equals space plus-or-minus fraction numerator square root of 3 over denominator 2 end fraction
rightwards double arrow space straight theta space equals space 30 to the power of straight o

    Question 115
    CBSEENMA12035764

    Find space dy over dx space at space straight x space equals 1 comma space straight y space equals space straight pi over 4 space if space sin squared space straight y space plus space cos space xy space equals space straight K

    Solution

    From the given equation
    2 space sin space straight y space cos space straight y. space dy over dx minus space sin space xy. space open square brackets straight x. dy over dx plus straight y.1 close square brackets space equals 0
rightwards double arrow space dy over dx space equals space fraction numerator straight y space sin space xy over denominator sin space 2 straight y space minus space straight x space sin left parenthesis space xy right parenthesis end fraction

therefore space right enclose dy over dx end enclose subscript straight x space equals 1 comma space straight y space equals straight pi over 4 end subscript space equals space fraction numerator straight pi over denominator 4 left parenthesis square root of 2 minus 1 right parenthesis end fraction

    Question 116
    CBSEENMA12035771

    Prove that tan space open curly brackets straight pi over 4 plus 1 half cos to the power of negative 1 end exponent straight a over straight b close curly brackets space plus tan space open curly brackets straight pi over 4 minus 1 half cos to the power of negative 1 end exponent straight a over straight b close curly brackets space equals space fraction numerator 2 straight b over denominator straight a end fraction

    Solution
    Let space cos to the power of negative 1 end exponent space equals space open parentheses straight a over straight b close parentheses space equals space straight x
Then comma space cos space straight x space equals space straight a over straight b
LHS colon
tan open curly brackets straight pi over 4 plus 1 half cos to the power of negative 1 end exponent straight a over straight b close curly brackets plus space tan space open parentheses straight pi over 4 minus 1 half cos to the power of negative 1 end exponent straight a over straight b close parentheses
equals space tan open parentheses straight pi over 4 space plus straight x over 2 close parentheses plus space tan space open parentheses straight pi over 4 minus straight x over 2 close parentheses
fraction numerator 1 plus space tan begin display style straight x over 2 end style over denominator 1 minus tan begin display style straight x over 2 end style end fraction space plus fraction numerator 1 minus space tan begin display style straight x over 2 end style over denominator 1 plus tan begin display style straight x over 2 end style end fraction
fraction numerator open parentheses 1 plus tan begin display style straight x over 2 end style close parentheses squared plus open parentheses 1 minus tan begin display style straight x over 2 end style close parentheses squared over denominator 1 minus tan squared begin display style straight x over 2 end style end fraction
space equals space 2 open parentheses fraction numerator 1 plus tan squared begin display style straight x over 2 end style over denominator 1 minus tan squared begin display style straight x over 2 end style end fraction close parentheses
space equals space fraction numerator 2 over denominator cos space straight x end fraction space open square brackets because space cos space 2 straight x space equals space fraction numerator 1 minus tan squared straight x over denominator 1 plus space tan squared space straight x end fraction close square brackets
space equals space fraction numerator 2 straight b over denominator straight a end fraction space equals space RHS
Hence space proved
    Question 117
    CBSEENMA12035795

    Find the value of tan-1 3 - cot-1 (-3)

    Solution

    tan-1 (3) -cot-1 (-3) = yas cot-1 (-x) = π - cot-1 x  y = tan-1 (3) - (π - cot-1(3)) = π3 - π - π6 = π3 -π + π6 = π2 -π = - π2

    Question 118
    CBSEENMA12035799

    Prove that:3 sin-1 x  = sin-1 (3x - 4x3), X  -12, 12

    Solution

    When -12  x 12

    we have, 

    -12x 12 -π6 θ π6 -π2  3θ  π2Also,  - 12 x 12 - 1 3x - 4x3  1 sin 3θ = 3x - 4x3 3θ = sin-1 (3x - 4x3) 3 sin-1 x = sin-1 (3x - 4x3)

    Question 119
    CBSEENMA12035828

    Evaluate:   sinπ3 - sin-1 12

    Solution

    We know that domain and range of the principal value branch of function  sin-1 is defined as:

     

        sin-1:-1, 1 -π2, π2sin π3 - sin-1-12=sinπ3 -  -π6 = sinπ3 +π6=  sinπ2 =  1

    Sponsor Area

    Question 120
    CBSEENMA12035838

    Prove the following:

    tan-113 + tan-115 + tan-117 + tan-118

    Solution

    L.H.S. = tan-113 + tan-115 + tan-117 + tan-118             = tan-113 + 151 - 1315 + tan-117 + 181 - 1718             =  tan-15 + 31515 - 115 + tan-18 + 75656 - 156             =  tan-18151415 + tan-115565556             = tan-1814 + tan-11555             = tan-147 +  tan-1311             =  tan-147 + 3111 - 47311              =    tan-144 + 217777 - 1277              = tan-16565             =  tan-1 1 tanπ4             = π4   

               = R.H.S.

    Hence proved.

    Question 121
    CBSEENMA12035862

    Using principal value, evaluate the following: sin-1 sin3π5 

    Solution

    As sin-1 sinθ=θ so sin-1  sin 3π5 =3π5But  3π5  -π2, π2 

    So

    sin-1  sin 3π5 = sin-1 sin π- 2π5=  sin-1 sin 2π5=  2π5  -π2, π2 Principal value is  2π5

    Question 122
    CBSEENMA12035881

    Prove that: sin-1 45 + sin-1 513 + sin-1 1665 = π2

    Solution

    To prove: sin-1 45 + sin-1 513 + sin-1 1665 = π2Let  sin-1 45 =x sinx = 45 cosx =  1 - sin2x = 35 sin-1 513 = y siny =513 cosy =  1 - sin2y  = 1213sin-1 1665 = z  sinz =1665 cosz =  1 - sin2z  = 6365tanx = 43,   tany = 512,   tanz = 1663tanz = 1663  cotz = 6316                     .........(i)

    tan  x + y  = tan  x + y 1-tanx.tany tan  x + y  = 43 + 5121 - 2036 tan  x + y  = 6316 tan  x + y  = cotz    .......from equation (i) tan  x + y  = tan π2 - z  x + y  = π2 - z x + y + z =π2 sin-1 45 +  sin-1 513 +  sin-1 1665 = π2

    Question 123
    CBSEENMA12035882

    Solve for x: tan-1 3x + tan-1 2x = π4

    Solution

    tan-1 3x + tan-1 2x = π4 tan-1 5x1 - 6x2 = π4,      3x × 2x < 1 tan  tan-1 5x1 - 6x2  = tan π4 5x1 - 6x2 = 1 1 - 6x2 = 5x 6x2 + 5x - 1 = 0 6x2 + 6x - x - 1 = 0 6x ( x  + 1 ) -1 (  x  + 1 ) = 0 ( 6x - 1 ) ( x  + 1 ) = 0 6x - 1 = 0      or     x + 1 = 0 x = 16        or      x = -1Here ( -3 ) x ( -2 )  1     ( -3 ) x ( -2 ) = 6 > 1 

    Therefore, x= -1 is not the solution.

    When substituting  x = 16 in 3x × 2x, we have,

    3 x 16 x 2 x 16 = 12 x 13 = 16 < 1.

    Hence  x = 16 is the solution of the given equation.

    Question 124
    CBSEENMA12035899

    What is the principal value of cos-1 -32 ?

    Solution

    Let cos-1 -32 = x cos x = -32 cos x = - cos  π6  cos x =  cos  π - π6  cos x =  cos  5π6  x = 5π6

    Therefore, the principal value of  cos-1  - 32   is  5π2

    Question 125
    CBSEENMA12035909

    Prove the following: 

    tan-1 x = 12 cos-1  1 - x1 + x ,   x  0, 1 

    Solution

    Let  t = tan-1 xSo x = tan ti.e. tan2 t = xOn substituting x in the R.H.S. of equation  tan-1 x = 12 cos-1  1 - x1 + x ,We get  12 cos-1  1 - x1 + x  = 12 cos-1 1 - tan2 t1 + tan2 t Now, using the formula  cos 2θ = 1 - tan2 θ1 + tan2 θ   we have 12 cos-1  1 - x1 + x  =12 cos-1  cos  2t   = t =  tan-1 x = L.H.S.

    Hence proved.

    Question 126
    CBSEENMA12035910

    Prove the following:

    cos-1 1213 + sin-1 35 = sin-1 5665

    Solution

    Let  a  be in I quadrant  such that

    cos-1 1213 = aSo cos a = 1213 sin a =  1 - 12132             =   1 - 144169             =  169 - 144169             = 25169 = 513And  tan a =  512So,  a = tan-1  512                        .........(i)Again  bI  quadrant such that  sin-1  35  = bSo, sin b = 35

     cos b =  1 -  35 2              =  1 - 925              = 1625 = 45And  tan b = 34so, b = tan-1  34                ...............(ii)Now, let  sin-1  5665  = c  where  c  is in  I  quadrantSo, sin c = 5665

     cos c =  1 -  5665 2              =  1 - 31364225              = 4225 - 31364225              = 10894225 = 3365And,  tan c = 5633So,  c = tan-1  5633  sin-1  5665  =  tan-1  5633       ...........(iii)Now, we need to prove cos-1 1213 + sin-1 35 = sin-1  5665  

    consider  a + b

    = cos-1 1213 + sin-1   35 = tan-1 512 + tan-1  34   cos-1  1213 = tan-1 512 and  sin-1   35  = tan-1  34 = tan-1  512 + 341 -  512 x 34      using, tan-1 x +tan-1 y = tan-1  x + y 1 - xy  = tan -1  20 + 3648 - 15 =  tan -1   5633 = c = sin-1  5665          using, eq, (iii) 

    Hence proved.

    Question 127
    CBSEENMA12035933

    Write the value of  sin  π3 - sin-1  - 12 

    Solution

    sin  π3 - sin-1 - 12 Let  sin-1 - 12 = x  - 12 = sinx sinx = - sin π6 = sin -π6  = sin  2π - π6  x = 2π - π6

     sin  π3 - sin-1  - 12  = sin  π3 -  2π - π6                                               = sin  - 9π6                                              = - sin  3π2                                              = - sin  π + π2                                              = -  - sin π2                                             = + sin π2                                            = 1Thus, sin  π3 - sin-1  - 12   = 1

    Question 128
    CBSEENMA12035943

    Prove the following:

    cot-1   1 + sin x +  1 - sin x 1 + sin x -  1 - sin x  = x2,   x   0, π4 

    Solution

    cot-1   1 + sin x +  1 - sin x 1 + sin x -  1 - sin x cot-1   sin2 x2 + cos2 x2 + sin 2 x2  +   sin2 x2 + cos2 x2 - sin 2 x2 sin2 x2 + cos2 x2 + sin 2 x2  -   sin2 x2 + cos2 x2 - sin 2 x2 

     

     Since,  sin2 A + cos2 A = 1 = cot-1   sin2 x2 + cos2 x2 + 2 sin x2 cos x2  +   sin2 x2 + cos2 x2 - 2 sin x2 cos x2 sin2 x2 + cos2 x2 + 2 sin x2 cos x2  -   sin2 x2 + cos2 x2 - 2 sin x2 cos x2

     

    [ Since, sin 2A = 2 sin A cos A ]

     

    = cot -1   cos x2 + sin x2 2 +   cos x2 - sin x2 2 cos x2 + sin x2 2 -   cos x2 - sin x2 2 =  cot -1  2 cos x22 sin x2   =   cot -1  cot x2=  x2

    Hence proved.

    Question 129
    CBSEENMA12035944

    Find the value of  tan-1  xy  - tan-1  x - yx + y

    Solution

    tan-1  xy  - tan-1  x - yx + y = tan-1  xy  - tan-1  xy - 1xy + 1   =   tan-1  xy  - tan-1  xy - 11 + xy  =  tan-1  xy  -  tan-1  xy  -  tan-1  1       tan-1 a - tan-1 b = tan-1 a - b1 + ab  

     

    = tan-1 xy - tan-1 xy + tan-1  1 =  tan-1  1  = π4Thus,  tan-1 xy -  tan-1  x - yx + y =  π4

    Question 130
    CBSEENMA12036008

    A value of θ for which fraction numerator 2 space plus space 3 straight i space sin space straight theta over denominator 1 minus 2 straight i space sin space straight theta end fraction is purely imaginary is

    • π/3

    • π/6

    • sin to the power of negative 1 end exponent open parentheses fraction numerator square root of 3 over denominator 4 end fraction close parentheses
    • sin to the power of negative 1 end exponent space open parentheses fraction numerator 1 over denominator square root of 3 end fraction close parentheses

    Solution

    D.

    sin to the power of negative 1 end exponent space open parentheses fraction numerator 1 over denominator square root of 3 end fraction close parentheses

    Let z = straight z space equals space fraction numerator 2 space plus space 3 straight i space sin space straight theta over denominator 1 minus 2 straight i space sin space straight theta end fraction is purely imaginary. Then, we have Re (z) = 0
    We have Re (z) = 0
    Now, consider z = 
    straight z equals space fraction numerator 2 space plus space 3 straight i space sin space straight theta over denominator 1 minus 2 straight i space sin space straight theta end fraction
space equals space fraction numerator left parenthesis 2 plus space 3 straight i space sin space straight theta right parenthesis left parenthesis 1 space plus space 2 straight i space sin space straight theta right parenthesis over denominator left parenthesis 1 minus 2 straight i space sin space straight theta right parenthesis left parenthesis 1 plus space 2 straight i space sin space straight theta right parenthesis end fraction
equals space fraction numerator 2 space plus space 4 straight i space sin space straight theta space plus space 3 straight i space sin space straight theta space plus space 6 space straight i squared space sin space squared space straight theta over denominator 1 squared minus space left parenthesis 2 straight i space sin space straight theta right parenthesis squared end fraction
equals space fraction numerator 2 space plus space 7 space straight i space sin space straight theta space minus space 6 space sin squared space straight theta over denominator 1 space plus space 4 space sin squared space straight theta end fraction
equals space fraction numerator 2 minus 6 space sin squared space straight theta over denominator 1 plus 4 space sin squared space straight theta end fraction space plus space straight i fraction numerator 7 space sin space straight theta over denominator 1 space plus space 4 space sin squared space straight theta end fraction
therefore space Re space left parenthesis straight z right parenthesis space equals space 0
therefore space fraction numerator 2 minus 6 space sin squared space straight theta over denominator 1 plus space 4 space sin squared space straight theta end fraction space equals space 0
rightwards double arrow space 2 space equals space 6 space sin squared straight theta
rightwards double arrow space sin squared straight theta space equals space 1 third
rightwards double arrow space sin space straight theta space equals space plus-or-minus space fraction numerator 1 over denominator square root of 3 end fraction
rightwards double arrow space straight theta space equals space sin to the power of negative 1 end exponent space open parentheses plus-or-minus fraction numerator 1 over denominator square root of 3 end fraction close parentheses space equals space plus-or-minus space sin to the power of negative 1 end exponent open parentheses fraction numerator 1 over denominator square root of 3 end fraction close parentheses

    Question 133
    CBSEENMA12036032

    straight l im with straight x rightwards arrow 0 below space fraction numerator left parenthesis 1 minus cos 2 straight x right parenthesis left parenthesis 3 space plus cos space straight x right parenthesis over denominator straight x space tan space 4 straight x end fraction space is equal to 
    • 4

    • 3

    • 2

    • 1/2

    Solution

    C.

    2

    We have,
    limit as straight x space rightwards arrow 0 of space fraction numerator left parenthesis 1 minus cos space 2 straight x right parenthesis left parenthesis 3 plus cosx over denominator straight x space tan space 4 straight x end fraction space
equals limit as straight x space rightwards arrow 0 of fraction numerator 2 sin squared space straight x space left parenthesis 3 plus cosx right parenthesis over denominator straight X space straight x space begin display style fraction numerator tanx over denominator 4 straight x end fraction end style space straight x space 4 straight x end fraction
equals limit as straight x space rightwards arrow 0 of fraction numerator 2 sin squared straight x over denominator straight x squared end fraction space straight x space limit as straight x space rightwards arrow 0 of fraction numerator 3 plus cos space straight x over denominator 4 end fraction space straight x limit as straight x space rightwards arrow 0 of fraction numerator 1 over denominator begin display style fraction numerator tan begin display style space end style begin display style 4 end style begin display style straight x end style over denominator 4 straight x end fraction end style end fraction
space equals space 2 space straight x space 4 over 4 space straight x space 1 space equals space 2

    Question 134
    CBSEENMA12036033

    Let tan to the power of negative 1 end exponent space straight y space equals tan to the power of negative 1 end exponent space straight x space plus space tan to the power of negative 1 end exponent space open parentheses fraction numerator 2 straight x over denominator 1 minus straight x squared end fraction close parentheses comma where vertical line straight x vertical line space less than space fraction numerator 1 over denominator square root of 3 space end fraction space.Then, a value of y is

    • fraction numerator 3 straight x squared minus straight x squared over denominator 1 minus 3 straight x squared end fraction
    • fraction numerator 3 straight x space plus space straight x cubed over denominator 1 minus 3 straight x squared end fraction
    • fraction numerator 3 straight x minus straight x cubed over denominator 1 plus 3 straight x squared end fraction
    • fraction numerator 3 straight x space plus space straight x cubed over denominator 1 plus 3 straight x squared end fraction

    Solution

    A.

    fraction numerator 3 straight x squared minus straight x squared over denominator 1 minus 3 straight x squared end fraction vertical line straight x vertical line less than space fraction numerator 1 over denominator square root of 3 end fraction space rightwards double arrow negative fraction numerator 1 over denominator square root of 3 end fraction less than straight x space less than thin space fraction numerator 1 over denominator square root of 3 end fraction
Let space straight x space equals space tan space straight theta
rightwards double arrow fraction numerator negative straight pi over denominator 6 end fraction space less than space straight theta space less than thin space straight pi over 6
tan to the power of negative 1 end exponent space straight y space equals space straight theta space plus space tan to the power of negative 1 end exponent space left parenthesis tan space 2 straight theta right parenthesis
space equals space straight theta space plus space 2 straight theta space equals space 3 straight theta
rightwards double arrow space straight y space equals space tan space 3 straight theta
straight y equals space fraction numerator 3 space tan space straight theta minus tan cubed space straight theta over denominator 1 minus 3 space tan squared straight theta end fraction
straight y space equals space fraction numerator 3 straight x minus straight x cubed over denominator 1 minus 3 straight x squared end fraction
    Question 135
    CBSEENMA12036067
    Question 136
    CBSEENMA12036100

    If A = sin2 x + cos4 x, then for all real x

    • 3/4 ≤ A ≤ 1

    • 31/16 ≤ A ≤ 1

    • 1≤ A ≤2

    • 3/4 ≤ A ≤ 13/16

    Solution

    A.

    3/4 ≤ A ≤ 1

    A = sin2x + cos4x = sin2x + (1 - sin2 x)
    2 = sin4x - sin2x + 1
    space equals space open parentheses space sin squared space straight x space minus space 1 half close parentheses squared space plus 3 over 4
space equals space 3 over 4 space less or equal than space straight A space less or equal than space 1

    Question 140
    CBSEENMA12036293

    Let f(x) = x2 + 1x2 and g (x)  = x - 1x, x Ε R - {-1,0,1}.
    if h(x) = f(x)g(x), then the local minimum value of h(x) is:

    • 22

    • 3

    • -3

    • -22

    Solution

    A.

    22

    h(x) = x2+ 1x2x-1x=(x-1x) + 2x-1xx-1x>0, x-1x + 2x-1x (22, )x - 1x<o, x-1x + 2x-1x (-,-22)Local minimum (22)

    Question 141
    CBSEGJMA12036304

    tan to the power of negative 1 end exponent open parentheses straight x over straight y close parentheses minus tan to the power of negative 1 end exponent fraction numerator straight x minus straight y over denominator straight x plus straight y end fraction is space equal space to
    • straight pi over 2
    • straight pi over 3
    • straight pi over 4
    • fraction numerator negative 3 straight pi over denominator 4 end fraction

    Solution
    tan to the power of negative 1 end exponent open parentheses x over y close parentheses minus tan to the power of negative 1 end exponent open parentheses fraction numerator x minus y over denominator x plus y end fraction close parentheses equals tan to the power of negative 1 end exponent open parentheses x over y close parentheses minus tan to the power of negative 1 end exponent open parentheses fraction numerator begin display style x over y end style minus 1 over denominator begin display style x over y end style plus 1 end fraction close parentheses
space space space space space space space space space space space space space space space space space equals tan to the power of negative 1 end exponent open parentheses x over y close parentheses minus open curly brackets tan to the power of negative 1 end exponent x over y minus tan to the power of negative 1 end exponent space 1 close curly brackets equals tan to the power of negative 1 end exponent space 1 equals straight pi over 4
    ∴ (C) is correct answer.
    Question 142
    CBSEGJMA12036305

    sin to the power of negative 1 end exponent left parenthesis 1 minus x right parenthesis minus 2 space sin to the power of negative 1 end exponent space x comma space equals straight pi over 2 comma space then x is equal to
    • 0 comma 1 half
    • 1 comma 1 half
    • 0

    • 1 half

    Solution

    C.

    0

    Here sin-1(1 - x)-2 sin-1 x=straight x over 2
    therefore space space space minus 2 space sin to the power of negative 1 end exponent space straight x equals straight pi over 2 minus sin to the power of negative 1 end exponent left parenthesis 1 minus straight x right parenthesis space space space space rightwards double arrow space minus 2 space sin to the power of negative 1 end exponent space straight x equals cos to the power of negative 1 end exponent left parenthesis 1 minus straight x right parenthesis
rightwards double arrow space space cos left parenthesis negative 2 space sin to the power of negative 1 end exponent space straight x right parenthesis equals 1 minus straight x space space space space space space space space space space space space space space rightwards double arrow space cos left parenthesis 2 space sin to the power of negative 1 end exponent space straight x right parenthesis equals 1 minus straight x
rightwards double arrow space space left square bracket 1 minus 2 sin squared left parenthesis sin to the power of negative 1 end exponent space straight x right parenthesis equals 1 minus straight x space space space space space space space space space space space space space space space left square bracket because space cos space 2 space straight theta equals 1 minus 2 space sin squared space straight theta space right square bracket
rightwards double arrow space space 1 minus 2 straight x squared equals 1 minus straight x space space space rightwards double arrow space 2 space straight x squared minus straight x equals 0
rightwards double arrow space space space straight x left parenthesis 2 space straight x minus 1 right parenthesis equals 0 space space rightwards double arrow space straight x equals 0 comma space 1 half
    But 1 half does not satisfy the given equation.
                                     open square brackets because space space sin to the power of negative 1 end exponent open parentheses 1 minus 1 half close parentheses minus 2 space sin to the power of negative 1 end exponent open parentheses 1 half close parentheses equals straight pi over 6 minus 2 cross times straight pi over 6 not equal to straight pi over 2 close square brackets
therefore space space space space space space space space space space space space space space space x equals 0
                             

    Mock Test Series

    Sponsor Area

    Sponsor Area

    NCERT Book Store

    NCERT Sample Papers

    Entrance Exams Preparation

    5