Chemistry Part I Chapter 6 Thermodynamics
  • Sponsor Area

    NCERT Solution For Class 11 Chemistry Chemistry Part I

    Thermodynamics Here is the CBSE Chemistry Chapter 6 for Class 11 students. Summary and detailed explanation of the lesson, including the definitions of difficult words. All of the exercises and questions and answers from the lesson's back end have been completed. NCERT Solutions for Class 11 Chemistry Thermodynamics Chapter 6 NCERT Solutions for Class 11 Chemistry Thermodynamics Chapter 6 The following is a summary in Hindi and English for the academic year 2021-2022. You can save these solutions to your computer or use the Class 11 Chemistry.

    Question 1
    CBSEENCH11005998

    Define thermodynamics.

    Solution

    The branch of science which deals with the study of different forms of energy and the quantitative relationships between them is known as thermodynamics.

    Question 2
    CBSEENCH11005999

    What do you understand by the terms: the system and surroundings?

    Solution

    A system in thermodynamics refers to that part of the universe in which observations are made and remaining universe constitutes the surrounding. The surroundings include everything other than the system. System and the surroundings together constitute the universe.

    Question 4
    CBSEENCH11006001

    Define a closed system.

    Solution
    A system which can exchange energy but not matter with its surroundings is called a closed system.
    Question 5
    CBSEENCH11006002

    Define an isolated system.

    Solution

    A sytem which can neither exchange energy nor matter with its surroundings is an isolated system

    Question 6
    CBSEENCH11006003

    Define intensive properties.

    Solution
    These are the properties which depend only upon the nature of the substance and are independent of the amount of the substance present in the system. For example temperature, pressure, refractive index, viscosity etc.
    Question 7
    CBSEENCH11006004

    Define extensive properties.

    Solution
    These are the properties which depend upon the quantity of the matter contained in the system. For example mass, volume, energy, heat, capacity etc.
    Question 8
    CBSEENCH11006005

    Why all living systems need to be 'open systems'?

    Solution

    Living systems transact both energy and mass with the surroundings for their survival. Thus, a system needs to open.

    Question 9
    CBSEENCH11006006

    Define state variables of a system.

    Solution

    Variables like pressure (P), volume (V) and temperature (T) are called state variables of a system because their values depend only on the state of the system and not on how the state has been reached.

    Question 11
    CBSEENCH11006008

    What is a state function?

    Solution

    A state function is one which depends only on the initial and final state of the system and is independent of the path followed.

    Question 13
    CBSEENCH11006010

    What is reversible process in thermodynamics?

    Solution
    A reversible process is a process which is carried out infinitesimally slowly so that all changes occuring in the direct process can be exactly reversed and the system remains almost in a state of equilibrium at all times.
    Question 14
    CBSEENCH11006011

    Define irreversible change.

    Solution
    Irreversible change is that which is not carried out infinitesimally slowly (instead it is carried out rapidly). It cannot be reversed without the help of an external agency. All naturally occurring processes are irreversible.
    Question 15
    CBSEENCH11006012

    Name the variable that is kept constant in isochoric process and isobaric process.

    Solution
    In an isochoric process, the volume of the system is kept constant. In an isobaric process, the pressure of the system is kept constant.
    Question 16
    CBSEENCH11006013

    Give one difference between an isothermal and an adiabatic process.

    Solution
    Temperature remains constant in an isothermal process but not temperature is not constant in adiabatic process.

    Sponsor Area

    Question 18
    CBSEENCH11006015

    Define internal energy of a system

    Solution
    The total energy stored in a system under a given set of conditions is called its internal energy.
    Question 19
    CBSEENCH11006016

    Define enthalpy.

    Solution
    Enthalpy (or heat content) of a system (or substance) is defined as its internal energy plus the pressure-volume work.
    H = U + PV
    Question 20
    CBSEENCH11006017

    Why is enthalpy considered more useful than internal energy in chemical reactions?

    Solution
    Internal energy (U) and enthalpy (H) are measured by keeping constant volume and pressure respectively. Since most of the reactions occur under atmospheric pressure, so enthalpy is more useful than internal energy in chemical reactions.
    Question 21
    CBSEENCH11006018

    In which ways the internal energy of a system can be changed?

    Solution

    By heating or cooling the system and keeping volume constant, the internal energy of the system increases or decreases respectively.

    Question 23
    CBSEENCH11006020

    Why internal energy is a state function but is not work?

    Solution
    The change in internal energy during a process depends only upon the initial state and final state while work depends on upon the path followed. Thus, internal energy is a state function and work is not.
    Question 24
    CBSEENCH11006021

    What is the relationship between internal energy change and enthalpy change?

    Solution
    The relationship between internal energy change and enthalpy change is,
    ∆H = ∆U + P∆V
    Question 25
    CBSEENCH11006022

    Can we determine the exact value of internal energy of a substance?

    Solution

    No, because the value of internal energy depends on.
    The chemical nature of substance, amount of the substance and the condition of temperature pressure.

    Question 26
    CBSEENCH11006023

    What is heat(q)?

    Solution

    The change in  internal energy of the system by transfer of heat from the surroundings to the system or vice-versa without the expenditure of work. This exchange of energy, which is a result of temperature difference is called heat, q.

    Question 27
    CBSEENCH11006024

    What is the unit for work in S.I. system?

    Solution
    It is joule (J). 1 calorie = 4.184 Joules
    Question 28
    CBSEENCH11006025

    For the same increase in volume, why work done is more if the gas is allowed to expand reversibly at higher temperature?

    Solution
    We know that for isothermal reversible expansion,
    space straight w space equals space minus straight P subscript int space cross times space straight V
    At higher temperature, internal pressure of the gas is more,
    space increment straight U space equals space straight q space plus space straight w
    As ∆U is a state function, hence q + w is a state function.
    Question 29
    CBSEENCH11006026

    Define the law of conservation of energy.

    Solution
    Energy can neither be created nor destroyed, though it may be changed from one form to another.
    Question 30
    CBSEENCH11006027

    State the first law of thermodynamics.

    Solution
    The first law of thermodynamics states that energy neither be created nor be destroy but change in one form to another form. The energy of the universe is constant.
    Question 31
    CBSEENCH11006028

    What is the main limitation of the first law of thermodynamics?

    Solution
    It cannot predict the spontaneity of a process.
    Question 32
    CBSEENCH11006029

    Write the mathematical relationship connecting internal energy change, heat absorbed with work function.

    Solution
    Mathematical relationship is given as,
    ∆U = q + w where w is the work done on the system.
    Question 33
    CBSEENCH11006030

    Write mathematical statement of first law of thermodynamics.

    Solution
    ∆U = q + w where w is the work done on the system.
    Question 34
    CBSEENCH11006031

    In a process, 100J of heat energy is supplied and 50J of work is done on the system. What is the change in internal energy of the system ?

    Solution
    We have given,
    heat = 100J 
    work= 50 J
    change of internal energy is given by,
    ∆U = q + w
    = 100 J + 50 J = 150J
    Question 35
    CBSEENCH11006032

    What is the difference between heat and work?

    Solution
    Heat is a random form of energy, work is an organised form of energy.
    Question 36
    CBSEENCH11006033

    Why heat is not a state function?

    Solution
    According to the first law of thermodynamics,
    space space increment straight U space equals space straight q space plus space straight w space space space or space space space straight q space equals space increment straight U space minus space straight w
    As ∆U is a state function but w is not a state function, therefore q is also not a state function.
    Question 37
    CBSEENCH11006034

    Neither q nor w is a state function yet q + w is a state function. Explain why?

    Solution
    In the following formula
    ∆U = q + w
    As ∆U is a state function, hence q+w is a state function.
    Question 39
    CBSEENCH11006036

    Define extensive property ? 

    Solution

    An extensive property is a property whose value depends on the quantity or size of matter present in the system. For example, heat capacity etc. is extensive properties. 

    Sponsor Area

    Question 40
    CBSEENCH11006037

    Why heat changes reported are usually enthalpy changes and not internal energy?

    Solution
    This is because most of the processes are carried out in open vessels i.e. at constant pressure.
    Question 42
    CBSEENCH11006039

    Give a chemical reaction in which ∆ H and ∆E are equal.

    Solution
    2 HI left parenthesis straight g right parenthesis space rightwards harpoon over leftwards harpoon space space straight H subscript 2 left parenthesis straight g right parenthesis space plus space straight I subscript 2 left parenthesis straight g right parenthesis.
    The number of moles of gaseous reactant and gaseous product is same.
    Question 43
    CBSEENCH11006040

    What is the relationship between qpand qv?

    Solution
    straight q subscript straight p space equals space straight q subscript straight v space plus space increment straight n subscript straight g space RT,
    where   increment straight n subscript straight g space equals space straight n subscript straight p space minus space straight n subscript straight r space left parenthesis gaseous right parenthesis
    Question 44
    CBSEENCH11006041

    Under what conditions is ∆H = ∆U in a chemical reaction?

    Solution
    When the number of moles of the gaseous reactants is equal to the number of moles of the gaseous products.
    Question 45
    CBSEENCH11006042

    What is given of w if:
    (i) work is done by the system.
    (ii) work is done on the system.

    Solution

    (i) w is negative if work is done by the system.
    (ii) w is positive if work is done on the system.

    Question 47
    CBSEENCH11006044

    Define heat capacity of a system.

    Solution

    It is the amount of heat required to raise the temperature by one degree celcius or kelvin. It is expressed in units of thermal energy per degree temperature.

    Question 48
    CBSEENCH11006045

    Define specific heat of a substance.

    Solution

    It is the amount of heat required to raise the temperature of 1 gram of a substance through l°C.

    Question 49
    CBSEENCH11006046

    Define molar heat capacity of a substance.

    Solution
    It is defined as the amount of heat required to raise the temperature of one mole of the substance through 1°C.
    Question 50
    CBSEENCH11006047

    Differentiate between molar heat capacity and molar solution.

    Solution

    Molar heat capacity: Molar heat capacity means the amount of heat absorbed by one of the substance to raise its temperature through 1°.
    Molar solution. The molar solution means a solution containing one mole of the solute per litre of the solution. 

    Question 51
    CBSEENCH11006048

    Define heat capacity ?

    Solution
    Heat capacity (C) = q/∆T. 
    Question 52
    CBSEENCH11006049

    What is the realtionship between Cand Cv?

    Solution
    Cp – Cv = R for one mole of an ideal gas. Thus Cp is greater than Cv by the gas constant R.
    Question 53
    CBSEENCH11006050

    What are exothermic and endothermic reactions?

    Solution

    Exothermic reactions are those reactions which are accompanied by the evolution of heat.
    Endothermic reactions are those reactions which are accompanied by the absorption of heat.

    Question 54
    CBSEENCH11006051

    What is the standard state of the substance?

    Solution
    The most stable state of substance is at 1 bar pressure and at a specified temperature (298K).
    Question 55
    CBSEENCH11006052

    Why is ∆H negative in an exothermic reaction?

    Solution

    Exothermic reactions are accompanied by the evolution of heat. It means that enthalpy of the reactants is more than the enthalpy of the products i.e.
                       Hr > Hp
    But           increment straight H space equals space straight H subscript straight P space minus space straight H subscript straight R
    therefore space space space space increment straight H space is space minus ve

    Question 56
    CBSEENCH11006053

    Why ∆H is positive in an endothermic reaction?

    Solution
    Endothermic reactions are accompanied by the absorption of heat which means that enthalpy of the reaction is less than the enthalpy of the products i.e.
          straight H subscript straight R space less than thin space straight H subscript straight P
    But  
     increment straight H space equals space straight H subscript straight P space minus space straight H subscript straight R
    therefore space space space space space space increment straight H space is space plus ve
    Question 57
    CBSEENCH11006054

    State with reason whether the work is done by the system on the surroundings or on the system by the surroundings if the following change occurs at constant pressure:
    Sn left parenthesis straight s right parenthesis space plus space 2 Cl subscript 2 left parenthesis straight g right parenthesis space rightwards arrow space space SnCl subscript 4 left parenthesis straight s right parenthesis

    Solution

    Work is done on the system by surroundings since there is 2 mol of gaseous reactants while there is no gaseous product. The result is decreased in volume i.e. w is positive.

    Question 58
    CBSEENCH11006055

    What is the enthalpy of formation of the most stable form of an element in its standard state?

    Solution

    The enthalpy of formation of the most stable form of an element is Zero.

    Question 59
    CBSEENCH11006056

    The thermochemical equation for the formation of water is:
    2 straight H subscript 2 left parenthesis straight g right parenthesis space plus space straight O subscript 2 left parenthesis straight g right parenthesis space space rightwards arrow space space 2 straight H subscript 2 straight O left parenthesis straight I right parenthesis space increment subscript straight r straight H to the power of 0 space equals space minus 571.8 space kJ

    What is the standard enthalpy of formation of water?

    Solution
    straight H subscript 2 left parenthesis straight g right parenthesis space plus space 1 half straight O subscript 2 left parenthesis straight g right parenthesis space rightwards arrow space space straight H subscript 2 straight O space left parenthesis l right parenthesis space semicolon
space space space space increment subscript straight f straight H to the power of 0 space equals space fraction numerator negative 571.8 over denominator 2 end fraction space equals space minus 285.9 space kJ
    Thus, standard enthalpy of formation of water left parenthesis increment subscript straight f straight H to the power of 0 right parenthesis is -285. 9 kJ
    Question 60
    CBSEENCH11006057

    Comment on the thermodynamic stability of NO(g), given
     1 half straight N subscript 2 left parenthesis straight g right parenthesis space plus space 1 half straight O subscript 2 left parenthesis straight g right parenthesis space rightwards arrow space space NO left parenthesis straight g right parenthesis semicolon   increment subscript straight r straight H to the power of circled dash space equals space 90 space kJ space mol to the power of negative 1 end exponent
    NO left parenthesis straight g right parenthesis space plus space 1 half straight O subscript 2 left parenthesis straight g right parenthesis space rightwards arrow space space NO subscript 2 left parenthesis straight g right parenthesis semicolon space increment subscript straight r straight H to the power of circled dash space equals space minus 74 space kJ space mol to the power of negative 1 end exponent



    Solution
    Since in the first reaction, energy is absorbed, therefore NO(g) is unstable. But in the second reaction, energy is released, therefore NO2(g) is stable. Hence, unstable NO (g) changes into stable NO2(g).
    Question 61
    CBSEENCH11006058

    Out of the following different forms of oxygen, which will have the standard enthalpy of the formation to be 0.0 kJ;  O, O2(g), O3(g), O2(l)?

    Solution
    O2(g), because enthalpy of formation of any element in its most stable form is taken to be zero.
    Question 62
    CBSEENCH11006059

    Out of graphite and diamond, which one refers to the standard rate?

    Solution

    Graphite is referred to the standard rate.

    Question 64
    CBSEENCH11006061

    Why the heat of neutralisation is less than 57.1 kJ if either the acid or the base or both are weak?

    Solution

    If acid or base is weak its ionisation is not complete in aqueous solutions. Therefore,a part of the energy liberated during the combination of H+ ions and OH- ions is utilised for the ionisation of weak acid or base. Hence, the heat of neutralisation is less than 57.1KJ.

    Question 65
    CBSEENCH11006062

    Define intensive property ? 

    Solution

    Those properties which do not depend on the quantity or size of matter present are known as intensive properties. For example temperature, density, pressure etc.

    Question 66
    CBSEENCH11006063

    What does the symbol  ∆fH° denote?

    Solution
    It denotes the standard enthalpy of formation.
    Question 68
    CBSEENCH11006065

    What is the importance of fH°?

    Solution
    Knowing the standard enthalpies of formation of various compounds, enthalpy of reaction, ∆rH° can be calculated.
    Question 69
    CBSEENCH11006066

    Will the heat evolved be same in the following two cases?
    left parenthesis straight i right parenthesis space straight H subscript 2 left parenthesis straight g right parenthesis space plus space 1 half straight O subscript 2 left parenthesis straight g right parenthesis space rightwards arrow space space space straight H subscript 2 straight O left parenthesis straight g right parenthesis
    left parenthesis ii right parenthesis space straight H subscript 2 left parenthesis straight g right parenthesis space plus space 1 half straight O subscript 2 left parenthesis straight g right parenthesis space space rightwards arrow space space space straight H subscript 2 straight O left parenthesis l right parenthesis
    If not, in which case it will be greater and why?


    Solution
    No, it will be greater in case (ii) because when H2O(g) condenses to form H2O(l), heat is released.
    Question 70
    CBSEENCH11006067

    Which of the following is/are exothermic and which is/are endothermic/
    left parenthesis straight i right parenthesis space Ca left parenthesis straight g right parenthesis space space space space rightwards arrow space space space space Ca to the power of 2 plus end exponent left parenthesis straight g right parenthesis space plus space 2 straight e to the power of minus
left parenthesis ii right parenthesis space straight O left parenthesis straight g right parenthesis space plus space straight e to the power of minus space space space rightwards arrow space space space straight O to the power of minus left parenthesis straight g right parenthesis
left parenthesis iii right parenthesis space straight N to the power of 2 minus end exponent left parenthesis straight g right parenthesis space plus space straight e to the power of minus space rightwards arrow space space straight N to the power of 3 minus end exponent left parenthesis straight g right parenthesis

    Solution

    (i) Endothermic (ionisation enthalpy is required).
    (ii) Exothermic (first electron gain enthalpy is energy released).
    (iii) Endothermic (higher electron gain enthalpies are energy required)

    Question 71
    CBSEENCH11006068

    What is the significance of enthalpy of fusion?

    Solution
    It gives an idea about the strength of the forces acting on a solid. Thus, ionic solids like NaCl, MgCl2 etc. have a high enthalpy of fusion, molecular solids like O2, CCl4, H2S etc. have a low enthalpy of fusion.
    Question 72
    CBSEENCH11006069

    What is the significance of enthalpy of combustion?

    Solution
    The values of heat of combustion are useful in rating the fuels. A fuel having high value of enthalpy of combustion is considered to be a better fuel.
    Question 73
    CBSEENCH11006070

    Under what conditions, the heat absorbed by the system is equal to the work done by the system?

    Solution
    As ∆U = q + w, therefore q = –w only when ∆U = 0.
    Question 74
    CBSEENCH11006071

    State Hess's law of constant heat summation.

    Solution
    It states, “Total amount of heat evolved or absorbed in a reaction is the same whether the reaction takes place in one step or in a number of steps.”
    Question 75
    CBSEENCH11006072

    What is calorific value?

    Solution

    It is defined as the quantity of heat produced by the combustion of one gram of fuel or food. It is expressed in joules per kilogram.

    Question 76
    CBSEENCH11006073
    Question 77
    CBSEENCH11006074

    Define bond enthalpy.

    Solution
    Bond enthalpy is the amount of energy released when one mole of bonds are formed from the isolated atoms in the gaseous state or the amount of energy required to dissociate one mole of bonds present between the atoms in the gaseous molecules.
    Question 78
    CBSEENCH11006075

    Is the bond enthalpy of all the four C – H bonds in CH4 molecule equal ? If not, then why ? How is the C – H bond energy then reported ?

    Solution
    No, because after the breaking of C – H bonds one by one the electronic environments change. The reported nature is the average value of the bond dissociation energies of the four C – H bonds.
    Question 79
    CBSEENCH11006076

    What are renewable sources of energy?

    Solution

    Renewable energy is generally defined as energy that is collected from resources which are naturally replenished on a human timescale, such as sunlight, the wind, rain, tides, waves, and geothermal heat.

    Sponsor Area

    Question 80
    CBSEENCH11006077

    When does bond enthalpy become equal to bond dissociation enthalpy?

    Solution

    Bond enthalpy is equal to the bond dissociation energy for diatomic molecules e.g.


    straight H space minus space straight H left parenthesis straight g right parenthesis comma space space Cl space minus space Cl left parenthesis straight g right parenthesis comma space space straight O space equals space straight O left parenthesis straight g right parenthesis space etc.

    Question 81
    CBSEENCH11006078

    Explain spontaneous process.

    Solution
    A process which occurs on its own, without any outside help, is called spontaneous process.
    Question 82
    CBSEENCH11006079

    Explain non-spontaneous process.

    Solution
    Non-spontaneous process is one which does not occur of its own and can occur only when an external force is continuously applied.
    Question 83
    CBSEENCH11006080

    Define entropy.

    Solution
    Entropy is a measure of randomness or disorder of the system. It can also be regarded as the measure of ‘unavailable energy’.
    Entropy change,increment straight S space equals space straight q subscript rev over straight T
    Question 84
    CBSEENCH11006081

    Define entropy.

    Solution

    Entropy is a measure of randomness or disorder of the system. It can also be regarded as the measure of ‘unavailable energy’.
    Entropy change, increment straight S space equals space straight q subscript rev over straight T.

    Question 85
    CBSEENCH11006082

    Why does entropy of a solid increase on fusion?















    Solution

    On fusion, a more ordered solid form of a substance is changed to less ordered (or more disordered) liquid form. So entropy increases.

    Question 86
    CBSEENCH11006083

    What are the units of entropy?

    Solution
    JK–1. mol–1 or kJK–1 mol–1 .
    Question 87
    CBSEENCH11006084

    Why entropy is a state function?

    Solution
    The entropy change (∆ S) in a process depends only on the initial and final state. So entropy is a state of function.
    Question 88
    CBSEENCH11006085

    An endothermic reaction straight X space rightwards arrow space straight Y comma proceeds to completion. What is the sign of increment straight S?

    Solution
    The sign of ∆S is positive.
    Question 89
    CBSEENCH11006086

    what is heat capacity ? 

    Solution

    straight q equals straight C increment straight T
    The coefficient, C is called the heat capacity.

    Question 90
    CBSEENCH11006087

    Under what condition ∆Ssystem is equal and opposite in sign to ∆Ssurroundings?

    Solution
    At equilibrium ∆Ssystem is equal and opposite in sign to ∆Ssurroundings
    Question 91
    CBSEENCH11006088

    What is the effect of temperature on spontaneity?

    Solution
    An exothermic process which may be non-spontaneous at high temperature may become spontaneous at low temperature. An endothermic reaction which may be non-spontaneous at low temperature may become spontaneous at high temperature.
    Question 92
    CBSEENCH11006089

    What is the sign of ∆S for a spontaneous process?

    Solution
    Positive sign, because ∆S > 0.
    Question 93
    CBSEENCH11006090

    Is the entropy of the universe constant?

    Solution

    No, it is increasing.

    Question 94
    CBSEENCH11006091

    What is the relation between enthalpy change and entropy change for a process at equilibrium?

    Solution
    Relation between enthalpy change and entropy change.
    ∆H = T∆S.
    Question 98
    CBSEENCH11006095

    A reaction straight A plus straight B space rightwards arrow space straight C plus straight D plus straight q is found to have a positive entropy change. The reaction will be

    • possible at high temperature

    • possible only at low temperature
    • not possible at any temperature
    • possible at any temperature

    Solution

    D.

    possible at any temperature Option space left parenthesis iv right parenthesis space is space correct. space
Here space increment straight H space equals space minus ve space and space increment straight S space equals space plus ve
therefore space space space space space increment straight G space equals space increment straight H space minus space straight T increment straight S
    For the reaction to be spontaneous, AG should be –ve which will be so at any temperature.
    Question 99
    CBSEENCH11006096

    Why should entropy increase on expansion of a gas?

    Solution
    The molecules have a larger space in which these move about and therefore the amount of disorder at the molecular level is greater.
    Question 100
    CBSEENCH11006097

    Define standard enthalpy of vaporization ?

    Solution

    It is defined as the amount of heat required to vaporize one mole of a liquid at constant temperature and under standard enthalpy of vaporization or molar enthalpy of vaporization,increment subscript vap straight H degree

    Question 101
    CBSEENCH11006098

    Although dissolution of ammonium chloride in water is endothermic yet it dissolves. Why?

    Solution
    Because entropy change is positive (∆S > 0).
    Question 102
    CBSEENCH11006099

    What is the standard state of the substance?

    Solution
    The most stable state of substance is at 1 atmospheric pressure and at a specified temperature (298 K).
    Question 103
    CBSEENCH11006100

    What are exothermic and endothermic compounds?

    Solution
    The compounds having negative enthalpies of formation are known as exothermic compounds and those with positive enthalpies of formation are called endothermic compounds.
    Question 104
    CBSEENCH11006101

    What is the physical significance of entropy?

    Solution
    Entropy is a measure of the degree randomness or disorder in the system. The gaseous state has a maximum disorder, so its entropy will be the highest.
    Disorder:  Solid < Liquid < Gas.
    Entropy: Solid < Liquid < Gas.
    Question 105
    CBSEENCH11006102

    What is the sign of ∆S for a spontaneous process in an isolated system?

    Solution
    For spontaneous process ∆S = +ve (isolated system).
    Question 106
    CBSEENCH11006103

    Predic the sign of increment straight S for:
    space left parenthesis straight i right parenthesis space straight O subscript 2 left parenthesis straight g right parenthesis space space space rightwards arrow space space space 2 straight O left parenthesis straight g right parenthesis
space left parenthesis ii right parenthesis space straight N subscript 2 left parenthesis straight g comma 10 space atm right parenthesis space rightwards arrow space straight N subscript 2 left parenthesis straight g comma space 1 space atm right parenthesis.

    Solution

    (i) Positive (increase in number of gas molecules).
    (ii) Positive.

    Question 108
    CBSEENCH11006105

    Give a statement which includes the main ideas of the first and second laws of thermodyanimcs.

    Solution
    The energy of the universe is constant whereas the entropy of the universe is continuously increasing and tends to a maximum.
    Question 109
    CBSEENCH11006106

    Define standard entropy (S0).

    Solution
    The entropy of one mole of a substance at 298K and one atmosphere is known as standard and is represented by S0.
    Question 110
    CBSEENCH11006107

    State the effect of increased temperature on the entropy of the substance.

    Solution
    Entropy ( a measure of randomness or disorder) increases with increased temperature.
    Question 111
    CBSEENCH11006108

    Entropy of diamond is less than entropy of graphite. What conclusion do you draw from this?

    Solution
    It shows the presence of layers which are loosely packed as compared to diamond.
    Question 112
    CBSEENCH11006109

    State the second law of thermodynamics.

    Solution
    The entropy of the universe always increases in the course of every spontaneous natural change.
    Question 113
    CBSEENCH11006110

    What is free energy?

    Solution
    Free energy of a system is its capacity to do useful work.
    Question 114
    CBSEENCH11006111

    What is Gibb's free energy?

    Solution

    Gibb's free energy (G) is a state function related to enthalpy, entropy and temperature as
    G = H - TS

    Question 115
    CBSEENCH11006112

    What is Gibb's free energy change?

    Solution
    Free energy (∆G) is a state function related to enthalpy change, entropy change and temperature as,
    increment straight G space equals space increment straight H space minus space straight T increment straight S.
    Question 116
    CBSEENCH11006113

    Write an expression that connects free energy, entropy and enthalpy.

    Solution

    The relationship of free energy, entropy and enthalpy,
    G = H - TS  and increment straight G space equals space increment straight H space minus space straight T increment straight S.

    Question 117
    CBSEENCH11006114

    Write Gibb's Helmholtz equation.

    Solution

    Gibb's Helmholtz equation can be given by,
    increment straight G space equals space increment straight H space minus space straight T increment straight S
where space increment straight G space equals space Free space energy space change comma
space space space space space space space space space increment straight H space equals space Enthalpy space change space and space
space space space space space space space space space increment straight S space equals space Entropy space change

    Question 118
    CBSEENCH11006115

    What is the driving force of a reaction?

    Solution

    The overall tendency for a reaction to occur is known as driving force of the reaction. It is the resultant of enthalpy change and entropy change.

    Question 119
    CBSEENCH11006116

    Sponsor Area

    Question 120
    CBSEENCH11006117

    State the thermodynamic conditions for spontaneous process to occur.

    Solution

    (i) For spontaneous process to occur ∆H < 0 (–ve)
    (ii) ∆S of the process must be > 0 i.e. ∆S is +ve.
    (iii) ∆G of the process must be < 0 i.e. ∆G is –ve.

    Question 121
    CBSEENCH11006118

    How can a chemical reaction with positive enthalpy and entropy changes be made entropy drives?

    Solution
    By carrying out the reaction at high temperature so that T∆S may be more than ∆H and ∆G may be negative.
    Question 122
    CBSEENCH11006119

    For a reaction both ∆H and T∆S are positive. Under what conditions will the reaction be spontaneous?

    Solution
    When both ∆H and T∆S are positive i.e. energy factor opposes the process but randomness factor favours, then if ∆H < T∆S, the process is spontaneous and ∆G is –ve.
    Question 123
    CBSEENCH11006120

    Give the relation between Suniverse and ∆G.

    Solution
     –∆G = T∆Suniverse.
    Question 124
    CBSEENCH11006121

    What is the criteria for spontaneity in terms of free energy change?

    Solution

    Criteria for spontaneity in terms of free energy change:
    (i) If ∆G is negative, the process is spontaneous.
    (ii) If ∆G is positive, the direct process is non-spontaneous.
    (iii) If ∆G is zero, the process is in equilibrium.

    Question 125
    CBSEENCH11006122

    What is the significance of free energy change?

    Solution
    The decrease in free energy (–∆G) is equal to useful work done by the system.
    Question 126
    CBSEENCH11006123

    Define standard free energy change.

    Solution

    It is the free energy change for a process in which reactants in their standard state are converted into the products in their standard states.

    Question 128
    CBSEENCH11006125

    At what temperature entropy of a perfectly crystalline substance is zero?

    Solution
    At, T=0 Kelvin, the entropy of a perfectly crystalline substance is zero.
    Question 130
    CBSEENCH11006127

    Which thermodynamic quantity is required for the calculation of absolute entropies ?

    Solution

    Heat capacity at constant pressure (Cp).

    Question 131
    CBSEENCH11006128

    For which molecule bond energy equal to bond dissociation energy?

    Solution

    Bond energy becomes equal to bond dissociation energy for the diatomic molecules. For example, H2, O2. Cl2, N2 etc.

    Question 132
    CBSEENCH11006129

    What will be the sign of G for the melting of ice at 267K and at 276K?

    Solution

    Melting point temperature of ice = 273 K.
    Thus, at 267 K, the process is non-spontaneous (∆G = +ve) while at 276K, it becomes spontaneous (∆G = –ve).

    Question 133
    CBSEENCH11006130

    How can a non-spontaneous reaction be made spontaneous?

    Solution
    This can be done by coupling with a spontaneous reaction with large –∆G. As a result, the overall ∆G for the coupled reaction will be negative.
    Question 134
    CBSEENCH11006131

    What will be the value of free energy change when the reaction is in equilibrium?

    Solution
    ∆G is zero at equilibrium point.
    Question 135
    CBSEENCH11006132

    What are the types of systems?

    Solution

    Types of systems. The exchange of energy between the system and its surroundings usually takes place in the form of heat or work or both. Based upon this, the systems have been classified into three types:
    (i) Open system (ii) Closed system (iii) Isolated system.
    (i) Open system: A system is said to be an open system if it exchanges the matter (mass) as well as the energy with its surroundings. All chemical reactions carried in open containers constitute the open system. For example,
    (a) Combustion of carbon in an open tube.
    straight C left parenthesis straight s right parenthesis space plus space straight O subscript 2 left parenthesis straight g right parenthesis space rightwards arrow space space CO subscript 2 left parenthesis straight g right parenthesis space plus space Heat

    (b) Tea placed in a cup.
    (ii) Closed system: A system is said to be a closed system if the only exchange of energy is possible between system and surroundings and exchange of matter (mass) is not possible. All chemical reactions carried in closed containers constitute closed system e.g.
    (a) Decomposition of calcium carbonate in a closed tube.
    CaCO subscript 3 space rightwards arrow with Heat on top space CaO space plus space CO subscript 2 upwards arrow space plus space Heat

    (b) Tea placed in a tea-pot.
    (iii) Isolated system: A system which can neither exchange energy nor matter (mass) with its surroundings is called an isolated system. All chemical reactions carried in a closed container insulated from all sides represent the isolated system. For example.

    (a) Neutralisation reaction between NaOH and HCl carried in a thermos flask.
    NaOH space plus space HCl space rightwards arrow space space space NaCl space plus space straight H subscript 2 straight O space plus space Heat
    (b) Tea placed in a thermos flask.

    Question 136
    CBSEENCH11006133

    Define: (i) State variables (ii) State functions.

    Solution

    (i) State variables : The measurable properties required to describe the state of the system are called state variables. For example temperature, pressure, volume, composition etc. are state variables.

    (ii) State functions: A state function is a property of the system whose value depends on only upon the state of the system and is independent of the path or manner by which the state is reached. For example, pressure, volume, temperature, internal energy (E), enthalpy (H), entropy (S) etc. are state functions.

    Question 137
    CBSEENCH11006134

    What are homogeneous and heterogeneous systems?

    Solution

    Homogeneous system: A system is said to be homogeneous if all the constituents present are in the same phase and the composition of the system is uniform throughout.
    Heterogeneous system: A system is said to be heterogeneous if it consists of two or more phases and its composition is also not uniform.

    Question 138
    CBSEENCH11006135

    What do you understand by:
    (i) Isothermal process
    (ii) Adiabatic process
    (iii) Isobaric process
    (iv) Isochoric process
    (v) Cyclic process?

    Solution

    (i) Isothermal process: A process is said to be isothermal if the temperature of the system remains constant i.e. operation is carried at a constant temperature. For an isothermal process, dT = 0 where dT is the change in temperature.

    (ii) Adiabatic process: In an adiabatic process, no heat can flow from the system to the surrounding or vice versa i.e. the system is completely insulated from the surroundings.

    (iii) Isobaric process: It is the process during which the pressure of the system is kept constant i.e. dP = 0. The volume may or may not change.

    (iv) Isochoric process: It is a process during which the volume of the system is kept constant i.e dV = 0.

    (v) Cyclic process. When a system undergoes a series of changes and finally returns to its initial state, it is an example of the cyclic process. In cyclic process dU = 0.

    Question 139
    CBSEENCH11006136

    Give the points of difference between reversible process and irreversible process.

    Solution

    Reversible process

    Irreversible process

    1. Such processes take place infinitesimally slowly and their direction at any point can be reversed.

    1. The process cannot be reversed.

    2. It is a slow process.

    2. It is a fast process.

    3. This process is in equilibrium at all stages of operation.

    3. There is no equilibrium.

    4. This is an ideal and imaginary process.

    4. It is a real process.

    Question 141
    CBSEENCH11006138

    How will you distinguish between intensive and extensive properties?

    Solution

    (i) Intensive properties: These are the properties which depend on only upon the nature of the substance and are independent of the amount of the substance present is the system. The common examples of these properties are temperature, pressure, refractive index, viscosity, density, surface tension, specific heat, freezing point, boiling point etc.

    (ii) Extensive properties: These are the properties which depend on upon the quantity of the matter contained in the system. The common examples of these properties are mass, volume, heat capacity, internal energy, enthalpy, entropy, Gibb’s free energy etc.

    Question 142
    CBSEENCH11006139

    What do you mean by internal energy and internal energy change?

    Solution
    The total energy stored by a fixed amount of the substance is called its internal energy or intrinsic energy and is denoted by U. It is the sum of various forms of energies such as kinetic energy of translation, rotation and vibration, potential energy due to intermolecular forces, the chemical bond energy and electronic and nuclear energies of the constituent atoms.
    straight U space equals space straight U subscript KE space plus space straight U subscript PE space plus space straight U subscript straight C space plus space straight U subscript straight e space plus space straight U subscript straight n
    Internal energy is a function of state only. It is not possible to determine the absolute value of internal energy as most of the constituent energies cannot be precisely determined. However, we are more interested in knowing the change in internal energy (∆U).
    Change in internal energy (∆U): It may be defined as The difference in internal energies of the product and reactant species taking part in a chemical reaction at constant volume. For example, if UR represents the internal energy of the reactants and Up represents the internal energy of the products, then
    increment straight U space equals space straight U subscript straight P space minus space straight U subscript straight R
    where ∆U gives the change in internal energy.
    In a chemical reaction, ∆U has always noticed in the form of heat evolved or absorbed during the reaction in case the reaction is carried out at constant volume. Hence internal energy change (∆U) is equal to the heat evolved or absorbed in a chemical reaction at constant volume and constant temperature.
    increment straight U space equals space straight q subscript straight v
     Sign space of space increment straight U colon
    Clearly, if straight U subscript 1 greater than straight U subscript 2 space left parenthesis or space straight U subscript straight R greater than space straight U subscript straight P right parenthesis comma space the extra energy possessed by the system in the initial state (or the reactants) would be given out and increment straight U will be negative. 
    Similarly, if straight U subscript 1 less than straight U subscript 2 space left parenthesis or space straight U subscript straight R less than straight U subscript straight P right parenthesis comma energy will be absorbed in the process and increment straight U will be positive.
    Units of U: The units of energy are ergs (in CGS units) or joules (in S.I. units)
    1 Joule = 107 ergs. 
       
    Question 143
    CBSEENCH11006140

    Derive an expression for pressure-volume work (PV – work).

    Solution
    Let us consider a gas enclosed in a cylinder fitted with a frictionless piston having an area of cross-section equal to ‘a’. Let the gas expand against the external pressure P facing the piston to move through a small distance d. Then work of expansion is given by,

    straight W space equals space Force space cross times space displacement
space space space space space equals straight F space cross times space straight d
But space Force space left parenthesis straight F right parenthesis space equals space Pressure space left parenthesis straight P right parenthesis space cross times space area
therefore space space space space space space space straight W space equals space straight P space cross times space straight a space cross times space straight d
Since space straight a space cross times straight d space equals space Change space in space volume space left parenthesis increment straight V right parenthesis
           straight i. straight e. space space space space space space left parenthesis straight V subscript 2 minus straight V subscript 1 right parenthesis
therefore space space space space space straight W space equals space straight P cross times increment straight V
    During expansion, work is done by the system and ∆V(V2 – V1) is positive. Therefore, in order to satisfy the sign conventions, a negative sign is put in the expression for work.
    straight W space equals space minus straight P space cross times space increment straight V
    During compression, Work is done on the system. ∆V(V2 – V1) for compression is negative. Therefore work, as obtained from the above expression, comes out to be positive and satisfies the conventions.
    The general expression for all types of PV-work is given by
    straight W space equals space minus straight P increment straight V
    Question 144
    CBSEENCH11006141

    Derive an expression for work done in isothermal reversible expansion of ideal gas.

    Solution
    Let us consider n moles of ideal gas enclosed in a cylinder fitted with a weightless and frictionless piston. The work of expansion for a small change of volume dV against the external pressure P is given by
                              straight delta subscript straight w space equals space minus PdV
    therefore Total work done when the gas expands from initial volume V1 to final volume V2, will be
                     straight W space equals space minus integral subscript straight v subscript 1 end subscript superscript straight v subscript 2 end superscript PdV
    For an ideal gas, PV = nRT i.e.
                       straight P space equals space straight n over straight V RT
    Hence,
         
     straight W space equals space minus integral subscript straight V subscript 1 end subscript superscript straight V subscript 2 end superscript straight n over straight V RT space dV
    For isothermal expansion, T = constant so that
        straight W space equals space minus nRT space integral subscript straight V subscript 1 end subscript superscript straight V subscript 2 end superscript 1 over straight V dV
space space space space equals space minus nRT space straight l subscript straight n straight V subscript 2 over straight V subscript 1
space space space equals space minus 2.303 space nRT space log straight V subscript 2 over straight V subscript 1 space space space space... left parenthesis 1 right parenthesis
    But at constant temperature,
                            P1V1 = P2V2

    or space space space space straight V subscript 2 over straight V subscript 1 space equals space straight P subscript 1 over straight P subscript 2
therefore space space space space left parenthesis 1 right parenthesis space becomes comma
space space space space space space space straight W space equals negative 2.303 straight n space RT space straight P subscript 1 over straight P subscript 2 space space space space space... left parenthesis 2 right parenthesis
    Question 145
    CBSEENCH11006142

    Calculate the maximum work obtained when 0.75 mol of an ideal gas expands isothermally and reversibly at 27°C from a volume of 15L to 25L.

    Solution

    We have given,
    Volume (V2) = 25L
    Volume (V1) =15L
    Number of moles =0.75
    using the equation,
    straight W space equals 2.303 space nRT space log space straight V subscript 2 over straight V subscript 1
    Substituting the values, we have,
    straight W space equals space 2.303 space cross times space 0.75 space cross times space 8.314 space cross times space 300 space log space 25 over 15
space space space space equals 955.5 space straight J

    Question 146
    CBSEENCH11006143

    State first law of thermodynamics in different ways.

    Solution

    (i) Energy can neither be created nor destroyed, though it may be converted from one form into another.
    (ii) The total energy of an isolated system remains constant, although there may be internal changes in the state of the system.
    (iii) It is impossible to construct a perpetual motion machine i.e. a machine that can produce work without any expenditure of energy.
    (iv) Total energy of a system and its surrounding such as universe remains constant in any physical or chemical process.

    Question 148
    CBSEENCH11006145

    What informations are provided by the First law of Thermodynamics?

    Solution

    From the first law, we learn that:
    (i) Different forms of energy are interconvertible i.e. one form of energy can be converted into another.
    (ii) Whenever one form of energy disappears, an equivalent amount of energy in another form appears.
    (iii) Total energy of the universe i.e. energy of the system and surroundings taken together remains constant.

    Question 149
    CBSEENCH11006146

    What are the limitations of First law of Thermodynamics?

    Solution

    (i) The first law of thermodynamics does not tell us anything about the extent and direction of the convertibility of one form of energy into another. For example when two bodies which are capable of exchanging heat energy are brought into contact. First law tells only that heat gained by one must be equal to that lost by the other, but it does not tell us which of the two would lose or gain heat energy. It also does not tell us how much heat energy would be transferred from one to the other.

    (ii) It provides no information regarding the feasibility of the process.

    Question 150
    CBSEENCH11006147

    Derive mathematical form of First law of Thermodynamics.
    Or
    Derive the relationship between heat, internal energy and work.

    Solution

    Mathematical form:
    The internal energy of the system can be changed in two ways:
    (i) by allowing heat to flow into the system or out of the system,
    (ii) by work is done on the system or work done by the system.
    Let us consider a system which undergoes a change from one state to another. Let the initial internal energy of the system be U1. Now if a system is supplied q amount of heat, then internal energy of the system increases and becomes U1 + q.
    If work (w) is done on the system, then its internal energy further increases and becomes U2. The energy U2 is the energy in the final state.
    therefore space space space space space space space space space straight U subscript 2 space equals space straight U subscript 1 space plus space straight q space plus space straight w
or space space space space space space space space space straight U subscript 2 space minus space straight U subscript 1 space equals space straight q space plus space straight w
or space space space space space space space space space space space space space space space space increment straight U space equals space straight q space plus space straight w

    The above expression is the mathematical form of the first law of thermodynamics. w includes all kinds of work such as pressure-volume work, electrical work etc.
    If the work is done in the above process is only pressure-volume work,
           straight w equals negative straight P space cross times space increment straight V
therefore space space space space Expression space left parenthesis 1 right parenthesis space becomes comma
space space space space space space space space increment straight U equals space straight q minus straight P increment straight V.

    Question 151
    CBSEENCH11006148

    Compute internal energy change of a system if it
    (i) absorbs 500 kJ heat and does 300 kJ work.

    (ii) loses 200 kJ heat and has 450 kJ of work done on it.

    Solution

    (i) Here,    q = 500 kJ,   w = -300 kJ
    According to the first law of thermodynamics,
                  increment straight U space equals space straight q space plus space straight w space equals space 500 space minus space 300 space equals space 200
    (ii) Here,   q = -200 kJ,  w = 450 kJ
    therefore space space space space increment straight U space equals space straight q space plus space straight w space equals space minus 200 space plus space 450 space equals space 250 space kJ

    Question 152
    CBSEENCH11006149

    In a process, 701 J of heat is absorbed by a system and 394 J of work is done by the system. What is the change in internal energy for the process?

    Solution

    Here,
     q = +701 J,  w = -394 J
    According to first law of thermodynamics,
    increment straight U space equals space straight q space plus space straight w space equals space plus 701 straight J space plus space left parenthesis negative 394 space straight J right parenthesis space equals space plus 307 straight J
    i.e. internal energy of the system increases by 307J

    Question 154
    CBSEENCH11006151

    State whether each of the following will increase or decrease the total energy content of the system:
    (i) heat transferred to the surroundings
    (ii) work done on the system
    (iii) work done by the system.

    Solution

    (i) When heat is transferred to surroundings the total energy content of the system decreases.
    (ii) When work is done on the system, the energy content of the system increases.
    (iii) When work is done by the system, the energy content of the system decreases.

    Question 156
    CBSEENCH11006153

    Explain the terms enthalpy and enthalpy change.

    Solution

    Enthalpy: Enthalpy is the total energy associated with the system and is defined as the sum of internal energy and product of its pressure and volume. It is denoted by H.
    Mathematically,
    H = U + PV
    where U is the internal energy change, P and V are respectively the pressure and volume of the system. H is also called heat content of the system. Enthalpy is a state function and every substance has a definite value of enthalpy in a particular state. The absolute value of enthalpy of a substance cannot be determined, but the change in enthalpy (∆ H) accompanying a process can be determined.

    Change in enthalpy (∆H): It may be defined as the difference in the enthalpies of the product and reactant species taking part in a chemical reaction at a constant pressure. For example, if Hrepresents the enthalpies of the reactants and Hrepresents the enthalpies of the products, then ∆H = Hp – Hr where ∆H gives the change in enthalpy.

    The enthalpy change (∆H) is equal to the heat evolved or absorbed in a chemical reaction at constant pressure and constant temperature,
    increment straight H space equals space straight q subscript straight p

    Question 157
    CBSEENCH11006154

    Derive a relationship between ∆H and ∆U.

    Solution
    Let H1 be the enthalpy of a system in the initial state and H2 be the enthalpy of a system in the final state. Let U1 and V1 be the internal energy and volume in the initial state and let U2 and V2 be the corresponding values in the final state.
    because space space space space space straight H space equals space straight U space plus space PV
therefore space space space space space straight H subscript 1 space equals space straight U subscript 1 space end subscript plus space PV subscript 1 space space space space space space space space space space... left parenthesis 1 right parenthesis
and space space space straight H subscript 2 space equals space straight U subscript 2 space plus space PV subscript 2 space space space space space space space space space space... left parenthesis 2 right parenthesis
    Subtracting (1) from (2), we have,
         space straight H subscript 2 space minus straight H subscript 1 space equals space left parenthesis straight U subscript 2 plus PV subscript 2 right parenthesis space minus space left parenthesis straight U subscript 1 plus space PV subscript 1 right parenthesis
therefore space space space straight H subscript 2 space minus space straight H subscript 1 space equals space left parenthesis straight U subscript 2 space plus space PV subscript 2 right parenthesis space minus space left parenthesis straight U subscript 1 space plus space PV subscript 1 right parenthesis
therefore space space space space space increment straight H space equals space left parenthesis straight U subscript 2 space plus space PV subscript 2 right parenthesis space minus space left parenthesis straight U subscript 1 space plus space PV subscript 1 right parenthesis
therefore space space space space increment straight H space equals space increment straight U space plus space straight P increment straight V
    In the above expression ∆U represents a change in internal energy and P∆V represents a change in work energy.
    Thus, the change in enthalpy at constant pressure is equal to the increase in internal energy plus pressure-volume work done (work energy).
    Question 158
    CBSEENCH11006155

    Show that the change in enthalpy at constant pressure for a reaction involving gases is given by the expression.

    increment straight H space equals space increment straight U space plus space increment straight n subscript straight g RT
space space space space space or
straight q subscript straight p space equals space straight q subscript straight v space plus space increment straight n subscript straight g RT

    Solution
    Let us consider a reaction involving gases. Let the process be isothermal and carried out at constant pressure (P). Let Vr be the total volume of the gaseous reactants and Vp be the total volume of the gaseous products, nr be the number of moles of the gaseous reactants and np be the number of moles of the gaseous products.
    Using ideal gas equation;
    PV = nRT,
    we may write,
    For reactions:
     PVr = nRT            ...(1)
    (at constant T and P)
    For products: PVp  = npRT          ...(2)
    (at constant T and P)
    Subtracting (1) from (2),
    P(Vp - Vr) = npRT - nrRT
                    = (np - nr)RT
    or space space straight P increment straight V space equals space increment straight n subscript straight g RT
    where ∆ng is the difference in the number of moles of gaseous products and reactants.
    because space space space space space space space increment straight H space equals space increment straight U space plus space straight P increment straight V
Hence space space space increment straight H space equals space increment straight U space plus space increment straight n subscript straight g RT
Since space increment straight H space equals space straight q subscript straight p space and space increment straight U space equals space straight q subscript straight v
therefore space space space equation space left parenthesis 3 right parenthesis space may space also space be space written space as
space space space space space space straight q subscript straight p space equals space straight q subscript straight v space plus space increment straight n subscript straight g RT

    Question 159
    CBSEENCH11006156

    Under what conditions
    (i)∆H < ∆U
    (ii) ∆H > ∆U
    (iii) ∆H = ∆U?


    Solution

    We know that ∆H = ∆U + ∆ng RT where ∆ng represents the difference between the number of moles of the gaseous products and of gaseous reactants. 
    (i) ∆H < ∆U
    When ∆ng = –ve i.e. when there is a decrease in the number of moles of the gaseous components.
    straight N subscript 2 left parenthesis straight g right parenthesis space plus space 3 straight H subscript 2 left parenthesis straight g right parenthesis space rightwards arrow space space space 2 NH subscript 3 left parenthesis straight g right parenthesis
      Here space increment straight n subscript straight g space equals space 2 minus left parenthesis 1 plus 3 right parenthesis space equals space minus 2
Then space increment straight H space equals space increment straight U space minus space increment straight n subscript straight g RT
straight i. straight e. space space space space space increment straight H space less than space increment straight U
     left parenthesis ii right parenthesis space space increment straight H greater than space increment straight U
    when ∆ng = + ve i.e. when the reaction proceeds by an increase in the number of moles of the gaseous components.
         PCl subscript 5 left parenthesis straight g right parenthesis space rightwards arrow space space PCl subscript 3 space left parenthesis straight g right parenthesis space plus space Cl subscript 2 left parenthesis straight g right parenthesis
Here space increment straight n subscript straight g space equals space 2 minus 1 space equals space 1
Then space increment straight H space equals space increment straight U space plus space increment straight n subscript straight g RT space space straight i. straight e. space space space increment straight H space greater than space increment straight U
    (iii) ∆ng = 0 i.e. when the number of moles or the gaseous reactants is equal to the number of moles of the gaseous products.
                    straight H subscript 2 left parenthesis straight g right parenthesis space plus space straight I subscript 2 left parenthesis straight g right parenthesis space equals space 2 HI left parenthesis straight g right parenthesis
                       increment straight n subscript straight g space equals space 2 minus left parenthesis 1 plus 1 right parenthesis space equals space 0
                 Then space space space space space space increment straight H space equals space increment straight U

    Question 160
    CBSEENCH11006157

    What becomes of the energy supplied to water molecules as they are heated in a closed container from 298K to 308K?

    Solution
    We know that,
    ∆H = ∆U + P ∆V
    The water molecules are heated in a closed vessel, the volume of the vessel remains the same i.e.
    V = 0 so that P∆V = 0 under these conditions.
    Hence space space space space space space space increment straight H space equals space increment straight U space plus space 0
or space space space space space space space space space space space space space space increment straight H space equals space increment straight U
    Thus, the entire heat supplied by heating from 298K to 308K is used to increase the internal energy of water molecules. 
    Question 161
    CBSEENCH11006158
    Question 162
    CBSEENCH11006159

    increment straight U to the power of circled dash of combustion of methane is –X kJ mol–1. The value of increment straight H to the power of circled dash is :
    (i) equals increment straight U to the power of circled dash
    (ii) greater than increment straight U to the power of circled dash
    (iii) less than increment straight U to the power of circled dash
    (iv)  = 0

    Solution
    The thermochemical equation for the combustion of methane is
            CH subscript 4 left parenthesis straight g right parenthesis space plus space 2 straight O subscript 2 left parenthesis straight g right parenthesis space rightwards arrow space space space CO subscript 2 left parenthesis straight g right parenthesis space plus space 2 straight H subscript 2 straight O
    Here comma space increment ng space equals space straight n subscript straight p space minus space straight n subscript straight r space equals space 1 minus 3 space equals space minus 2 semicolon
We space know comma space
space space space space space increment straight H to the power of circled dash space equals space increment straight U to the power of circled dash space plus space increment ngRT
    Substituting the values, we have
    increment straight H to the power of circled dash space equals space increment straight U to the power of circled dash space plus space increment ngRT space equals space minus straight X minus 2 RT
    Here increment straight H to the power of circled dash space less than space increment U to the power of circled dash
    i.e. option (iii) is correct.           
    Question 164
    CBSEENCH11006161

    The heat of combustion of C6H5COOH (benzoic acid) at constant volume is measured in a bomb calorimeter at 300K and is found to be – 3199.76kJ mol–1. Find the value of enthalpy change. (R = 8.31 JK–1 mol–1).

    Solution
    The required thermochemical equation is,
    bold C subscript bold 6 bold H subscript bold 5 bold COOH bold left parenthesis bold s bold right parenthesis bold space bold plus bold space bold 15 over bold 2 bold O subscript bold 2 bold left parenthesis bold g bold right parenthesis bold space bold rightwards arrow bold space bold 8 bold CO subscript bold 2 bold left parenthesis bold g bold right parenthesis bold space bold plus bold space bold 3 bold H subscript bold 2 bold O bold left parenthesis bold l bold right parenthesis
bold Here bold space bold increment bold U bold space bold equals bold space bold minus bold 3199 bold. bold 76 bold space bold kJ bold space bold mol to the power of bold minus bold 1 end exponent bold space bold equals bold space bold minus bold 3199760 bold space bold J
bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold R bold space bold equals bold space bold 8 bold. bold 31 bold space bold JK to the power of bold minus bold 1 end exponent bold space bold mol to the power of bold minus bold 1 end exponent
bold space bold space bold space bold space bold space bold space bold increment bold n subscript bold g bold space bold equals bold space bold 7 bold minus bold 15 over bold 2 bold space bold equals bold space bold minus bold 1 over bold 2
bold space bold space bold space bold space bold space bold space bold space bold space bold K bold space bold equals bold space bold 300
    We know that,
     bold increment bold H bold space bold equals bold space bold increment bold U bold space bold plus bold space bold increment bold n subscript bold g bold RT
    Substituting the values, we have,
                     bold increment bold H bold space bold equals bold space bold minus bold 3199760 bold space bold plus bold space open parentheses bold minus bold 1 over bold 2 close parentheses bold space bold left parenthesis bold 8 bold. bold 31 bold right parenthesis bold space bold cross times bold space bold 300
             bold equals bold minus bold 3199760 bold minus bold space bold 1246 bold. bold 5
bold space bold equals bold space bold minus bold 3201006 bold. bold 5 bold space bold J
bold space bold equals bold space bold minus bold 3201 bold space bold kJ bold space bold mol to the power of bold minus bold 1 end exponent
    Question 165
    CBSEENCH11006162

    What do you understand by:
    (i) Heat capacity of a substance
    (ii) Heat capacity at constant volume
    (iii) Heat capacity at constant pressure?

    Solution

    (i) Heat capacity: The heat capacity (C) of a sample of a substance is the quantity of heat needed to raise its temperature by 1°C (or one kelvin).
    (ii) Heat capacity at constant volume: The heat supplied to a system to raise its temperature through 1°C keeping the volume of the system constant is called heat capacity at constant volume.
    (iii) Heat capacity at constant pressure: The heat supplied to a system to raise its temperature through 1 °C keeping the external pressure constant is called heat capacity at constant pressure.
    If q is the amount of heat supplied to a sample and as a result, if the temperature of the sample changes from initial temperature to a final temperature tf, then the heat capacity is given by
    bold C subscript bold v bold space bold equals bold space fraction numerator bold q over denominator bold t subscript bold f bold space bold minus bold space bold t subscript bold i end fraction bold space bold equals bold space fraction numerator bold q over denominator bold increment bold T end fraction

    Question 167
    CBSEENCH11006164

    What do you understand by: (i) Specific heat capacity (ii) Molar heat capacity?

    Solution
    (i) Specific heat capacity: The specific heat capacity (c), is the quantity of heat required to raise the temperature of one unit mass of a substance by 1°C (or one kelvin). For finding out heat q required to raise the temperature of a sample, we multiply the specific heat capacity of the substance c, by the mass m, and the temperature change, ∆T.
    straight q equals space straight c space cross times space straight m space cross times space increment straight T
    (ii) Molar heat capacity: The molar heat capacity of a substance is its heat capacity for one mole of a substance.
    Question 168
    CBSEENCH11006165

    60.8 J of energy is required to change the temperature of 25.0 g of ethylene glycol (a compound used as an antifreeze in automobile engines) by 1.0 K. Calculate heat capacity of ethylene glycol.

    Solution

    We know that
                straight q space equals space straight c space cross times space straight m space cross times space increment straight T
or space space space space space space space straight c space equals space fraction numerator straight q over denominator straight m space cross times space increment straight T end fraction space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
space
    Here,   q = 68.8J;     m = 25.0 g,  
      <pre>uncaught exception: <b>Http Error #404</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php line 61<br />#0 [internal function]: com_wiris_plugin_impl_HttpImpl_0(Object(com_wiris_plugin_impl_HttpImpl), NULL, 'http://www.wiri...', 'Http Error #404')
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('com_wiris_plugi...', Array)
#2 [internal function]: _hx_lambda->execute('Http Error #404')
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(532): call_user_func_array(Array, Array)
#4 [internal function]: haxe_Http_5(true, Object(com_wiris_plugin_impl_HttpImpl), Object(com_wiris_plugin_impl_HttpImpl), Array, Object(haxe_io_BytesOutput), true, 'Http Error #404')
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('haxe_Http_5', Array)
#6 [internal function]: _hx_lambda->execute('Http Error #404')
#7 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(27): call_user_func_array(Array, Array)
#8 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(444): com_wiris_plugin_impl_HttpImpl->onError('Http Error #404')
#9 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(458): haxe_Http->customRequest(true, Object(haxe_io_BytesOutput), NULL, NULL)
#10 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(40): haxe_Http->request(true)
#11 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(80): com_wiris_plugin_impl_HttpImpl->request(true)
#12 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#13 {main}</pre>
    Substituting the values in eq. (1), we have,
              straight c space equals space fraction numerator 60.8 straight J over denominator left parenthesis 25.0 right parenthesis thin space left parenthesis 1.0 space straight K right parenthesis end fraction space equals space 2.43 space straight J space straight g to the power of negative 1 end exponent straight K to the power of negative 1 end exponent

    Question 169
    CBSEENCH11006166

    Calculate the number of kJ of heat necessary to raise the temperature of 60.0g of aluminium from 35 to 55°C. Molar heat capacity of aluminium is 24 J mol–1 K–1.

    Solution

    We know, 
          straight q space equals space straight n space cross times space straight C space cross times space increment straight T                  ...(1)
     Here comma space space straight n space equals space 60 over 27 mol semicolon space space space straight C space equals space 24 space straight J space mol to the power of negative 1 end exponent straight K to the power of negative 1 end exponent semicolon
space space space increment straight T space equals space left parenthesis 55 minus 35 right parenthesis straight K space equals space 20 straight K
    Substituting the values in eq. (1), we get
      straight q space equals space open parentheses 60 over 27 mol close parentheses space cross times space left parenthesis 24 space straight J space mol to the power of negative 1 end exponent straight K to the power of negative 1 end exponent right parenthesis space cross times space 20 straight K
                         = 1066.7 J = 1.07 kJ

    Question 170
    CBSEENCH11006167

    Calculate the energy needed to raise the temperature of 10.0 g of iron from 25°C to 500°C if specific heat capacity of iron is 0.45 J(°C)–1 g–1.

    Solution

    We know that
                straight q space equals space straight c space cross times space straight m space cross times space increment straight T space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
    Here      straight c space equals space 0.45 space straight J left parenthesis degree straight C right parenthesis to the power of negative 1 end exponent straight g to the power of negative 1 end exponent semicolon
    m = 10.0 g
                 increment straight T space equals space 500 degree straight C space minus space 25 degree straight C space equals space 475 degree straight C
    Substituting the values in (1), we have,
            straight q space equals space 0.45 degree straight J left parenthesis degree straight C right parenthesis to the power of negative 1 end exponent straight g to the power of negative 1 end exponent space cross times left parenthesis 10.0 straight g right parenthesis space cross times space left parenthesis 475 degree straight C right parenthesis
space space space equals 2.1 space cross times space 10 cubed straight J

    Question 171
    CBSEENCH11006168

    What mass of gold of specific heat capacity 0.13 J (°C)–1 g–1 can be heated through the same temperature difference when supplied with the same amount of energy as in (a) above?

    Solution

    We know that
                           space straight q space equals space straight c space cross times space straight m space cross times space increment straight T
or space space space space space space straight m space equals space fraction numerator straight q over denominator straight c cross times increment straight T end fraction space space space space space space space space space space space space space space space space.... left parenthesis 1 right parenthesis  
    Here space straight c space equals space 0.13 space straight J left parenthesis degree straight C right parenthesis to the power of negative 1 end exponent straight g to the power of negative 1 end exponent semicolon space space space space increment straight T space equals space 475 degree straight C semicolon
space space space space space space space straight q space equals space 2.1 space cross times space 10 cubed straight J
    Substituting the values in (1), we have,
            
    space straight m space equals space fraction numerator 2.1 space cross times space 10 cubed straight J over denominator 0.13 straight J left parenthesis degree straight C right parenthesis to the power of negative 1 end exponent straight g to the power of negative 1 end exponent cross times left parenthesis 475 degree straight C right parenthesis end fraction
space space space space space equals space fraction numerator 2.1 space cross times space 10 cubed over denominator 0.13 space cross times space 475 end fraction straight g space equals space 34 space straight g

    Question 172
    CBSEENCH11006169

    Calculate the enthalpy change on freezing of 1.0 mol of water at 10.0°C to ice at –10.0°C.

    Given space space increment subscript fus straight H space equals space 6.03 space kJ space mol to the power of negative 1 end exponent space at space 0 degree straight C comma
straight C subscript straight p open square brackets straight H subscript 2 straight O left parenthesis straight l right parenthesis close square brackets space equals space 75.3 space straight J space mol to the power of negative 1 end exponent straight K to the power of negative 1 end exponent
straight C subscript straight p open square brackets straight H subscript 2 straight O left parenthesis straight s right parenthesis close square brackets space equals space 36.8 space straight J space mol to the power of negative 1 end exponent straight K to the power of negative 1 end exponent

    Solution
    <pre>uncaught exception: <b>Http Error #404</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php line 61<br />#0 [internal function]: com_wiris_plugin_impl_HttpImpl_0(Object(com_wiris_plugin_impl_HttpImpl), NULL, 'http://www.wiri...', 'Http Error #404')
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('com_wiris_plugi...', Array)
#2 [internal function]: _hx_lambda->execute('Http Error #404')
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(532): call_user_func_array(Array, Array)
#4 [internal function]: haxe_Http_5(true, Object(com_wiris_plugin_impl_HttpImpl), Object(com_wiris_plugin_impl_HttpImpl), Array, Object(haxe_io_BytesOutput), true, 'Http Error #404')
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('haxe_Http_5', Array)
#6 [internal function]: _hx_lambda->execute('Http Error #404')
#7 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(27): call_user_func_array(Array, Array)
#8 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(444): com_wiris_plugin_impl_HttpImpl->onError('Http Error #404')
#9 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(458): haxe_Http->customRequest(true, Object(haxe_io_BytesOutput), NULL, NULL)
#10 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(40): haxe_Http->request(true)
#11 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(80): com_wiris_plugin_impl_HttpImpl->request(true)
#12 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#13 {main}</pre>
    therefore space space space increment straight H subscript Total space
equals straight C subscript straight p open square brackets straight H subscript 2 straight O left parenthesis straight l right parenthesis close square brackets space cross times space increment straight T space plus space increment subscript freezing straight H space plus space straight C subscript straight p open square brackets straight H subscript 2 straight O left parenthesis straight s right parenthesis close square brackets space cross times space straight T space
space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
    Substituting the values in expression (1), we get
             space equals space left parenthesis 75.3 space Jk to the power of negative 1 end exponent space mol to the power of negative 1 end exponent right parenthesis space left parenthesis 10 straight K right parenthesis space plus space
space left parenthesis negative 6.03 space kJ space mol to the power of negative 1 end exponent right parenthesis space plus space left parenthesis 36.8 space JK to the power of negative 1 end exponent space mol to the power of negative 1 end exponent right parenthesis thin space left parenthesis negative 10 straight K right parenthesis

equals space 753 space straight J space mol to the power of negative 1 end exponent space minus space 6.03 space kJ space mol to the power of negative 1 end exponent space minus space 0.368 space kJ space mol to the power of negative 1 end exponent
space equals space minus 5.645 space kJ space mol to the power of negative 1 end exponent
    Question 173
    CBSEENCH11006170

    Heat capacity at constant pressure is greater than heat capacity at constant volume. Why? 

    Solution
    At constant volume when the heat is added to a system, no work is done by the system. Thus the heat added to the system is used up completely to increase the internal energy of the system. Again if pressure is kept constant, during the addition of heat to a system, then heat absorbed also does some work for expansion in addition to the increase in internal energy. Thus if at constant pressure, the temperature of the system is to be raised through the same value as the constant volume, then some extra heat is required for doing the work of expansion. Hence Cp > Cv.
    Question 174
    CBSEENCH11006171

    Derive a relationship between Cand Cv for an ideal gas.

    Solution
    Heat (q) at constant volume is given as
                    straight q subscript straight v space equals space straight C subscript straight v increment straight T space equals space increment straight U
    Heat (q) at constant pressure is given as
                        straight q subscript straight p space equals space straight C subscript straight p increment straight T space equals space increment straight H
    But          
     H = U + PV
     and PV = RT [for one mole of an ideal gas]
     therefore space space space space straight H space equals space straight U space plus space RT
therefore space space increment straight H space equals space increment straight U space plus space increment left parenthesis RT right parenthesis
or space space space space space increment straight H space equals space increment straight U space plus space straight R increment straight T
or space space increment straight H space minus space increment straight U space equals space straight R increment straight T space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis

    Substituting the values of ∆H and ∆U in eq. (1), we get,
    Cp∆T – Cv ∆T = R∆T or Cp – Cv = R (for one mole of an ideal gas)
    Thus Cp is greater than Cv by the gas constant R i.e. approximately 2 calories or 8.314 Joules.

    Question 175
    CBSEENCH11006172

    Define the terms:
    (i) Chemical energetics
    (ii) Thermochemistry.

    Solution
    (i) Chemical energetics: It is the branch of chemistry that deals with energy changes during various physical processes and chemical reactions. These energy changes may be in the form of heat, light, electricity or mechanical work.
    For example:
    (a) Heat energy is liberated when carbon burns in air together with a glow of light.
    straight C left parenthesis straight s right parenthesis space plus space straight O subscript 2 left parenthesis straight g right parenthesis space rightwards arrow space space space CO subscript 2 left parenthesis straight g right parenthesis space plus space Heat
    (b) Magnesium ribbon when burnt in air produce mainly light energy.
    2 Mg left parenthesis straight g right parenthesis space plus space straight O subscript 2 left parenthesis straight g right parenthesis space space rightwards arrow space space 2 MgO left parenthesis straight s right parenthesis space plus space Ligh space energy
    (c) The redox reaction between Zn and CuSOcarried out indirectly in Daniel cell produces electrical energy.
    Zn left parenthesis straight s right parenthesis space plus space CuSO subscript 4 left parenthesis aq right parenthesis space space rightwards arrow space space ZnSO subscript 4 left parenthesis aq right parenthesis space plus space Cu left parenthesis straight s right parenthesis space plus space Electrical space energy.
    (ii) Thermochemistry: It is the branch of chemistry that deals with the heat changes accompanying chemical reactions.
    Question 176
    CBSEENCH11006173

    Why is there energy change in chemical reactions?

    Solution

    Whenever a chemical reaction occurs, some bonds present  between atoms of reacting molecules are rearranged to form products. Energy is required to break bonds while it is released during bond formation. Thus during the rearrangement of bonds in reactants and products, sometimes energy is released and sometimes it is absorbed. Therefore, there is an energy change in chemical reactions.

    Question 177
    CBSEENCH11006174

    What do you understand by exothermic and endothermic reactions? Give two examples of each.

    Solution
    (i) Exothermic reactions: Reactions which are accompanied by the evolution of heat energy and have a negative value of ∆H are known as exothermic reactions.e.g.
    left parenthesis straight i right parenthesis space straight C left parenthesis straight s right parenthesis space plus space straight O subscript 2 left parenthesis straight g right parenthesis space rightwards arrow space CO subscript 2 left parenthesis straight g right parenthesis plus space 393.5 space kJ
or space space space space straight C left parenthesis straight s right parenthesis space plus space straight O subscript 2 left parenthesis straight g right parenthesis space space space rightwards arrow space space CO subscript 2 left parenthesis straight g right parenthesis semicolon
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space increment straight H space equals space minus 393.5 space kJ
left parenthesis ii right parenthesis space straight N subscript 2 left parenthesis straight g right parenthesis space plus space 3 straight H subscript 2 left parenthesis straight g right parenthesis space space rightwards arrow space space space 2 NH subscript 3 left parenthesis straight g right parenthesis semicolon
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space increment straight H equals space minus 92.3 space kJ space space space space space space space space space space space space space space space space space space space space
    A negative value of ∆H for exothermic reactions: Heat evolved is equal to the enthalpy change when the reaction is carried out at constant pressure. For an exothermic reaction, there is an evolution of heat energy and hence enthalpy for the products (Hp) will become less than the enthalpy of the reactants (HR).
           increment straight H space equals space straight H subscript straight P space minus space straight H subscript straight R
because space space space space space space straight H subscript straight p space less than thin space straight H subscript straight R space space space space space left square bracket For space exothermic space reaction right square bracket
therefore space space space space space space increment straight H space equals space minus ve.
    (ii) Endothermic reactions: Reactions which are accompanied by absorption of heat energy and have positive value of ∆H are known as endothermic reactions e.g.

    <pre>uncaught exception: <b>Http Error #404</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php line 61<br />#0 [internal function]: com_wiris_plugin_impl_HttpImpl_0(Object(com_wiris_plugin_impl_HttpImpl), NULL, 'http://www.wiri...', 'Http Error #404')
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('com_wiris_plugi...', Array)
#2 [internal function]: _hx_lambda->execute('Http Error #404')
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(532): call_user_func_array(Array, Array)
#4 [internal function]: haxe_Http_5(true, Object(com_wiris_plugin_impl_HttpImpl), Object(com_wiris_plugin_impl_HttpImpl), Array, Object(haxe_io_BytesOutput), true, 'Http Error #404')
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('haxe_Http_5', Array)
#6 [internal function]: _hx_lambda->execute('Http Error #404')
#7 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(27): call_user_func_array(Array, Array)
#8 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(444): com_wiris_plugin_impl_HttpImpl->onError('Http Error #404')
#9 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(458): haxe_Http->customRequest(true, Object(haxe_io_BytesOutput), NULL, NULL)
#10 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(40): haxe_Http->request(true)
#11 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(80): com_wiris_plugin_impl_HttpImpl->request(true)
#12 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#13 {main}</pre>
    A positive value of ∆H for endothermic reactions: Heat absorbed is equal to the enthalpy change when the reaction is carried out at constant pressure. For an endothermic reaction, there is an absorption of heat energy and hence enthalpy of the products (Hp) will become more than the enthalpy of the reactants (HR).
                          increment straight H space equals space straight H subscript straight P space minus space straight H subscript straight R
    because space space space space straight H subscript straight P space greater than space straight H subscript straight R space left square bracket For space endothermic space reaction right square bracket
therefore space space space space space increment straight H space plus ve
                        
                    
    Question 178
    CBSEENCH11006175

    Comment on:
    (i) ∆U is –ve for exothermic reactions and
    (ii) ∆U is +ve for endothermic reactions.

    Solution
    ∆U is –ve for exothermic reactions: Heat evolved is equal to the internal energy change when the reaction is carried out at constant volume and constant temperature. For an exothermic reaction, there is an evolution of heat energy and hence the internal energy of products (Up) will become less than the internal energy of the reactants (UR).
     increment straight U space equals space straight U subscript straight P space minus space straight U subscript straight R
because space space space straight U subscript straight P space less than space straight U subscript straight R space space space space space space left square bracket for space exothermic space reaction right square bracket
therefore space space space space increment straight U space equals space minus ve       
     
    For example,
        2 NO left parenthesis straight g right parenthesis space plus space straight O subscript 2 left parenthesis straight g right parenthesis space space rightwards arrow space space space 2 NO subscript 2 left parenthesis straight g right parenthesis space plus space 113 space kJ
or space space 2 NO left parenthesis straight g right parenthesis space plus space straight O subscript 2 left parenthesis straight g right parenthesis space rightwards arrow space space 2 NO subscript 2 left parenthesis straight g right parenthesis semicolon space space
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space increment straight U space equals space minus 113 space kJ
            
    ∆U is +ve for endothermic reactions : Heat absorbed is equal to internal energy, when the reaction is carried out at constant volume and constant temperature. For endothermic reaction, there is an absorption of heat energy and hence internal energy of the product (UP) will become more than the internal energy of the reactant (UR)
    increment straight U space equals space straight U subscript straight P space minus space straight U subscript straight R
    space because space space space space straight U subscript straight p space greater than space straight U subscript straight R space space space left square bracket For space endothermic space reaction right square bracket
space therefore space space space space space space increment straight U space equals space plus ve
    For example,
                 space straight N subscript 2 left parenthesis straight g right parenthesis space plus space straight O subscript 2 left parenthesis straight g right parenthesis space space space rightwards arrow space space space space 2 NO left parenthesis straight g right parenthesis space space minus space 180.5 space kJ
or space space space straight N subscript 2 left parenthesis straight g right parenthesis space plus space straight O subscript 2 left parenthesis straight g right parenthesis space space rightwards arrow space space space 2 NO space left parenthesis straight g right parenthesis semicolon space space
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space increment straight U space equals space plus 180.5 space kJ space space space space space space space space space space space space space space space space space space space space space space space
    Question 179
    CBSEENCH11006176

    Give the points of difference between exothermic reactions and enodthermic reactions.

    Solution
    Exothermic reactions Endothermic reactions
    1. In such reactions, heat is evolved 1. In such reactions, heat is absorbed.
    2. ∆H has –ve value. 2. ∆H has a +ve value.
    3. ∆U has a –ve value. 3. ∆U has a +ve value.
    Question 180
    CBSEENCH11006177

    What do you mean by the thermochemical equation? How does it differ from the ordinary equation?

    Solution
    A chemical equation which gives the physical states of both reactants and products along with the amount of heat evolved or absorbed during the process is called thermochemical equation. If heat is evolved during a process, then ∆H (enthalpy change) has a negative value for the process. If heat is absorbed during a process, then ∆H has a positive value for the process. For example
    space left parenthesis straight i right parenthesis space straight C left parenthesis straight s right parenthesis space plus space straight O subscript 2 left parenthesis straight g right parenthesis space rightwards arrow space space space CO subscript 2 left parenthesis straight g right parenthesis semicolon space
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space increment straight H space equals space minus 393.5 space kJ
left parenthesis ii right parenthesis space CH subscript 4 left parenthesis straight g right parenthesis space plus space 2 straight O subscript 2 left parenthesis straight g right parenthesis space space rightwards arrow space CO subscript 2 left parenthesis straight g right parenthesis space plus space 2 straight H subscript 2 straight O left parenthesis straight l right parenthesis semicolon
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space increment straight H space equals space minus 890.3 space kJ
   
    Both (i) and (ii) are thermochemical equations In ordinary equation, the value of ∆H is no mentioned i.e.
    CH subscript 4 left parenthesis straight g right parenthesis space plus space 2 straight O subscript 2 left parenthesis straight g right parenthesis space space rightwards arrow space stack CO subscript 2 left parenthesis straight g right parenthesis space plus space 2 straight H subscript 2 straight O left parenthesis straight l right parenthesis with left parenthesis ordinary space equation right parenthesis below
    Question 181
    CBSEENCH11006178

    Explain the origin of enthalpy change in a direction. interest

    Solution

    During the reformation of chemical bonds, when the energy required to break bonds is less than the energy released in the formation of new bonds, the chemical reaction would be exothermic i.e. heat would be evolved. e.g.
              CH subscript 4 left parenthesis straight g right parenthesis space plus space 2 straight O subscript 2 left parenthesis straight g right parenthesis space rightwards arrow space CO subscript 2 left parenthesis straight g right parenthesis space plus space 2 straight H subscript 2 straight O space left parenthesis straight l right parenthesis semicolon
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space increment straight H space equals space minus 890.3 space kJ space space space space space space space space space space space space space space space space space space space space
    Similarly, when the energy required to break bonds is more than the energy released in the formation of new bonds for products, a chemical reaction would be endothermic and ∆H would be positive. For example,
     straight N subscript 2 left parenthesis straight g right parenthesis space plus space straight O subscript 2 left parenthesis straight g right parenthesis space rightwards arrow space space 2 NO left parenthesis straight g right parenthesis semicolon space space increment straight H space equals space plus 180.5 space kJ
    In gaseous phase, the enthalpy change (∆H) of a chemical reaction can be written as
    bold increment bold H bold space bold equals bold space bold Energy bold space bold reqd bold. bold space bold to bold space bold break bold space bold bonds bold space bold of bold space bold reactants
bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold minus bold left square bracket bold Energy bold space bold released bold space bold to bold space bold form bold space bold new bold space bold bonds bold space bold of bold space bold products bold right square bracket
bold space bold space bold H subscript bold 2 bold left parenthesis bold g bold right parenthesis bold plus bold Cl subscript bold 2 bold left parenthesis bold g bold right parenthesis bold space bold rightwards arrow bold space bold 2 bold HCl bold space bold left parenthesis bold g bold right parenthesis bold semicolon bold space bold increment bold H bold space bold equals bold space bold minus bold 185 bold space bold kJ
bold or bold space bold space bold space bold space bold space bold H bold space bold minus bold space bold H bold left parenthesis bold g bold right parenthesis bold space bold space bold plus bold space bold Cl bold space bold minus bold Cl bold left parenthesis bold g bold right parenthesis bold space bold rightwards arrow bold space bold space bold 2 bold HCl bold space bold left parenthesis bold g bold right parenthesis bold semicolon bold space
bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold increment bold H bold equals bold minus bold 185 bold space bold kJ
    therefore space
space minus 185 space kJ space equals space left square bracket Energy space required space to space break space left parenthesis straight H space minus space straight H right parenthesis
space and space Cl space minus space Cl space bonds right square bracket space minus open square brackets 2 space cross times space Energy space released space to space form space straight H minus Cl space bond close square brackets

    Question 182
    CBSEENCH11006179

    What do you mean by enthalpy (heat) of reaction? Name the factors that influence the enthalpy of reaction.

    Solution
    The total amount of heat energy evolved or absorbed when the number of moles of reactants reacts completely to give the products as given in the balanced chemical equation is known as heat of the reaction. Since most of the reaction takes place at constant pressure, therefore, enthalpy change (∆H) is the heat of the reaction. For example,
    space straight C left parenthesis straight s right parenthesis space plus space straight O subscript 2 left parenthesis straight g right parenthesis space rightwards arrow space CO subscript 2 left parenthesis straight g right parenthesis semicolon space space increment straight H space equals space minus 393.5 space kJ
    Thus heat of the reaction is -393.5 kJ
    At constant volume, ∆H= ∆U, therefore, internal energy change (∆U) is the heat of the reaction at constant volume. Hence heat of the reaction is expressed in two ways:
    (i) Heat reaction is constant pressure (∆H).
    (ii) The heat of reaction at constant volume (∆U).
    Both these values are related by the equation
    increment straight H space equals space increment straight U space plus space increment straight n subscript straight g RT
    Factors affecting the enthalpy of a reaction:
    (i) Temperature
    (ii) Physical state of reactants and products
    (iii) Allotropic forms of elements
    (iv) Pressure and volume.
    Question 183
    CBSEENCH11006180

    What is standard enthalpy change (∆rH0) of a reaction?

    Solution

    It should be noted that the magnitude of ∆H for a reaction varies with the temperature and therefore for comparison, the values of ∆H for various reactions are expressed at the standard state. A substance is said to be in the standard state when it is present in its most stable state generally at 298K and under I bar pressure.
    The standard enthalpy of a reaction is the enthalpy change for a reaction when all the participating substances (elements and compounds) are in their standard states (i.e. at 298K and 1 bar pressure). It is denoted by ∆r H0. For example
    straight N subscript 2 left parenthesis straight g right parenthesis space plus space 3 straight H subscript 2 left parenthesis straight g right parenthesis space space space rightwards arrow space space 2 NH subscript 3 left parenthesis straight g right parenthesis semicolon space space
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space increment subscript straight r straight H to the power of 0 space equals space 91.8 space kJ space mol to the power of negative 1 end exponent

    Question 184
    CBSEENCH11006181

    What do you mean by enthalpy (heat) of combustion? Give three examples.

    Solution
    It is the enthalpy change accompanying the complete combustion of one mole of a substance in excess of oxygen or air e.g.
    (i) Combustion of carbon:
    <pre>uncaught exception: <b>Http Error #404</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php line 61<br />#0 [internal function]: com_wiris_plugin_impl_HttpImpl_0(Object(com_wiris_plugin_impl_HttpImpl), NULL, 'http://www.wiri...', 'Http Error #404')
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('com_wiris_plugi...', Array)
#2 [internal function]: _hx_lambda->execute('Http Error #404')
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(532): call_user_func_array(Array, Array)
#4 [internal function]: haxe_Http_5(true, Object(com_wiris_plugin_impl_HttpImpl), Object(com_wiris_plugin_impl_HttpImpl), Array, Object(haxe_io_BytesOutput), true, 'Http Error #404')
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('haxe_Http_5', Array)
#6 [internal function]: _hx_lambda->execute('Http Error #404')
#7 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(27): call_user_func_array(Array, Array)
#8 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(444): com_wiris_plugin_impl_HttpImpl->onError('Http Error #404')
#9 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(458): haxe_Http->customRequest(true, Object(haxe_io_BytesOutput), NULL, NULL)
#10 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(40): haxe_Http->request(true)
#11 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(80): com_wiris_plugin_impl_HttpImpl->request(true)
#12 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#13 {main}</pre>
    (ii) Combustion of methane:
       CH subscript 4 left parenthesis straight g right parenthesis space plus space 2 straight O subscript 2 left parenthesis straight g right parenthesis space space space rightwards arrow space CO subscript 2 left parenthesis straight g right parenthesis space plus space 2 straight H subscript 2 straight O left parenthesis l right parenthesis semicolon
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space increment straight H space equals space minus 890.3 space kJ
    (iii) Combustion of ethyl alcohol:
            straight C subscript 2 straight H subscript 5 OH left parenthesis straight l right parenthesis space plus space 3 straight O subscript 2 left parenthesis straight g right parenthesis space space rightwards arrow space space space 2 CO subscript 2 left parenthesis straight g right parenthesis space plus space 3 straight H subscript 2 straight O left parenthesis straight l right parenthesis semicolon
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space increment straight H space equals negative 1367.4 space kJ
    Question 185
    CBSEENCH11006182

    What do you mean by the standard enthalpy of combustion?

    Solution
    Standard enthalpy of combustion is defined as the enthalpy per mole of the substance, all the reactants and products being in their standard states i.e. at 298K and 1 bar pressure. It is denoted by ∆CH°.
    (i) Combustion of butane:
    straight C subscript 4 straight H subscript 10 left parenthesis straight g right parenthesis space plus space 13 over 2 straight O subscript 2 left parenthesis straight g right parenthesis space space rightwards arrow space space 4 CO subscript 2 left parenthesis straight g right parenthesis space plus space 6 straight H subscript 2 straight O left parenthesis straight l right parenthesis semicolon
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space increment subscript straight c straight H to the power of 0 space equals space minus 2658.0 space kJ space mol to the power of negative 1 end exponent space space space space space space space space space space space space space space space space space space space space space space space space
    (ii) Combustion of glucose:
         space straight C subscript 6 straight H subscript 12 straight O subscript 6 left parenthesis straight s right parenthesis space plus 6 straight O subscript 2 left parenthesis straight g right parenthesis space rightwards arrow space space 6 CO subscript 2 left parenthesis straight g right parenthesis space plus space 6 straight H subscript 2 straight O left parenthesis straight l right parenthesis semicolon
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space increment subscript straight c straight H to the power of 0 space equals space minus 2802 space kJ space mol to the power of negative 1 end exponent space space space space space space space space space space space space
    Question 186
    CBSEENCH11006183

    Combustion of glucose is according to the following reaction:
    straight C subscript 6 straight H subscript 12 straight O subscript 6 left parenthesis straight s right parenthesis space plus space 6 straight O subscript 2 left parenthesis straight g right parenthesis space rightwards arrow space space 6 CO subscript 2 left parenthesis straight g right parenthesis space plus space 6 straight H subscript 2 straight O left parenthesis straight g right parenthesis semicolon
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space increment straight H space equals space minus 250 space kJ
    How much heat energy is needed for the formation of 1.8g of glucose?

    Solution
    The formation of glucose can be represented by reversing the reaction.
    6 CO subscript 2 left parenthesis straight g right parenthesis space plus space 6 straight H subscript 2 straight O left parenthesis straight g right parenthesis space space rightwards arrow space space straight C subscript 6 straight H subscript 12 straight O subscript 6 left parenthesis straight s right parenthesis space plus space 6 straight O subscript 2 left parenthesis straight g right parenthesis semicolon
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space increment straight H space space equals space 250 space kJ space space space
    Gram molecular mass of straight C subscript 6 straight H subscript 12 straight O subscript 6
                                = 12 x 6 + 12 x 1 + 6 x 16
                                = 180 g
    Heat energy needed to form 180 g of glucose = 250 kJ
    Heat energy needed to form 1.8 g of glucose 
    equals space 250 over 180 cross times 1.8 space equals space 2.5 space kJ
    Question 187
    CBSEENCH11006184
    Question 188
    CBSEENCH11006185

    What will be the amount of heat evolved when 39 gm of C6H6(l) are burnt? Given that:
    straight C subscript 6 straight H subscript 6 left parenthesis straight l right parenthesis space plus space 15 over 2 straight O subscript 2 left parenthesis straight g right parenthesis space space rightwards arrow space space 3 straight H subscript 2 straight O left parenthesis straight l right parenthesis space plus space 6 CO subscript 2 left parenthesis straight g right parenthesis semicolon
increment straight H space equals space minus 3264.6 space kJ space mol to the power of negative 1 end exponent

    Solution
    The given thermochemical equation is
      straight C subscript 6 straight H subscript 6 left parenthesis straight l right parenthesis space plus space 15 over 2 straight O subscript 2 left parenthesis straight g right parenthesis space space rightwards arrow space space 3 straight H subscript 2 straight O left parenthesis straight l right parenthesis space plus space 6 CO subscript 2 left parenthesis straight g right parenthesis semicolon
increment straight H space equals space minus 3264.6 space kJ space mol to the power of negative 1 end exponent
    Gram molecular mass of straight C subscript 6 straight H subscript 6
                                     space equals space 6 cross times 12 plus 6 cross times 1 space equals space 78 space straight g
    Heat evolved by burning 78g of straight C subscript 6 straight H subscript 6 left parenthesis l right parenthesis
                                           = 3264.6 k J
    Heat evolved by burning 39 g straight C subscript 6 straight H subscript 6 left parenthesis straight l right parenthesis space would be = 
    fraction numerator 3264.6 space over denominator 78 end fraction cross times 39 space equals space 1632.3 space kJ
                   
    Question 189
    CBSEENCH11006186

    How much heat is evolved when 204g of ammonia are produced according to the equation,

    space straight N subscript 2 left parenthesis straight g right parenthesis space plus space 3 straight H subscript 2 left parenthesis straight g right parenthesis space rightwards arrow space space 2 NH subscript 3 left parenthesis straight g right parenthesis semicolon
space increment straight H space equals space 92.6 space kJ 

    Solution

    2 mol i.e. 34 g of NH3 produced are accompanied by the evolution of 92.6 kJ of heat.
    So, 204 g of NH3 produced would be accompanied by evolution of
    equals space fraction numerator 92.6 over denominator 34 end fraction cross times 204 space equals space 555.6 space kJ space heat

    Question 190
    CBSEENCH11006187

    Explain:
    (i) Enthalpy (heat) of the formation.

    (ii) Standard enthalpy of formation. How is it helpful in calculating the enthalpy of a reaction?

    Solution
    Enthalpy of formation: It is the enthalpy (heat) change accompanying the formation of one mole of a compound from its elements. It is denoted by ∆He.g.
    left parenthesis straight i right parenthesis space Enthalpy space of space formation space of space CO subscript 2 colon
straight C left parenthesis straight s right parenthesis space plus space straight O subscript 2 left parenthesis straight g right parenthesis space rightwards arrow space space space space CO subscript 2 left parenthesis straight g right parenthesis semicolon
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space increment straight H subscript straight f left parenthesis CO subscript 2 right parenthesis space equals space minus 393.5 space kJ
left parenthesis ii right parenthesis space Enthalpy space of space formation space of space methane colon
straight C left parenthesis straight s right parenthesis plus 2 straight H subscript 2 left parenthesis straight g right parenthesis space rightwards arrow space space CH subscript 4 left parenthesis straight g right parenthesis semicolon
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space increment straight H subscript straight f left parenthesis CH subscript 4 right parenthesis space equals space minus 74.8 space kJ
    <pre>uncaught exception: <b>Http Error #404</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php line 61<br />#0 [internal function]: com_wiris_plugin_impl_HttpImpl_0(Object(com_wiris_plugin_impl_HttpImpl), NULL, 'http://www.wiri...', 'Http Error #404')
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('com_wiris_plugi...', Array)
#2 [internal function]: _hx_lambda->execute('Http Error #404')
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(532): call_user_func_array(Array, Array)
#4 [internal function]: haxe_Http_5(true, Object(com_wiris_plugin_impl_HttpImpl), Object(com_wiris_plugin_impl_HttpImpl), Array, Object(haxe_io_BytesOutput), true, 'Http Error #404')
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('haxe_Http_5', Array)
#6 [internal function]: _hx_lambda->execute('Http Error #404')
#7 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(27): call_user_func_array(Array, Array)
#8 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(444): com_wiris_plugin_impl_HttpImpl->onError('Http Error #404')
#9 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(458): haxe_Http->customRequest(true, Object(haxe_io_BytesOutput), NULL, NULL)
#10 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(40): haxe_Http->request(true)
#11 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(80): com_wiris_plugin_impl_HttpImpl->request(true)
#12 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#13 {main}</pre>
    Hence enthalpy of formation of water i.e. ∆H(H2O) = –285.9 kJ
    Standard enthalpy of formation: When all the species of the chemical reaction are in their standard states, the enthalpy of formation is called standard enthalpy of formation. It is denoted by ∆fH°. Standard enthalpy of formation of a compound is defined as the enthalpy change accompanying the formation of one mole of a compound from its constituent elements, all the substances being in their standard states (1 bar pressure and 298 K). For example
    straight C left parenthesis straight s right parenthesis space plus space straight O subscript 2 left parenthesis straight g right parenthesis space space rightwards arrow space space CO subscript 2 left parenthesis straight g right parenthesis semicolon space
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space increment subscript straight f straight H to the power of 0 left parenthesis CO subscript 2 right parenthesis space equals space minus 393.5 space kJ
    It should be noted that standard enthalpies of elementary substances are taken to be zero.
    Calculation of enthalpy of reaction (∆H): By knowing the standard enthalpies of formation of various substances, we can calculate the standard enthalpy change of any reaction.
    Standard enthalpy change of reaction = [Standard enthalpies of formation of all products]
                                                                 - [Standard enthalpies of formation of all reactants]
       i.e.     increment subscript straight r straight H to the power of 0 space equals space sum from blank to blank of increment subscript straight f straight H to the power of 0 left parenthesis Products right parenthesis space minus space stack sum from blank to blank of increment subscript straight f straight H to the power of 0 with left parenthesis reactants right parenthesis below
    Question 191
    CBSEENCH11006188

    Given:
    straight N subscript 2 left parenthesis straight g right parenthesis space plus space 3 straight H subscript 2 left parenthesis straight g right parenthesis space rightwards arrow space space 2 NH subscript 3 left parenthesis straight g right parenthesis semicolon
space space space space space space space space space space space space space space space space space space increment subscript straight r straight H to the power of 0 space equals space minus 92.4 space kJ space mol to the power of negative 1 end exponent
    What is the standard enthalpy of formation of NH3 gas?

    Solution

    The enthalpy of formation of ammonia is the enthalpy change for the formation of 1 mole of ammonia from its elements.
    Given that enthalpy of formation for 2 moles of NH3 = –92.4 kJ
    Therefore, standard enthalpy of formation for

    Hence standard enthalpy of formation for NH3
      straight i. straight e. space space space space increment subscript straight f straight H to the power of 0 ? left parenthesis NH subscript 3 right parenthesis space equals space minus 46.2 space kJ

    Question 192
    CBSEENCH11006189

    Calculate the heat of reaction 
    CH subscript 4 left parenthesis straight g right parenthesis space plus space 4 Cl subscript 2 left parenthesis straight g right parenthesis space rightwards arrow space space space space CCl subscript 4 left parenthesis straight g right parenthesis space plus space 4 HCl left parenthesis straight g right parenthesis if the heats of formation of CH subscript 4 left parenthesis straight g right parenthesis comma space Cl subscript 2 left parenthesis straight g right parenthesis comma space CCl subscript 4 left parenthesis straight g right parenthesis space and space HCl left parenthesis straight g right parenthesis space are comma space
space space minus 74.9 comma space space 0.0 comma space space minus 139.0 space and space minus 92.3 space kJ space mol to the power of negative 1 end exponent respectively.

    Solution

    Heat of reaction
                increment subscript straight r straight H degree space equals space sum from blank to blank of increment subscript straight f straight H to the power of 0 left parenthesis Products right parenthesis space minus space sum from blank to blank of increment subscript straight f straight H to the power of 0 space left parenthesis Reactants right parenthesis space space space space space space space space
                           equals space open square brackets increment to the power of 0 subscript straight f left parenthesis CCl subscript 4 right parenthesis space plus space 4 increment subscript straight f straight H to the power of 0 left parenthesis HCl right parenthesis close square brackets
space space space space space minus space open square brackets increment subscript straight f straight H to the power of 0 left parenthesis CH subscript 4 right parenthesis space plus space increment subscript straight f straight H to the power of 0 left parenthesis Cl subscript 2 right parenthesis close square brackets
space equals space open square brackets negative 139.0 space plus space 4 left parenthesis negative 92.3 right parenthesis close square brackets space open square brackets negative 74.9 space plus 4 space cross times left parenthesis 0.0 right parenthesis close square brackets
space equals space minus 139.0 space minus 369.2 space plus 74.9 space equals space minus 508.2 space plus 74.9
space space equals space minus 433.3 space kJ

    Question 193
    CBSEENCH11006190
    Question 197
    CBSEENCH11006194

    Define enthalpy of neutralization.

    Solution
    Neutralisation enthalpy is the enthalpy change per mole of H2O that is formed on neutralisation of an acid with a base.
    (i) Neutralisation enthalpy of HCl and NaOH is -57.1 kJ
       HCl left parenthesis aq right parenthesis space plus space NaOH left parenthesis aq right parenthesis space space space rightwards arrow space space space NaCl left parenthesis aq right parenthesis space plus space straight H subscript 2 straight O space left parenthesis straight l right parenthesis
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space increment subscript straight n straight H to the power of 0 space equals space minus 57.1 space kJ
    (ii) Neutralisation enthalpy of CH subscript 3 COOH and NaOH is  -55.2 kJ
                                   stack CH subscript 3 COOH left parenthesis aq right parenthesis with Acetic space acid below space plus NaOH left parenthesis aq right parenthesis rightwards arrow CH subscript 3 COONa left parenthesis aq right parenthesis plus straight H subscript 2 straight O left parenthesis straight l right parenthesis
space increment subscript straight n straight H to the power of 0 space equals space minus 55.2 space kJ
    Question 198
    CBSEENCH11006195

    Explain why enthalpy of neutralization of a strong acid and strong base remains the same and the value changes if one of them is weak.

    Solution

    Enthalpy of neutralisation for a strong acid and a strong base is always constant: This is because in dilute solution all strong acids and strong bases are completely ionised. The neutralisation of a strong acid and strong base simply involves the combination of H+ions (from acid) and OH ions (from base) to form unionised water molecules with the evolution of 57.1 kJ heat.
    stack straight H to the power of plus left parenthesis aq right parenthesis with From space acid below space plus space stack OH to the power of minus left parenthesis aq right parenthesis with From space base below space rightwards arrow stack straight H subscript 2 straight O left parenthesis straight l right parenthesis semicolon space with increment subscript straight n straight H to the power of 0 space equals space minus 57.1 space kJ below
    Since the same reaction takes place during neutralisation of all strong acids and strong bases, the value of enthalpy of neutralisation is constant.
    The neutralisation of HCl and NaOH can be represented as:
    straight H to the power of plus left parenthesis aq right parenthesis plus Cl to the power of minus left parenthesis aq right parenthesis plus Na to the power of plus left parenthesis aq right parenthesis plus OH to the power of minus left parenthesis aq right parenthesis
space space space space space space space space space space space space space space space space space space space space space space rightwards arrow space Na to the power of plus plus Cl to the power of minus left parenthesis aq right parenthesis plus straight H subscript 2 straight O left parenthesis straight l right parenthesis
                                                                            increment subscript straight n straight H to the power of 0 space equals space minus 57.1 space kJ
    Cancelling the common ions,
    straight H to the power of plus left parenthesis aq right parenthesis space plus space OH to the power of minus left parenthesis aq right parenthesis rightwards arrow space straight H subscript 2 straight O left parenthesis straight l right parenthesis semicolon space

increment subscript straight n straight H to the power of 0 space equals space minus 57.1 space kJ

    Enthalpy of neutralisation if either acid or base is weak : If one of the acid or bases is weak, then its ionisation is not complete in solution. Therefore, a part of the energy liberated is utilised for the ionisation of a weak acid (or base). Consequently, the value of enthalpy of neutralisation of the weak acid-strong base or strong acid-weak base is numerically less than 57.1 kJ. For example, neutralisation of acetic acid and sodium hydroxide can be represented as:
    CH subscript 3 COOH space rightwards harpoon over leftwards harpoon space CH subscript 3 COO to the power of minus space plus space straight H to the power of plus semicolon
space increment subscript straight i straight H to the power of 0 space equals space 1.9 space kJ

straight H to the power of plus plus space Na to the power of plus space plus space OH to the power of minus space space space rightwards arrow space space space space Na to the power of plus space plus space straight H subscript 2 straight O semicolon
space increment subscript straight n straight H to the power of 0 space equals space minus 57.1 space kJ
    CH subscript 3 COOH space plus space Na to the power of plus space plus space OH to the power of minus space space space rightwards arrow space CH subscript 3 COO to the power of minus plus space Na to the power of plus space plus space straight H subscript 2 straight O
semicolon space increment straight H space equals space minus 55.2 space kJ
    Thus, enthalpy of neutralisation of acetic acid and sodium hydroxide is –55.2 kJ.
    Similarly, in the neutralisation of NH4OH and HCl, 5.6 kJ of heat is used up for the dissociation of weak base i.e. NH4OH. Hence enthalpy of neutralisation, in this case, is –57.1 + 5.6 = –51.5 kJ.

    Question 199
    CBSEENCH11006196

    Explain the following:
    (i) Enthalpy of fusion
    (ii) Enthalpy of vaporization
    (iii) Enthalpy of sublimation.

    Solution
    (i) Enthalpy of fusion: It is the enthalpy change accompanying the conversion of one mole of a solid substance into the liquid state at its melting point. For example, when one mole of ice changes into the water at its melting point (273 K), 6.0 kJ of heat is absorbed (endothermic change).
    stack straight H subscript 2 straight O left parenthesis straight s right parenthesis with ice below space space space space rightwards arrow space space space space space stack straight H subscript 2 straight O left parenthesis l right parenthesis with water below space semicolon space increment subscript fus straight H to the power of 0 space equals space plus 6.0 space kJ
    (ii) Enthalpy of vaporisation: It is the enthalpy change accompanying the conversion of one mole of liquid into its vapours (gas) at its boiling point. For example, when one mole of water is converted into steam (gas) at 373 K, the enthalpy change accompanying the process is 40.6 kJ.
    <pre>uncaught exception: <b>Http Error #404</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php line 61<br />#0 [internal function]: com_wiris_plugin_impl_HttpImpl_0(Object(com_wiris_plugin_impl_HttpImpl), NULL, 'http://www.wiri...', 'Http Error #404')
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('com_wiris_plugi...', Array)
#2 [internal function]: _hx_lambda->execute('Http Error #404')
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(532): call_user_func_array(Array, Array)
#4 [internal function]: haxe_Http_5(true, Object(com_wiris_plugin_impl_HttpImpl), Object(com_wiris_plugin_impl_HttpImpl), Array, Object(haxe_io_BytesOutput), true, 'Http Error #404')
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('haxe_Http_5', Array)
#6 [internal function]: _hx_lambda->execute('Http Error #404')
#7 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(27): call_user_func_array(Array, Array)
#8 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(444): com_wiris_plugin_impl_HttpImpl->onError('Http Error #404')
#9 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(458): haxe_Http->customRequest(true, Object(haxe_io_BytesOutput), NULL, NULL)
#10 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(40): haxe_Http->request(true)
#11 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(80): com_wiris_plugin_impl_HttpImpl->request(true)
#12 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#13 {main}</pre>
    (iii) Enthalpy of sublimation: Sublimation is a process of direct conversion of solid into its vapours below its melting point. It is the enthalpy change accompanying the conversion of 1 mole of a solid directly into a gaseous state at the temperature below its melting point. For example; when 1 mole of iodine sublimes, the enthalpy change accompanying the process is +62.4 kJ.
    straight I subscript 2 left parenthesis straight s right parenthesis space space rightwards arrow space space space straight I subscript 2 left parenthesis straight g right parenthesis semicolon space space increment subscript sub straight H to the power of 0 space equals space plus 62.4 space kJ
    The enthalpy of sublimation of a solid is equal to the sum of enthalpy of fusion and enthalpy of vaporisation.
    increment subscript sub straight H to the power of 0 space equals space increment subscript fus straight H to the power of 0 space plus space space increment subscript vap straight H to the power of 0
    Question 200
    CBSEENCH11006197

    Differentiate between change of state and phase change.

    Solution
    A change of state of a system means when any one or more of variables such as temperature, pressure, volume and composition undergo a change.
    Phase change of a substance means when the substance changes from solid to liquid or liquid to vapour or solid to vapour etc.

    Question 202
    CBSEENCH11006199
    Question 203
    CBSEENCH11006200

    When 1 gm of liquid naphthalene (C10H8) solidifies, 49 joules of heat is evolved. Calculate the enthalpy of fusion of naphthalene.

    Solution
    Gram molecular mass of naphthalene (C10H8) = 10 x 12 + 8 x 1 = 128 g
    Heat evolved in the solidification of 1 g of naphthalene = 149 J
    Heat evolved in the solidification of 128g of naphthalene =149 x 128 
                                                                                             = 19072 J
                                                                                             = 19.072 kJ
     therefore space space Enthalpy space of space solidification space left parenthesis increment straight H right parenthesis space equals space minus 19.072 space kJ
therefore space space space Enthalpy space of space fusion space open parentheses increment subscript fus straight H to the power of 0 close parentheses space equals space plus 19.072 space kJ
    Question 204
    CBSEENCH11006201

    How many grams of methane and volume of oxygen at N.T.P. would be required to produce 445.15 kJ of heat in the following reaction?

    CH subscript 4 left parenthesis straight g right parenthesis space plus space 2 straight O subscript 2 left parenthesis straight g right parenthesis space space rightwards arrow space space space space CO subscript 2 left parenthesis straight g right parenthesis space plus space 2 straight H subscript 2 straight O left parenthesis straight l right parenthesis semicolon
                                                              increment straight H space equals space minus 890.3 space k J

                                           

    Solution

    The thermochemical reaction is,
    stack CH subscript 4 left parenthesis straight g right parenthesis with stack 12 plus 4 with equals 16 space straight g below below space plus stack space 2 straight O subscript 2 left parenthesis straight g right parenthesis space with stack 2 space cross times space 22.4 with equals space 44.8 space space liltrr below below space space space rightwards arrow space space space space space stack CO subscript 2 left parenthesis straight g right parenthesis space plus space 2 straight H subscript 2 straight O space left parenthesis straight l right parenthesis with increment straight H space equals space minus 890.3 space kJ below

    Step I.
    Amount of methane required:
    890.3 kJ of heat is produced from methane = 16 g
    therefore 445.15 kJ of heat is produced from methane
                                            equals space fraction numerator 16 over denominator 890.3 end fraction cross times 456.15
equals space 8 straight g

    Step II.
    Volume of oxygen required:
    890.3 kJ heat is evolved from oxygen = 44.8 litres
    therefore 445.15 kJ of heat is evolved from oxygen
                                       equals space fraction numerator 44.8 over denominator 890.3 end fraction cross times 445.15
equals space 22.4 space litres.

    Question 205
    CBSEENCH11006202

    Discuss a method for the measurement of heat of combustion at constant volume (qv or ∆E).

    Solution
    The heat of combustion at constant volume i.e. internal energy change is measured experimentally by Bomb Calorimeter. It is made up of heavy steel (Bomb) which can stand high pressure. It is surrounded by a bigger vessel which contains water and is insulated. A thermometer and a stirrer are suspended in it. The initial temperature of the water is noted. A known weight of the compound is taken in the platinum cup. Oxygen under high pressure is introduced into the bomb. A current is passed through the filament immersed in the compound. Combustion of the compound takes place. The heat energy evolved during the chemical reaction raises the temperature of water which is carefully recorded from the thermometer. By knowing the rise in temperature and heat capacity of calorimeter, the heat of combustion at constant volume can be calculated by using the expression,
                 increment straight E space equals space straight Q space cross times space increment straight t space cross times space straight M over straight w
    where    Q = Heat capacity of the calorimeter
                increment straight t space equals Rise space in space temperature
straight w space equals space Mean space of space the space substance space taken
straight W space equals space Molecular space mass space of space the space substance
    Question 206
    CBSEENCH11006203

    Standard vaporisation enthalpy of benzene at its boiling point is 30.8 kJ mol-1 ; for how long would a 100W electric heater has to operate in order to vaporise a 100g sample of benzene at its boiling temperature?

    open square brackets Power space equals space energy over time. space 1 straight W space equals space 1 space Js to the power of negative 1 end exponent close square brackets

    Solution
    increment subscript vap straight H to the power of 0 space for space benzene space equals space plus 30.8 space kJ space mol to the power of negative 1 end exponent
Molar space mass space of space benzene space left parenthesis straight C subscript 6 straight H subscript 6 right parenthesis space equals space 78 straight g space mol to the power of negative 1 end exponent
No. space of space moles space in space 100 space straight g space of space benzene space left parenthesis straight n right parenthesis space equals space 100 over 78
Heat space supplied space left parenthesis straight q right parenthesis space equals space straight n space cross times space increment subscript vap straight H to the power of circled dash
space space space space space space space space space space space space space space space space space space space space space space space space space equals space 100 over 78 mol space cross times space left parenthesis 30.8 space kJ space mol to the power of negative 1 end exponent right parenthesis
                          = 39.487 kJ
                          = 39487 J
    Now, Power = 100 W = 100 Js-1
    But ,    Power space equals space Energy over Time

    therefore space space space space Time space equals space Energy over Power space equals fraction numerator 39487 straight J over denominator 100 space Js to the power of negative 1 end exponent end fraction
space space space space space space space space space space space space space space equals space 394.87 space straight s
space space space space space space space space space space space space space space equals space fraction numerator 394.87 over denominator 60 end fraction min space equals space 6.6 space min
    Question 207
    CBSEENCH11006204

    State and explain Hess's law of constant heat summation.

    Solution

    This law states that if a reaction is the sum of two or more constituent reactions, then ∆ H for the overall process must be the sum of all ∆H of the constituent reactions. In brief, the enthalpy change for a reaction is the same whether it occurs in one step or in a series of steps.
    Consider a reaction in which reactant S1 is converted to product S4. There are two reactions for converting S1 to S4:
    (i) Direct reaction: Reactant S1 is directly converted to product S4 in one step.
    straight S subscript 1 space space rightwards arrow space space straight S subscript 4
    Let ∆rH° be the enthalpy change during this conversion.
    (ii) Indirect reactions: Let reactant S1 be directly converted to S4 in a number of steps.
                straight S subscript 1 space space space rightwards arrow space space straight S subscript 2 space space space space space... left parenthesis straight a right parenthesis
straight S subscript 2 space space space rightwards arrow space space straight S subscript 3 space space space space space... left parenthesis straight b right parenthesis
straight S subscript 3 space space space rightwards arrow space space straight S subscript 4 space space space space space space... left parenthesis straight c right parenthesis
    Let space increment straight H subscript straight a superscript 0 comma space space space increment straight H subscript straight b superscript 0 space space and space increment straight H subscript straight c superscript 0 be the enthalpy changes in the first (a), second (b) and third reaction (c) respectively.
    According to Hess's law
                                   increment subscript straight r straight H to the power of 0 space equals space increment straight H subscript straight a superscript 0 space plus increment straight H subscript straight b superscript 0 space plus space increment straight H subscript straight c superscript 0
    Here a, b, c .....(as stated above) refer to the balanced thermochemical equation that can be summed to give the equation for the desired reaction. 




    Illustration of Hess’ law: Carbon when burnt in oxygen forms CO2 in two ways: First way:
    straight C left parenthesis straight s right parenthesis space plus space straight O subscript 2 left parenthesis straight g right parenthesis space rightwards arrow space space CO subscript 2 left parenthesis straight g right parenthesis semicolon space space increment subscript straight r straight H to the power of 0 space equals space minus 393.5 space kJ
    Second way: Carbon may be first converted into CO and then changed into CO2.

    Total amount of enthalpy changes in a second way
     = -110.5 - 283.0
     = -393.5 kJ
    which is the same as in the first case.

    Question 208
    CBSEENCH11006205

    How is Hess’s law helpful in calculating the enthalpy of formation of carbon monoxide?

    Solution
    Enthalpy of formation of carbon monoxide cannot be determined experimentally since the combustion of carbon will never stop at CO(g) stage. A small amount of CO2(g) will be always formed. The enthalpy of formation of carbon monoxide can be calculated by Hess’s law.
    The thermochemical equation.
    straight C left parenthesis straight s right parenthesis space plus space 1 half space straight O subscript 2 left parenthesis straight g right parenthesis space rightwards arrow space space space CO left parenthesis straight g right parenthesis semicolon space space space increment subscript straight r straight H to the power of 0 space equals ?
    Experimentally it has been found that
    left parenthesis straight i right parenthesis space straight C left parenthesis straight s right parenthesis space plus space straight O subscript 2 left parenthesis straight g right parenthesis space space space space rightwards arrow space CO subscript 2 left parenthesis straight g right parenthesis semicolon
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space increment subscript straight r straight H to the power of 0 space equals space minus 393.5 space kJ
left parenthesis ii right parenthesis space CO left parenthesis straight g right parenthesis space plus space 1 half straight O subscript 2 left parenthesis straight g right parenthesis space rightwards arrow space CO subscript 2 left parenthesis straight g right parenthesis semicolon
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space increment subscript straight r straight H to the power of 0 space equals negative 283.0 space kJ
    Subtracting equation (ii) from (i), we have,
       straight C left parenthesis straight s right parenthesis space plus space 1 half straight O subscript 2 left parenthesis straight g right parenthesis space minus space CO left parenthesis straight g right parenthesis space rightwards arrow space space 0
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space increment subscript straight r straight H to the power of 0 space equals space minus 393.5 space plus 283.0
or space space straight C left parenthesis straight s right parenthesis plus space 1 half straight O subscript 2 left parenthesis straight g right parenthesis space rightwards arrow space space CO left parenthesis straight g right parenthesis semicolon
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space increment subscript straight r straight H to the power of 0 space equals space minus 110.5 space kJ
    Question 209
    CBSEENCH11006206

    What is transition? How is Hess’s law helpful in determining the enthalpy of transition?

    Solution
    Transition means the conversion of one allotropic form of a substance to another. Hess’s law is very useful in determining the enthalpy changes of those reactions which take place extremely slowly. For example, the transformation of rhombic sulphur to monoclinic sulphur is a very slow process. No direct method is available to determine its enthalpy change. It is calculated by Hess’s law. We aim at the equation,
        straight S subscript straight R space space rightwards arrow space space straight S subscript straight M space space space space space space space space space space space space space space space space space space space space space space space space increment subscript straight r straight H to the power of 0 space equals ?
    Experimentally it has been found that
     left parenthesis straight i right parenthesis space straight S subscript straight R space plus space straight O subscript 2 left parenthesis straight g right parenthesis space space space rightwards arrow space space space space SO subscript 2 left parenthesis straight g right parenthesis semicolon 
                                                    increment subscript straight r straight H to the power of 0 space equals negative 295.10 space kJ
    left parenthesis ii right parenthesis space space straight S subscript straight M space plus space straight O subscript 2 left parenthesis straight g right parenthesis space space rightwards arrow space space space SO subscript 2 left parenthesis straight g right parenthesis semicolon space space
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space increment subscript straight r straight H to the power of 0 space equals space minus 296.4 space kJ
    Subtracting equation (ii) from (i), we have,
         straight S subscript straight R space minus space straight S subscript straight M space space space space rightwards arrow space space space 0
space space space space space space space space space space space space space space space space space space space space space space space space space increment subscript straight r straight H to the power of 0 space equals negative 295.1 space plus space 296.4
or space space space space space space straight S subscript straight R space space space rightwards arrow space space space space straight S subscript straight M space space increment subscript straight r straight H to the power of 0 space space equals space plus 1.3 space kJ.
    Question 210
    CBSEENCH11006207

    The thermochemical equations for the formation of water are:

    2 straight H subscript 2 left parenthesis straight g right parenthesis space plus space straight O subscript 2 left parenthesis straight g right parenthesis space rightwards arrow space space 2 straight H subscript 2 straight O left parenthesis straight g right parenthesis
                                                increment subscript straight r straight H to the power of 0 space equals space minus 483. space 8 space kJ
    2 straight H subscript 2 left parenthesis straight g right parenthesis space plus space straight O subscript 2 left parenthesis straight g right parenthesis space rightwards arrow space space 2 straight H subscript 2 straight O left parenthesis straight l right parenthesis semicolon
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space increment subscript straight r straight H to the power of 0 space equals space minus 571.8 space kJ
    How much energy is needed to convert 2 mol of liquid water to water vapour?

    Solution

    We aim at equation
                 2 straight H subscript 2 straight O left parenthesis straight l right parenthesis space space space rightwards arrow space space space 2 straight H subscript 2 straight O left parenthesis straight g right parenthesis semicolon space space space increment subscript straight r straight H to the power of 0 space equals space ?
    Given that 
    left parenthesis straight i right parenthesis space 2 straight H subscript 2 left parenthesis straight g right parenthesis space plus space straight O subscript 2 left parenthesis straight g right parenthesis space space space rightwards arrow space space space 2 straight H subscript 2 straight O left parenthesis straight g right parenthesis semicolon
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space increment subscript straight r straight H to the power of 0 space equals space minus 483.8 space kJ
left parenthesis ii right parenthesis space 2 straight H subscript 2 left parenthesis straight g right parenthesis space plus space straight O subscript 2 left parenthesis straight g right parenthesis space rightwards arrow space space space space 2 straight H subscript 2 straight O left parenthesis straight l right parenthesis semicolon space
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space increment subscript straight r straight H to the power of 0 space equals space minus 571.8 space kJ
    Subtracting equation (ii) from equation (i), we have,
            2 straight H subscript 2 left parenthesis straight g right parenthesis space plus space straight O subscript 2 left parenthesis straight g right parenthesis space minus space space 2 straight H subscript 2 left parenthesis straight g right parenthesis space minus space straight O subscript 2 left parenthesis straight g right parenthesis space space space space rightwards arrow space space 2 straight H subscript 2 straight O space left parenthesis straight g right parenthesis space minus space 2 straight H subscript 2 straight O left parenthesis l right parenthesis semicolon
space space space space increment subscript straight r straight H to the power of 0 space equals space minus 483.8 space plus space 571.8
space space space space space o r space space space 2 straight H subscript 2 straight O left parenthesis l right parenthesis space space space rightwards arrow space space 2 straight H subscript 2 straight O left parenthesis straight g right parenthesis semicolon space space space increment subscript straight r straight H to the power of 0 space equals space 88 space k J                  

    Question 211
    CBSEENCH11006208

    Calculate the heat change accompanying the transformation of C(graphite) to C(diamond). You are given:

    straight C left parenthesis graphite right parenthesis space plus space straight O subscript 2 left parenthesis straight g right parenthesis space rightwards arrow space space space space CO subscript 2 left parenthesis straight g right parenthesis semicolon space space
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space increment subscript straight r straight H to the power of 0 space equals space minus 393.5 space kJ
straight C left parenthesis diamond right parenthesis space plus space straight O subscript 2 left parenthesis straight g right parenthesis space space space rightwards arrow space space space CO subscript 2 left parenthesis straight g right parenthesis semicolon
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space increment subscript straight r straight H to the power of 0 space equals space minus 395.4 space kJ

    Solution

    The equation,
    straight C left parenthesis graphite right parenthesis space space space rightwards arrow space space space space straight C left parenthesis diamond right parenthesis space space space semicolon space space space increment subscript straight r straight H to the power of 0 space equals space ?
    Given that
    left parenthesis straight i right parenthesis straight C left parenthesis graphite right parenthesis space plus space straight O subscript 2 left parenthesis straight g right parenthesis space space space rightwards arrow space space space space CO subscript 2 left parenthesis straight g right parenthesis semicolon
space space space space space space space space increment subscript straight r straight H to the power of 0 space equals space minus 393.5 space kJ
left parenthesis ii right parenthesis space straight C left parenthesis diamond right parenthesis space plus space straight O subscript 2 left parenthesis straight g right parenthesis space space rightwards arrow CO subscript 2 left parenthesis straight g right parenthesis semicolon
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space increment subscript straight r straight H to the power of 0 space equals space minus 395.4 space kJ
    Subtracting equation (ii) from equation (i), we have,    
    straight C plus straight O subscript 2 left parenthesis straight g right parenthesis space minus space straight C space minus space straight O subscript 2 left parenthesis straight g right parenthesis space space space rightwards arrow space space space CO subscript 2 left parenthesis straight g right parenthesis space minus space CO subscript 2 left parenthesis straight g right parenthesis semicolon
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space increment subscript straight r straight H to the power of 0 space equals space minus 393.5 space plus space 395.4
or space space straight C left parenthesis graphite right parenthesis space space rightwards arrow space space straight C left parenthesis diamond right parenthesis semicolon
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space increment subscript straight r straight H to the power of 0 space equals space minus 393.5 plus 395.4
or space space straight C left parenthesis graphite right parenthesis space rightwards arrow space space space space space straight C left parenthesis diamond right parenthesis
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space increment subscript straight r straight H to the power of 0 space equals space plus 1.9 space kJ space space space space space space space space space space space space space space space space
    i.e. 1.9 kJ of heat is absorbed in the process.

    Question 212
    CBSEENCH11006209

    With the help of thermochemical equation given below, determine ∆r.H0 at 298K for the following reactions:

    straight C subscript left parenthesis graphite right parenthesis end subscript space plus space 2 straight H subscript 2 left parenthesis straight g right parenthesis space space rightwards arrow space space space CH subscript 4 left parenthesis straight g right parenthesis semicolon space space space increment subscript straight r straight H to the power of 0 space equals space ?
    left parenthesis straight i right parenthesis space straight C subscript graphite space plus space straight O subscript 2 left parenthesis straight g right parenthesis space space rightwards arrow space space space CO subscript 2 left parenthesis straight g right parenthesis semicolon
space space space space space space space space space space space space space space space space space space space space space space space increment subscript straight r straight H to the power of 0 space equals space minus 393.5 space kJ space mol to the power of negative 1 end exponent
left parenthesis ii right parenthesis space straight H subscript 2 left parenthesis straight g right parenthesis space plus space 1 half straight O subscript 2 left parenthesis straight g right parenthesis space rightwards arrow space space space straight H subscript 2 straight O left parenthesis straight g right parenthesis semicolon
space space space space space space space space space space space space space space space space space space space space space space increment subscript straight r straight H to the power of 0 space equals space minus 285.8 space kJ space mol to the power of negative 1 end exponent
left parenthesis iii right parenthesis space CO subscript 2 left parenthesis straight g right parenthesis space plus space 2 straight H subscript 2 straight O left parenthesis straight I right parenthesis space space space rightwards arrow space space space CH subscript 4 left parenthesis straight g right parenthesis space plus space 2 straight O subscript 2 left parenthesis straight g right parenthesis semicolon
space space space space increment subscript straight r straight H to the power of 0 space equals space plus 890.3 space kJ thin space mol to the power of negative 1 end exponent

    Solution

    We aim at the equation
     straight C subscript left parenthesis graphite right parenthesis end subscript space plus space 2 straight H subscript 2 space space space rightwards arrow space space space space CH subscript 4 left parenthesis straight g right parenthesis semicolon space space space increment subscript straight r straight H to the power of circled dash space equals space ?
    Here we want one mole of C(graphite) as a reactant, so write equation (i) as such. We want two moles of H2(g) as a reactant ; so multiply equation (ii) by 2, we want one mole of CH4(g) as a product, so write equation (iii) as such.
    left parenthesis straight i right parenthesis space straight C subscript graphite space plus space straight O subscript 2 left parenthesis straight g right parenthesis space space rightwards arrow space space space CO subscript 2 left parenthesis straight g right parenthesis semicolon
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space increment subscript straight r straight H to the power of 0 space equals space minus 393.5 space kJ space mol to the power of negative 1 end exponent
left parenthesis ii right parenthesis space 2 straight H subscript 2 left parenthesis straight g right parenthesis space plus space straight O subscript 2 left parenthesis straight g right parenthesis space space space rightwards arrow space space space space 2 straight H subscript 2 straight O left parenthesis straight l right parenthesis semicolon
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space increment subscript straight r straight H to the power of 0 space equals space 2 left parenthesis negative 285.8 space straight K space kJ space mol to the power of negative 1 end exponent right parenthesis
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals negative 571.6 space kJ space mol to the power of negative 1 end exponent
left parenthesis iii right parenthesis space CO subscript 2 left parenthesis straight g right parenthesis space plus space 2 straight H subscript 2 straight O left parenthesis straight l right parenthesis space space space rightwards arrow space space space CH subscript 4 left parenthesis straight g right parenthesis space plus space 2 straight O subscript 2 left parenthesis straight g right parenthesis semicolon
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space increment subscript straight r straight H to the power of 0 space equals space plus 890.3 space kJ space mol to the power of negative 1 end exponent space space
    Adding equations (i), (ii) and (iii), we have,
        space straight C subscript graphite space plus space 2 straight H subscript 2 left parenthesis straight g right parenthesis space space space rightwards arrow space space space space CH subscript 4 left parenthesis straight g right parenthesis
increment subscript straight r straight H to the power of 0 space equals space minus 393.5 space minus 571.6 space plus space 890.3
space space space space space space space space space equals space minus 74.8 space kJ space mol to the power of negative 1 end exponent

    Question 213
    CBSEENCH11006210

    Calculate the enthalpy of combustion of methane, it is given that heat of formation of CO2(g), H2O(l) and CH4(g) are -393 5 kJ mol–1, –285 .9 kJ mol–1 and –748 kJ mol–1 respectively.

    Solution

    We have the equation,
    CH subscript 4 left parenthesis straight g right parenthesis space plus space 2 straight O subscript 2 left parenthesis straight g right parenthesis space rightwards arrow space space CO subscript 2 left parenthesis straight g right parenthesis space plus space 2 straight H subscript 2 straight O left parenthesis l right parenthesis semicolon
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space increment subscript straight r straight H to the power of 0 space equals space ? space space space space space space space space space space space space space space space space space space
    Given that:
     left parenthesis straight i right parenthesis space straight C left parenthesis straight s right parenthesis space plus space straight O subscript 2 left parenthesis straight g right parenthesis space space space rightwards arrow space space space CO subscript 2 left parenthesis straight g right parenthesis semicolon
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space increment subscript straight r straight H to the power of 0 space equals space minus 393.5 space kJ
left parenthesis ii right parenthesis space straight H subscript 2 left parenthesis straight g right parenthesis space plus space 1 half straight O subscript 2 left parenthesis straight g right parenthesis space space space space rightwards arrow space space space straight H subscript 2 straight O left parenthesis l right parenthesis semicolon
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space increment subscript straight r straight H to the power of 0 space equals space minus 285.9 space kJ
left parenthesis iii right parenthesis space straight C left parenthesis straight g right parenthesis space plus space 2 straight H subscript 2 left parenthesis straight g right parenthesis space rightwards arrow space space space space CH subscript 4 left parenthesis straight g right parenthesis semicolon
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space increment subscript straight r straight H to the power of 0 space equals space minus 748 space kJ
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space
    Multiplying equation (ii) by 2, we have,
    left parenthesis iv right parenthesis space 2 straight H subscript 2 left parenthesis straight g right parenthesis space plus space straight O subscript 2 left parenthesis straight g right parenthesis space space space rightwards arrow space space 2 straight H subscript 2 straight O left parenthesis straight l right parenthesis semicolon
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space increment subscript straight r straight H to the power of 0 space equals space minus 571.8 space kJ
    Adding equations (i) and (iv), we have,
    left parenthesis straight v right parenthesis space space straight C left parenthesis straight s right parenthesis space plus space 2 straight H subscript 2 left parenthesis straight g right parenthesis space plus space space 2 straight O subscript 2 left parenthesis straight g right parenthesis space space space rightwards arrow space space space CO subscript 2 left parenthesis straight g right parenthesis space plus space 2 straight H subscript 2 straight O left parenthesis straight l right parenthesis semicolon
                                           increment subscript straight r straight H to the power of 0 space equals space minus 965.3 space kJ
                                                             
    Subtracting equation (iii) from equation (v), we have,
             2 straight O subscript 2 left parenthesis straight g right parenthesis space space space rightwards arrow space space CO subscript 2 left parenthesis straight g right parenthesis space plus space 2 straight H subscript 2 straight O left parenthesis l right parenthesis space minus space CH subscript 4 left parenthesis straight g right parenthesis semicolon
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space increment subscript straight r straight H to the power of 0 space equals space minus 965.3 space plus space 748
or space space CH subscript 4 left parenthesis straight g right parenthesis space plus space 2 straight O subscript 2 left parenthesis straight g right parenthesis space space rightwards arrow space space space CO subscript 2 left parenthesis straight g right parenthesis space plus space 2 straight H subscript 2 straight O left parenthesis straight l right parenthesis semicolon
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space increment subscript straight r straight H to the power of 0 space equals space minus 217.3 space kJ
    therefore Enthalpy of combustion of methane is -217.3 kJ mol-1.
           
                

    Question 214
    CBSEENCH11006211

    Calculate the heat of combustion of glucose from the following data:
    left parenthesis straight i right parenthesis space straight C left parenthesis graphite right parenthesis space plus space straight O subscript 2 left parenthesis straight g right parenthesis space space space rightwards arrow CO subscript 2 left parenthesis straight g right parenthesis semicolon
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space increment subscript straight r straight H to the power of 0 space equals space minus 395.0 space kJ
left parenthesis ii right parenthesis space straight H subscript 2 left parenthesis straight g right parenthesis space plus space 1 half straight O subscript 2 left parenthesis straight g right parenthesis space space rightwards arrow space space space space straight H subscript 2 straight O left parenthesis straight l right parenthesis semicolon
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space increment subscript straight r straight H to the power of 0 space equals space minus 269.4 space kJ
space space space space space space space space space space space space space space space space space space space space space space space space

    left parenthesis iii right parenthesis space 6 straight C left parenthesis graphite right parenthesis space plus space 6 straight H subscript 2 left parenthesis straight g right parenthesis space plus space 3 straight O subscript 2 left parenthesis straight g right parenthesis space space space rightwards arrow space space stack straight C subscript 6 straight H subscript 12 straight O subscript 6 left parenthesis straight s right parenthesis semicolon with left parenthesis glucose right parenthesis below
                                               <pre>uncaught exception: <b>Http Error #502</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php line 61<br />#0 [internal function]: com_wiris_plugin_impl_HttpImpl_0(Object(com_wiris_plugin_impl_HttpImpl), NULL, 'http://www.wiri...', 'Http Error #502')
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('com_wiris_plugi...', Array)
#2 [internal function]: _hx_lambda->execute('Http Error #502')
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(532): call_user_func_array(Array, Array)
#4 [internal function]: haxe_Http_5(true, Object(com_wiris_plugin_impl_HttpImpl), Object(com_wiris_plugin_impl_HttpImpl), Array, Object(haxe_io_BytesOutput), true, 'Http Error #502')
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('haxe_Http_5', Array)
#6 [internal function]: _hx_lambda->execute('Http Error #502')
#7 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(27): call_user_func_array(Array, Array)
#8 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(444): com_wiris_plugin_impl_HttpImpl->onError('Http Error #502')
#9 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(458): haxe_Http->customRequest(true, Object(haxe_io_BytesOutput), NULL, NULL)
#10 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(40): haxe_Http->request(true)
#11 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(80): com_wiris_plugin_impl_HttpImpl->request(true)
#12 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#13 {main}</pre>


    Solution

    We aim at the equation
    straight C subscript 6 straight H subscript 12 straight O subscript 6 left parenthesis straight s right parenthesis space plus space 6 straight O subscript 2 left parenthesis straight g right parenthesis space rightwards arrow space space 6 CO subscript 2 left parenthesis straight g right parenthesis space plus space 6 straight H subscript 2 straight O left parenthesis straight l right parenthesis semicolon
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space increment subscript straight r straight H to the power of 0 space equals space ? space space space space space space space space space space space space space space space
    Multiplying equation (i) by 6 and also equation (ii) by 6,
    left parenthesis iv right parenthesis space 6 straight C left parenthesis graphite right parenthesis space plus space 6 straight O subscript 2 left parenthesis straight g right parenthesis space space space rightwards arrow space space space 6 CO subscript 2 left parenthesis straight g right parenthesis semicolon
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space increment subscript straight r straight H to the power of 0 space equals space minus 2370.0 space kJ
    left parenthesis straight v right parenthesis space space 6 straight H subscript 2 left parenthesis straight g right parenthesis space plus space 3 straight O subscript 2 left parenthesis straight g right parenthesis space space rightwards arrow space space space 6 straight H subscript 2 straight O left parenthesis straight l right parenthesis semicolon
space space space space increment subscript straight r straight H to the power of 0 space equals space 6 cross times left parenthesis negative 269.4 right parenthesis space equals space minus 1616.4
Adding space equation space straight s left parenthesis iv right parenthesis space and space left parenthesis straight v right parenthesis comma
    left parenthesis vi right parenthesis space 6 straight C left parenthesis graphite right parenthesis space plus space 6 straight H subscript 2 left parenthesis straight g right parenthesis space plus space 9 straight O subscript 2 left parenthesis straight g right parenthesis space rightwards arrow space space space 6 CO subscript 2 left parenthesis straight g right parenthesis space plus space 6 straight H subscript 2 straight O left parenthesis straight l right parenthesis semicolon
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space increment subscript straight r straight H to the power of 0 space equals space minus 3986.4 space kJ
    Subtracting equation (iii) from equation (vi),
                  6 straight O subscript 2 left parenthesis straight g right parenthesis space space rightwards arrow space space space 6 CO subscript 2 left parenthesis straight g right parenthesis space plus space 6 straight H subscript 2 straight O left parenthesis straight l right parenthesis space minus space straight C subscript 6 straight H subscript 12 straight O subscript 6 left parenthesis straight s right parenthesis semicolon
                                    increment subscript straight r straight H to the power of 0 space equals space minus 3986.4 space plus space 1169.8
    <pre>uncaught exception: <b>Http Error #404</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php line 61<br />#0 [internal function]: com_wiris_plugin_impl_HttpImpl_0(Object(com_wiris_plugin_impl_HttpImpl), NULL, 'http://www.wiri...', 'Http Error #404')
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('com_wiris_plugi...', Array)
#2 [internal function]: _hx_lambda->execute('Http Error #404')
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(532): call_user_func_array(Array, Array)
#4 [internal function]: haxe_Http_5(true, Object(com_wiris_plugin_impl_HttpImpl), Object(com_wiris_plugin_impl_HttpImpl), Array, Object(haxe_io_BytesOutput), true, 'Http Error #404')
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('haxe_Http_5', Array)
#6 [internal function]: _hx_lambda->execute('Http Error #404')
#7 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(27): call_user_func_array(Array, Array)
#8 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(444): com_wiris_plugin_impl_HttpImpl->onError('Http Error #404')
#9 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(458): haxe_Http->customRequest(true, Object(haxe_io_BytesOutput), NULL, NULL)
#10 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(40): haxe_Http->request(true)
#11 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(80): com_wiris_plugin_impl_HttpImpl->request(true)
#12 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#13 {main}</pre>

                                      

    Question 216
    CBSEENCH11006213

    Calculate the enthalpy of formation of acetic acid if its enthalpy of combustion to CO2(g) and H2O(l) is –867.0 kJ mol–1 and the enthalpies of formation of CO2(g) and H2O(l) are respectively –393.5 and –285.9 kJ mol–1.

    Solution

    We have the equation
              2 straight C left parenthesis straight s right parenthesis space plus space 2 straight H subscript 2 left parenthesis straight g right parenthesis space plus space straight O subscript 2 left parenthesis straight g right parenthesis space space rightwards arrow space space CH subscript 3 COOH left parenthesis straight l right parenthesis
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space increment subscript straight r straight H to the power of 0 space equals space ?
    Given that:
    left parenthesis straight i right parenthesis space CH subscript 3 COOH left parenthesis straight l right parenthesis space plus space 2 straight O subscript 2 left parenthesis straight g right parenthesis space space rightwards arrow space space 2 CO subscript 2 left parenthesis straight g right parenthesis space plus space 2 straight H subscript 2 straight O left parenthesis straight l right parenthesis semicolon
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space increment straight H space equals space minus 867 space kJ
left parenthesis ii right parenthesis space straight C left parenthesis straight s right parenthesis space plus space straight O subscript 2 left parenthesis straight g right parenthesis space space rightwards arrow space space CO subscript 2 left parenthesis straight g right parenthesis semicolon
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space increment subscript straight r straight H to the power of 0 space equals space minus 393.5 space kJ
left parenthesis iii right parenthesis space straight H subscript 2 left parenthesis straight g right parenthesis space plus space 1 half straight O subscript 2 left parenthesis straight g right parenthesis space space rightwards arrow space space space straight H subscript 2 straight O left parenthesis straight l right parenthesis semicolon
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space increment subscript straight r straight H to the power of 0 space equals space minus 285.9 space kJ
    Multiplying equation (ii) by 2 and also equation (iii) by 2, we have,
    left parenthesis iv right parenthesis space 2 straight C left parenthesis straight s right parenthesis space plus space 2 straight O subscript 2 left parenthesis straight g right parenthesis space rightwards arrow space space space 2 CO subscript 2 left parenthesis straight g right parenthesis semicolon
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space increment subscript straight r straight H to the power of 0 space equals space minus 787 space kJ
left parenthesis straight v right parenthesis space space space 2 straight H subscript 2 left parenthesis straight s right parenthesis space plus space straight O subscript 2 left parenthesis straight g right parenthesis space space space rightwards arrow space space space 2 straight H subscript 2 straight O left parenthesis straight l right parenthesis semicolon
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space increment subscript straight r straight H to the power of 0 space equals space minus 571.8 space kJ space space space space space space space space
    Adding equations (iv) and (v), we have,
    left parenthesis vi right parenthesis space 2 straight C left parenthesis straight s right parenthesis space plus space 2 straight H subscript 2 left parenthesis straight g right parenthesis space plus space 3 straight O subscript 2 left parenthesis straight g right parenthesis semicolon space rightwards arrow space 2 CO subscript 2 left parenthesis straight g right parenthesis space plus space 2 straight H subscript 2 straight O left parenthesis straight l right parenthesis
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space

    Question 217
    CBSEENCH11006214

    Calculate the standard enthalpy of formation of CH3OH(l) from the following data:

    left parenthesis straight i right parenthesis space CH subscript 3 OH left parenthesis straight l right parenthesis space plus space 3 over 2 straight O subscript 2 left parenthesis straight g right parenthesis space space space rightwards arrow space space CO subscript 2 left parenthesis straight g right parenthesis space plus space 2 straight H subscript 2 straight O left parenthesis straight l right parenthesis semicolon space
increment subscript straight r straight H to the power of 0 space equals space minus 726 space kJ space mol to the power of negative 1 end exponent
    left parenthesis ii right parenthesis space straight C left parenthesis straight s right parenthesis space plus space straight O subscript 2 left parenthesis straight g right parenthesis space space rightwards arrow space space space CO subscript 2 left parenthesis straight g right parenthesis semicolon increment straight H to the power of 0 space equals space minus 393 space kJ space mol to the power of negative 1 end exponent
space left parenthesis iii right parenthesis space straight H subscript 2 left parenthesis straight g right parenthesis space plus space space 1 half straight O subscript 2 left parenthesis straight g right parenthesis space space rightwards arrow space space space straight H subscript 2 straight O left parenthesis straight l right parenthesis semicolon space increment subscript straight f straight H to the power of 0 space equals space minus 286 space kJ space mol to the power of negative 1 end exponent
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space


    Solution

    We have equation,
               straight C left parenthesis straight s right parenthesis space plus space 2 straight H subscript 2 left parenthesis straight g right parenthesis space plus space 1 half straight O subscript 2 left parenthesis straight g right parenthesis space space rightwards arrow space space CH subscript 3 OH left parenthesis straight l right parenthesis semicolon space increment subscript straight r straight H to the power of 0 space equals space ?
    Multiplying equation (iii) by 2,
    space 2 straight H subscript 2 left parenthesis straight g right parenthesis space plus straight O subscript 2 left parenthesis straight g right parenthesis space space space rightwards arrow space space 2 straight H subscript 2 straight O left parenthesis straight l right parenthesis semicolon space space space increment subscript straight f straight H to the power of 0 space equals space minus 572 space kJ
    Adding equations (ii) and (iii),
     space straight C left parenthesis straight s right parenthesis space plus space 2 straight H subscript 2 left parenthesis straight g right parenthesis space plus space 2 straight O subscript 2 left parenthesis straight g right parenthesis space space space rightwards arrow space C O subscript 2 left parenthesis straight g right parenthesis space plus 2 straight H subscript 2 straight O left parenthesis straight l right parenthesis semicolon space
space space space space space space space space space increment subscript straight r straight H to the power of 0 space equals space minus 393 space k J space minus space 572 space k J space equals space minus 965 space k J
    Subtracting equation (i) from equation (ii), 
           straight C left parenthesis straight s right parenthesis space plus space 2 straight H subscript 2 left parenthesis straight g right parenthesis space plus space 1 half straight O subscript 2 space minus space CH subscript 3 OH left parenthesis straight l right parenthesis space space space
space space space space space space space space space space space space space space space rightwards arrow space space CO subscript 2 left parenthesis straight g right parenthesis space plus space 2 straight H subscript 2 straight O left parenthesis straight l right parenthesis space minus space CO subscript 2 left parenthesis straight g right parenthesis space minus space 2 straight H subscript 2 straight O left parenthesis straight l right parenthesis
                             increment subscript straight r straight H to the power of 0 space equals space minus 965 space k J space plus space 726 space straight k space equals space minus 239 space straight k
    or space space straight C left parenthesis straight s right parenthesis space plus space 2 straight H subscript 2 left parenthesis straight g right parenthesis space plus space 1 half straight O subscript 2 left parenthesis straight s right parenthesis space minus space CH subscript 3 OH left parenthesis straight l right parenthesis
space space space space space space space space increment subscript straight r straight H to the power of 0 space equals space minus 239 space kJ space mol to the power of negative 1 end exponent

    Question 219
    CBSEENCH11006216

    What do you mean by bond enthalpy? When is bond enthalpy equal to bond dissociation energy?

    Solution

    Chemical reactions involve the breaking and making of chemical bonds. Energy is required to break a bond and energy is released when a bond is formed. The bond enthalpy is the amount of energy necessary to break bonds in one mole of a gaseous covalent substance to form products in the gaseous state. The bond enthalpy for H2 is 435.0 kJ mol–1.
    This endothermic reaction (∆H0 is positive) can be written as,
    straight H subscript 2 left parenthesis straight g right parenthesis space plus space 435 space kJ space space rightwards arrow space space space 2 straight H left parenthesis straight g right parenthesis
    Bond energy of a diatomic molecule (e.g. H2, Cl2, O2 etc.) is equal to its dissociation energy. The dissociation energy of a bond is defined as the enthalpy change involved in breaking the bond between atoms of a gaseous homonuclear molecule.
    Calculation of enthalpy of reaction from bond energies: We know that when a reaction takes place, some bonds are broken while some new bonds are formed. Energy is required to the dissociation of bonds while energy is released when the bonds are formed.
    increment subscript straight r straight H to the power of 0 space equals space sum from blank to blank of Bond space enthalpies space left parenthesis reactant right parenthesis space
space space space space space space space space space space space space space space space space space space space space space space space space space space space minus space sum from blank to blank of Bond space enthalpies space left parenthesis product right parenthesis

    Question 220
    CBSEENCH11006217

    How does bond enthalpy vary with:
    (a) size of atoms
    (b) electronegativity of atoms?

    Solution

    (a) It decreases with the increase in the size of atoms.
    (b) It increases with the increase in the electronegativity of atoms.

    Question 223
    CBSEENCH11006220

    Compute the enthalpy of hydrogenation of ethylene if the bond enthalpies of H – H, C – H, C – C and C = C bonds are 436, 485, 347 and 619 kJ mol–1 respectively.

    Solution

    The required thermochemical equation is

    increment subscript straight r straight H to the power of 0 space equals space sum from blank to blank of Bond space enthalpies subscript left parenthesis Reactants right parenthesis end subscript space minus space sum from blank to blank of Bond space enthalpies subscript left parenthesis Products right parenthesis end subscript
space space space space space space space space equals space open square brackets straight H subscript straight C space minus straight C end subscript superscript 0 space plus space 4 space cross times space straight H subscript straight C space minus straight H end subscript superscript 0 space plus space straight H subscript straight H space minus straight H end subscript superscript 0 close square brackets space minus space open square brackets straight H subscript straight C space minus space straight C end subscript superscript 0 space plus space 6 space cross times space straight H subscript straight C space minus straight H end subscript superscript 0 close square brackets
space space space space space space space space equals open square brackets 619 plus 4 left parenthesis 485 right parenthesis plus 436 close square brackets space minus space open square brackets 347 plus 6 left parenthesis 485 right parenthesis close square brackets
space space space space space space space space equals 2995 minus 3257
space space space space space space space space equals negative 262 space kJ
    Thus enthalpy of hydrogenation of ethylene is -262 kJ.

    Question 224
    CBSEENCH11006221

    Calculate increment subscript straight r straight H to the power of 0 for the reaction 

    The bond enthalpies of C - H,  O = O, C = O,  O - H and C = C bonds are 414, 499, 460 and 619 kJ mol-1 respectively. 

    Solution

    In the thermochemical equation,
       
    four C-H bonds, one C = C bond and three O = O bonds are broken while four C = O bonds and four O - H bonds are formed. Thus
                  increment subscript straight r straight H to the power of 0 space equals space sum from blank to blank of Bond space enthalpies subscript left parenthesis Reactants right parenthesis end subscript
space space space space space space space space space space space space space space space space space space space space space space space space space space minus space sum from blank to blank of Bond space left parenthesis enthalpy right parenthesis subscript left parenthesis Products right parenthesis end subscript
equals space open square brackets 4 space cross times space straight H subscript straight C space minus straight H end subscript superscript 0 space plus space straight H subscript straight C space minus straight C end subscript superscript 0 space plus space 3 straight H subscript straight O superscript 0 space equals space 0 close square brackets space
space space space space space space space space space space space space space space space space space minus space open square brackets 4 space cross times space straight H subscript straight C space equals space straight O end subscript superscript 0 space plus space 4 space cross times space straight H subscript straight O minus straight H end subscript superscript 0 space close square brackets

equals space open square brackets 4 space cross times 414 space plus space 619 space plus space 3 space cross times space 499 close square brackets
space space space space space space space space space space space space space space space space space space space space space space minus space open square brackets 4 cross times 724 space plus space 4 cross times space 460 close square brackets

space equals space 1656 space plus space 619 space plus space 1497 space minus space 2896 space minus space 1840
equals space 964 space kJ space mol to the power of negative 1 end exponent

    Question 225
    CBSEENCH11006222

    Calculate the enthalpy change for the process
    CCl subscript 4 left parenthesis straight g right parenthesis space rightwards arrow space space straight C left parenthesis straight g right parenthesis space plus space 4 Cl left parenthesis straight g right parenthesis
    and calculate the bond enthalpy of C - Cl in CCl4(g).
      space increment subscript vap straight H to the power of 0 left parenthesis CCl subscript 4 right parenthesis space equals space 30.5 space kJ space mol to the power of negative 1 end exponent
space increment subscript straight f straight H to the power of 0 left parenthesis CCl subscript 4 right parenthesis space equals space minus 135.5 space kJ space mol to the power of negative 1 end exponent
space increment subscript straight a straight H to the power of 0 left parenthesis straight C right parenthesis space equals space 715.0 space kJ space mol to the power of negative 1 end exponent comma
    where increment subscript straight a straight H to the power of 0 is enthalpy of atomisation and increment subscript straight a straight H to the power of 0 left parenthesis Cl subscript 2 right parenthesis space equals space 242 space kJ space mol to the power of negative 1 end exponent

    Solution

    We aim at the equation
       CCl subscript 4 left parenthesis straight g right parenthesis space space rightwards arrow space space space straight C left parenthesis straight g right parenthesis space plus space 4 Cl left parenthesis straight g right parenthesis comma
increment straight H equals ?
    The given data implies as under
       left parenthesis straight i right parenthesis space CCl subscript 4 left parenthesis straight g right parenthesis space space rightwards arrow space space CCl subscript 4 left parenthesis straight g right parenthesis semicolon space space increment straight H to the power of 0 space equals space 30.5 space kJ space mol to the power of negative 1 end exponent
left parenthesis ii right parenthesis space straight C left parenthesis straight s right parenthesis space plus space 2 Cl subscript 2 left parenthesis straight g right parenthesis space space rightwards arrow space space CCl subscript 4 left parenthesis straight l right parenthesis semicolon
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space increment straight H to the power of 0 space equals space minus 135.5 space kJ space mol to the power of negative 1 end exponent
left parenthesis iii right parenthesis space straight C left parenthesis straight s right parenthesis space space rightwards arrow space straight C left parenthesis straight s right parenthesis semicolon space space space increment straight H space equals space 715.0 space kJ space mol to the power of negative 1 end exponent
left parenthesis iv right parenthesis space Cl subscript 2 left parenthesis straight g right parenthesis space space rightwards arrow space space 2 Cl left parenthesis straight g right parenthesis semicolon space space increment straight H space equals space 242 space kJ space mol to the power of negative 1 end exponent
    Multiplying equaton (iv) by 2,
      left parenthesis straight v right parenthesis space 2 Cl subscript 2 left parenthesis straight g right parenthesis space rightwards arrow space space space 4 Cl space left parenthesis straight g right parenthesis semicolon space space increment straight H to the power of 0 space equals space 484 space kJ
Adding space equations space left parenthesis iii right parenthesis space and space left parenthesis straight v right parenthesis comma
left parenthesis vi right parenthesis space straight C left parenthesis straight s right parenthesis space plus space 2 Cl subscript 2 left parenthesis straight g right parenthesis space space rightwards arrow space space straight C left parenthesis straight g right parenthesis space plus space 4 Cl left parenthesis straight g right parenthesis semicolon space increment straight H to the power of 0 space equals space 1199 space kJ
    Subtracting equation (i) and (ii) from equation (vi),
                 straight C left parenthesis straight s right parenthesis space plus space 2 Cl subscript 2 left parenthesis straight g right parenthesis space minus space CCl subscript 4 left parenthesis straight l right parenthesis space minus space straight C left parenthesis straight s right parenthesis space minus space 2 Cl subscript 2 left parenthesis straight g right parenthesis space space
space space space space space space space space space space space space space space space space space space space space space rightwards arrow space straight C left parenthesis straight s right parenthesis space plus space 4 Cl left parenthesis straight g right parenthesis space minus space CCl subscript 4 left parenthesis straight g right parenthesis space minus space CCl subscript 4 left parenthesis straight l right parenthesis
                                     increment straight H space equals space 1199 minus 30.5 space plus space 135.5 space
    CCl subscript 4 left parenthesis straight g right parenthesis space rightwards arrow space space space straight C left parenthesis straight g right parenthesis space plus space 4 Cl left parenthesis straight g right parenthesis semicolon space space increment straight H space equals space 1304 space kJ space mol to the power of negative 1 end exponent
Bond space enthalpy space of space straight C space minus space Cl space in space CCl subscript 4 left parenthesis average space value right parenthesis
space space space space space space space space space space space space equals space 1304 over 4 space equals space 326 space kJ space mol to the power of negative 1 end exponent 

    Question 226
    CBSEENCH11006223

    Calculate the C – C bond energy from the following data:

    left parenthesis straight i right parenthesis space 2 straight C left parenthesis graphite right parenthesis space plus space 3 straight H subscript 2 left parenthesis straight g right parenthesis rightwards arrow space space straight C subscript 2 straight H subscript 6 left parenthesis straight g right parenthesis semicolon space space space increment straight H space equals space minus 84.67 space kJ
left parenthesis ii right parenthesis space straight C left parenthesis graphite right parenthesis space space rightwards arrow space space straight C left parenthesis straight g right parenthesis semicolon space space space increment straight H space equals space 716.7 space kJ
left parenthesis iii right parenthesis space straight H subscript 2 left parenthesis straight g right parenthesis space space space rightwards arrow space space 2 straight H left parenthesis straight g right parenthesis semicolon space space space increment straight H space equals space 435.9 space kJ
    Assume 416 kJ as the C - H bond energy, Express it in kJ mol-1.

    Solution

    We aim at the equation,

    Multiplying equation (ii) by 2 and equation (iii) by 3, we have,
      left parenthesis iv right parenthesis space 2 straight C left parenthesis graphite right parenthesis space space rightwards arrow space space 2 straight C left parenthesis straight g right parenthesis semicolon space space increment straight H space equals space plus 1433.4 space kJ
left parenthesis straight v right parenthesis space space 3 straight H subscript 2 left parenthesis straight g right parenthesis space space space rightwards arrow space space 6 straight H left parenthesis straight g right parenthesis semicolon space space space increment straight H space equals space plus 1307.7 space kJ
Adding space equations space left parenthesis iv right parenthesis space and space left parenthesis straight v right parenthesis comma space we space have
left parenthesis vi right parenthesis space 2 straight C left parenthesis graphite right parenthesis space plus space 3 straight H subscript 2 left parenthesis straight g right parenthesis space space rightwards arrow space space space 2 straight C left parenthesis straight g right parenthesis space plus space 6 straight H left parenthesis straight g right parenthesis semicolon
space space space space space space space space space space increment straight H space equals space 1433.4 space plus space 1307.7 space equals space 2741.1 space kJ
    Subtracting (i) from (vi), we have, 
         2 straight C left parenthesis graphite right parenthesis space plus space 3 straight H subscript 2 left parenthesis straight g right parenthesis space space rightwards arrow space space 2 straight C left parenthesis graphite right parenthesis space minus space 3 straight H subscript 2 left parenthesis straight g right parenthesis
space space space space space space space space space space space space space space space space rightwards arrow space space space 2 straight C left parenthesis straight g right parenthesis space plus space 6 straight H left parenthesis straight g right parenthesis space space minus space straight C subscript 2 straight H subscript 6 left parenthesis straight g right parenthesis semicolon space space
space space space space space space increment straight H space equals space 2741.1 space plus space 84.67 space kJ
space space space or space space straight C subscript 2 straight H subscript 6 left parenthesis straight g right parenthesis space space space rightwards arrow space space space 2 straight C left parenthesis straight g right parenthesis space plus space 6 straight H left parenthesis straight g right parenthesis semicolon space space increment straight H space equals space 2825.77
space space space
space space space space space space space space space space space space space
    Ethane molecule contains one C - C bond and six C - H bonds
         because  Bond dissociation energy of one C - H bond = 416 kJ
         therefore  Bond dissociation energy of six C - H bonds = 6 x 416 = 2496 kJ
    space space space therefore space
space Bond space energy space of space straight C space minus space straight C space bond
space space space space equals space Bond space energy space of space straight C subscript 2 straight H subscript 6 space
space space space space space space space space space space space space minus space 6 space left parenthesis Bond space energy space of space straight C space minus space straight H space bonds right parenthesis
space space space space space equals space 2825.77 space minus space 2496 space
space space space space space equals space 329.77 space kJ thin space mol to the power of negative 1 end exponent

    Question 227
    CBSEENCH11006224

    What do you mean by calorific value of foods and fuels?

    Solution

    Coal, petroleum, natural gas etc. are regarded as fuels for many machines and industrial purposes. The oxidation or combustion of all these fuels releases energy. This energy is measured in terms of calorific value. It is defined as the amount of heat produced by the complete combustion of one gram of the substance (food or fuel) in oxygen. It is generally expressed in kilocalories per gram (k cal g–1) or kJ g–1. The calorific value of fuel or food is measured by bomb calorimeter. Greater the calorific value, better is the fuel.
    Food is regarded as fuel for the animal or human body. It has been found that fats and carbohydrates are the main sources of energy which have calorific values of about 9 k cal g–1 and 4 k cal g–1 respectively. Proteins are also the main constituents of our food but have a low calorific value of 4 k cal g–1.

    Question 228
    CBSEENCH11006225

    The enthalpies of combustion of methane and ethane are –890.3 and –1559.7 kJ mol–1 respectively. Which of the two has a greater efficiency of the fuel per gram?

    Solution

    The fuel efficiency can be predicted from the amount of heat evolved for every gram of fuel consumed.
    (i) Thermochemical equation for the combustion of methane is,
    CH subscript 4 left parenthesis straight g right parenthesis space plus space 2 straight O subscript 2 left parenthesis straight g right parenthesis space rightwards arrow space space CO subscript 2 left parenthesis straight g right parenthesis space plus space 2 straight H subscript 2 straight O left parenthesis straight l right parenthesis semicolon space
increment subscript straight r straight H to the power of 0 space equals space 890.3 space kJ space mol to the power of negative 1 end exponent
    Gram molecular mass of methane open parentheses CH subscript 4 close parentheses
                                          = 12 + 4 X 1 = 16 g
    therefore space space Heat space produced space per space gram space equals space fraction numerator 890.3 over denominator 16 end fraction equals space 55.64 space kJ
    (ii) Thermochemical equation for combustion of ethane is
    straight C subscript 2 straight H subscript 6 left parenthesis straight g right parenthesis space plus space 7 over 2 straight O subscript 2 left parenthesis straight g right parenthesis space rightwards arrow space space 2 CO subscript 2 left parenthesis straight g right parenthesis space plus space 3 straight H subscript 2 straight O left parenthesis straight l right parenthesis semicolon space
increment subscript straight r straight H to the power of 0 space equals space minus 1559.7 space kJ space mol to the power of negative 1 end exponent
    Gram molecular mass of ethane open parentheses straight C subscript 2 straight H subscript 6 close parentheses
                             = 2 x 12 + 6 x 1 = 30 g
    therefore space space
Heat space produced space per space gram space equals space fraction numerator 1559.7 over denominator 30 end fraction space equals space 51.99 space kJ
    Thus, methane has greater fuel efficiency than ethane.

    Question 230
    CBSEENCH11006227

    Define lattice enthalpy. How is it relate to the stability of an ionic compound?

    Solution
    The lattice enthalpy (lattice energy) of an ionic solid is defined as the enthalpy required to completely separate one mole of a solid ionic compound into gaseous constituent ions. e.g. the lattice enthalpy of NaCl is 788 kJ mol–1. This means that 788 kJ of enthalpy is required to separate an infinite distance 1 mol of solid NaCl into 1 mol of Na+ (s) and one mole of Cl (g).
    The greater the lattice enthalpy, more stable is the ionic compound.
    Question 231
    CBSEENCH11006228

    What are important consequences of lattice enthalpies?

    Solution

    Important consequences of lattice enthalpies:
    (i) The greater the lattice enthalpy, more stable is the ionic compound.
    (ii) The lattice enthalpy is greater, for ions of higher charge, and smaller radii.
    (iii) The lattice enthalpies effect the solubilities of ionic compounds.

    Question 232
    CBSEENCH11006229

    What is Born-Haber cycle? How can we obtain lattice enthalpy of a solid with its help? 

    Solution

    In 1919, Born and Haber proposed a method in which lattice enthalpy of an ionic crystal is related to certain thermodynamic parameters. The formation of ionic crystal from its elements by applying different thermochemical quantities is called Born-Haber cycle.
    Consider the enthalpy change during the formation of ionic solid MX from its elements M and X.
    straight M left parenthesis straight s right parenthesis space plus space 1 half straight X subscript 2 left parenthesis straight g right parenthesis space space rightwards arrow space space space MX left parenthesis straight s right parenthesis
    Formation of ionic solid MX may be done by two different methods:
    (A) Indirect method      
    (B) Direct method
    (A) Indirect method:
    The various terms are
    left parenthesis straight i right parenthesis space increment straight H subscript 1 superscript 0 space equals space Enthalpy space change space for space sublimation space of space
space space space space space space space space space space space straight M left parenthesis straight s right parenthesis space rightwards arrow space space straight M left parenthesis straight g right parenthesis
    Since energy is required for the process (endothermic), therefore, increment straight H subscript 1 superscript 0 is taken as a positive quantity.
    left parenthesis ii right parenthesis space increment straight H subscript 2 superscript 0 space equals space Enthalpy space change space for space dissociation space of
space 1 half straight X subscript 2 left parenthesis straight g right parenthesis space rightwards arrow space space space straight X left parenthesis straight g right parenthesis
The space process space is space endothermic comma space space therefore space increment straight H subscript 2 superscript 0 space is
space taken space as space positive space quantity.
space
left parenthesis iii right parenthesis space increment straight H subscript 3 superscript 0 space equals Enthalpy space change space for space ionization space of space
space space space straight M left parenthesis straight g right parenthesis space space rightwards arrow space space space straight M to the power of plus left parenthesis straight g right parenthesis space plus space straight e to the power of minus
space space space space space space space space space space space space space space
    Since the process is endothermic, therefore ionisation enthalpy is taken as a positive quantity.
    left parenthesis iv right parenthesis space increment straight H subscript 4 superscript 0 space equals space Enthalpy space change space for space electron space gain space by
space space space space space space straight X left parenthesis straight g right parenthesis space plus space straight e to the power of minus space space rightwards arrow space space space straight X to the power of minus left parenthesis straight g right parenthesis
    Since the process is exothermic, therefore electron gain enthalpy is taken as negative quantity.
    left parenthesis straight v right parenthesis space increment straight H subscript 5 superscript 0 space equals space Enthalpy space change space for space lattice
space space straight M left parenthesis straight g right parenthesis space plus space straight X to the power of minus left parenthesis straight g right parenthesis space space rightwards arrow space space space MX left parenthesis straight s right parenthesis
    Energy is released in this process i.e. process is exothermic, therefore increment straight H subscript 5 superscript 0 is always taken as negative quantity.
    Direct method:   Let increment subscript straight f straight H to the power of 0 be the enthalpy of formation of 1 mol of MX(s) from its constituent species. 
                      straight M left parenthesis straight s right parenthesis space plus space 1 half straight X subscript 2 left parenthesis straight g right parenthesis space space rightwards arrow space space space MX left parenthesis straight s right parenthesis
therefore space space space increment subscript straight f straight H to the power of 0 space equals space increment straight H subscript 1 superscript 0 space plus increment straight H subscript 2 superscript 0 space plus space increment straight H subscript 3 superscript 0 space plus space increment straight H subscript 4 superscript 0 space plus space increment straight H subscript 5 superscript 0
or space
increment straight H subscript 5 superscript 0 space plus space increment subscript straight f straight H to the power of 0 space minus space increment straight H subscript 1 superscript 0 space minus space increment straight H subscript 2 superscript 0 space minus space increment straight H subscript 3 superscript 0 space minus space increment straight H subscript 4 superscript 0
    where increment straight H subscript 5 superscript 0 is the enthalpy change for lattice formation from,
                        straight M to the power of plus left parenthesis straight g right parenthesis space plus space straight X to the power of minus left parenthesis straight g right parenthesis space space rightwards arrow space space MX left parenthesis straight s right parenthesis
    The reverse of the above equation is
       space MX left parenthesis straight s right parenthesis space rightwards arrow space space straight M to the power of plus left parenthesis straight g right parenthesis space plus space straight X to the power of minus left parenthesis straight g right parenthesis space defines space the space lattice space enthalpy space
of space MX.
    Thus by using the Born-Haber cycle, one can determine the lattice enthalpy of an ionic compound.

    According to Hess’s law, the enthalpy of formation of one mole of ionic solid MX should be the same irrespective of the fact whether it takes place directly in one step (Direct method) or through a number of steps (Indirect method).
    space space therefore space space space
increment subscript straight f straight H to the power of 0 space equals space increment straight H subscript 1 superscript 0 plus increment straight H subscript 2 superscript 0 space plus space increment straight H subscript 3 superscript 0 space plus increment straight H subscript 4 superscript 0 space plus space increment straight H subscript 5 superscript 0
or space
space increment straight H subscript 5 superscript 0 space equals space increment subscript straight f straight H to the power of 0 space minus space increment straight H subscript 1 superscript 0 space minus space increment straight H subscript 2 superscript 0 space minus space increment straight H subscript 3 superscript 0 space minus space increment straight H subscript 4 superscript 0

    Question 233
    CBSEENCH11006230

    How can the lattice enthalpy of an ionic NaCl be determined by using Born-Haber cycle?

    Solution

    Formation of NaCl may be done by two different methods:
    (a) Indirect method
    (b) Direct method.
    (a) Indirect method: Various terms involved are:
    left parenthesis straight i right parenthesis thin space increment straight H subscript 1 superscript 0 space equals Enthalpy space Change space for space the space sublimation space of space
space Na left parenthesis straight s right parenthesis space rightwards arrow space Na left parenthesis straight g right parenthesis
      Since enthalpy is required for the process (endothermic), therefore increment straight H subscript 1 superscript 0 is taken as a positive quantity.
    (ii) space space increment straight H subscript 2 superscript 0 space equals space Enthalpy space change space for space the space dissociation space of
space 1 half Cl subscript 2 left parenthesis straight g right parenthesis space space rightwards arrow space Cl left parenthesis straight g right parenthesis
    The process is endothermic, therefore increment straight H subscript 2 superscript 0 is taken as a positive quantity. 
    left parenthesis iii right parenthesis space increment straight H subscript 3 superscript 0 space equals space Enthalpy space change space for space ionization space of
space space Na left parenthesis straight g right parenthesis space space rightwards arrow Na to the power of plus left parenthesis straight g right parenthesis space plus straight e to the power of minus
    Since the process is endothermic, therefore, ionisation enthalpy is taken as a positive quantity.
    left parenthesis iv right parenthesis space increment straight H subscript 4 superscript 0 space equals space Enthalpy space change space for space electron space gain space by space
space Cl left parenthesis straight g right parenthesis space plus straight e to the power of minus space space rightwards arrow space space Cl to the power of minus left parenthesis straight g right parenthesis
    Since the process is exothermic, therefore electron gain enthalpy is taken as a negative quantity. 
    left parenthesis straight v right parenthesis space increment straight H subscript 5 superscript 0 space equals space Enthalpy space change space for space lattice space formation.
space space space space space space space Na to the power of plus left parenthesis straight g right parenthesis space plus space Cl to the power of minus left parenthesis straight g right parenthesis space space rightwards arrow space space space NaCl left parenthesis straight s right parenthesis
    Enthalpy is released in this process i.e. process is exothermic, therefore increment straight H subscript 5 superscript 0 is always taken as a negative quantity. 
    (b) Direct method:  Let increment subscript straight f straight H to the power of 0 be the enthalpy of formation of 1 mol of NaCl(s) from its constituent species. 
                   Na left parenthesis straight s right parenthesis space plus space 1 half Cl subscript 2 left parenthesis straight g right parenthesis space rightwards arrow space space space NaCl left parenthesis straight s right parenthesis
    According to Hess's law, the enthalpy of formation of one mole of sodium chloride should be the same irrespective of the fact whether it takes place directly in one step.
    (Direct method) or through a number of steps (Indirect method).
    therefore space space space increment subscript straight f straight H to the power of 0 space equals space increment straight H subscript 1 superscript 0 space plus space increment straight H subscript 2 superscript 0 space plus space increment straight H subscript 3 superscript 0 space plus space increment straight H subscript 4 superscript 0 space plus space increment straight H subscript 5 superscript 0
or space space space space increment straight H subscript 5 superscript 0 space equals space increment subscript straight f straight H to the power of 0 space space minus space increment straight H subscript 1 superscript 0 space minus space increment straight H subscript 2 superscript 0 space minus space increment straight H subscript 3 superscript 0 space minus space increment straight H subscript 4 superscript 0
    where increment straight H subscript 5 superscript 0 is the enthalpy change for lattice formation from
      Na to the power of plus left parenthesis straight g right parenthesis space plus space Cl to the power of minus left parenthesis straight g right parenthesis space space space rightwards arrow space space NaCl space left parenthesis straight s right parenthesis
    The reverse of the above equation i.e.
      NaCl left parenthesis straight s right parenthesis space space rightwards arrow space space Na to the power of plus left parenthesis straight g right parenthesis space plus space Cl to the power of minus left parenthesis straight g right parenthesis
    defines the lattice enthalpy of NaCl.
    Thus by using the Born- Haber cycle,  one can determine the lattice enthalpy of an ionic compound.

    Question 235
    CBSEENCH11006232

    Calculate the lattice enthalpy of LiF, given that the enthalpy of
    (i) sublimation of lithium is 155.2 kJ mol–1
    (ii) dissociation of 1/2 mol of F2is 75.3 kJ
    (iii) ionization of lithium is 520 kJ mol–1
    (iv) electron gain of 1 mol of F(g) is –333 kJ
    (v) ∆f H0 ∆fH0 overall is –795 kJ mol–1

    Solution

    Using Born-Haber cycle to LiF
    increment subscript straight f straight H to the power of 0 space equals space increment straight H subscript 1 superscript 0 space plus space increment straight H subscript 2 superscript 0 space plus space increment straight H subscript 3 superscript 0 space plus space increment straight H subscript 4 superscript 0 space plus space increment straight H subscript 5 superscript 0
or space space space space increment straight H subscript 5 superscript 0 space equals space increment subscript straight f straight H to the power of 0 space minus space increment straight H subscript 1 superscript 0 space minus space increment straight H subscript 2 superscript 0 space minus space increment straight H subscript 3 superscript 0 space minus space increment straight H subscript 4 superscript 0
    Substituting the values,  we have
            increment straight H subscript 5 superscript 0 space equals space minus 795 minus 155.2 minus 75.3 minus 520 plus 333
space space space space space space space space equals negative 1545.5 space plus space 333 space equals space minus 1212.5
increment straight H subscript 5 superscript 0 space equals space Enthalpy space change space for space latitice space formation space from
space space space space space space space space space space space space space space space space Li to the power of plus left parenthesis straight g right parenthesis space plus straight F to the power of minus left parenthesis straight g right parenthesis space space rightwards arrow space space LiF left parenthesis straight s right parenthesis semicolon
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space increment straight H subscript 5 superscript 0 space equals space minus 1212.5 space kJ space mol to the power of negative 1 end exponent space space space space space space space space space space
    The reverse of the above equation i.e. 
                          <pre>uncaught exception: <b>Http Error #404</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php line 61<br />#0 [internal function]: com_wiris_plugin_impl_HttpImpl_0(Object(com_wiris_plugin_impl_HttpImpl), NULL, 'http://www.wiri...', 'Http Error #404')
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('com_wiris_plugi...', Array)
#2 [internal function]: _hx_lambda->execute('Http Error #404')
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(532): call_user_func_array(Array, Array)
#4 [internal function]: haxe_Http_5(true, Object(com_wiris_plugin_impl_HttpImpl), Object(com_wiris_plugin_impl_HttpImpl), Array, Object(haxe_io_BytesOutput), true, 'Http Error #404')
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('haxe_Http_5', Array)
#6 [internal function]: _hx_lambda->execute('Http Error #404')
#7 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(27): call_user_func_array(Array, Array)
#8 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(444): com_wiris_plugin_impl_HttpImpl->onError('Http Error #404')
#9 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(458): haxe_Http->customRequest(true, Object(haxe_io_BytesOutput), NULL, NULL)
#10 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(40): haxe_Http->request(true)
#11 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(80): com_wiris_plugin_impl_HttpImpl->request(true)
#12 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#13 {main}</pre>
    defines the lattice enthalpy of LiF
    Hence lattice enthalpy of LiF = +1212.5 kJ mol-1

    Question 236
    CBSEENCH11006233

    Calculate the lattice enthalpy of MgBr2 from the given data. The enthalpy of formation of MgBr2 according to the reaction

    Mg left parenthesis straight s right parenthesis space plus space Br subscript 2 left parenthesis straight l right parenthesis space space space rightwards arrow space space MgBr subscript 2 left parenthesis straight s right parenthesis semicolon space increment subscript straight f straight H to the power of 0 space equals space minus 524 space kJ space mol to the power of negative 1 end exponent
CH subscript 1 superscript 0 space for space Mg left parenthesis straight s right parenthesis space space rightwards arrow space space Mg to the power of 2 plus end exponent left parenthesis straight g right parenthesis space plus space 2 straight e to the power of minus space equals space plus 2187 space kJ space mol to the power of negative 1 end exponent
    increment straight H subscript 3 superscript 0 space for space Br subscript 2 left parenthesis straight l right parenthesis space space rightwards arrow space space space space Br subscript 2 left parenthesis straight g right parenthesis space equals space 31 space kJ space mol to the power of negative 1 end exponent
increment straight H subscript 4 superscript 0 space for space Br subscript 2 left parenthesis straight g right parenthesis space equals space 2 space Br left parenthesis straight g right parenthesis space equals space 193 space kJ space mol to the power of negative 1 end exponent
increment straight H subscript 5 superscript 0 space for space Br left parenthesis straight g right parenthesis space plus space straight e to the power of minus left parenthesis straight g right parenthesis space space rightwards arrow space space Br to the power of minus space equals space minus 331 space kJ space mol to the power of negative 1 end exponent
increment straight H subscript 6 superscript 0 space for space Mg to the power of 2 plus end exponent left parenthesis straight g right parenthesis space plus 2 Br to the power of minus left parenthesis straight g right parenthesis space space rightwards arrow space space space MgBr subscript 2 left parenthesis straight s right parenthesis space equals space ?

    Solution

    Using Born-Haber cycle of MgBr2,
    increment subscript straight f straight H to the power of 0 space equals space increment straight H subscript 1 superscript 0 space plus space increment straight H subscript 2 superscript 0 space plus space increment straight H subscript 3 superscript 0 space plus space increment straight H subscript 4 superscript 0 space plus space increment straight H subscript 5 superscript 0 space plus space increment straight H subscript 6 superscript 0
or space space space space space
increment straight H subscript 6 superscript 0 space equals space increment subscript straight f straight H to the power of 0 space minus space increment straight H subscript 1 superscript 0 space minus space increment straight H subscript 2 superscript 0 space minus space increment straight H subscript 3 superscript 0 space minus space increment straight H subscript 4 superscript 0 space minus space increment straight H subscript 5 superscript 0
    Substituting the values, we have,
     = -524 - 148 - 2187 - 31 - 193 - 2 (-331)
     = -2421 kJ mol-1
    Hence lattice enthalpy  = negative increment straight H subscript 6 superscript 0 space equals space 2421 space kJ space mol to the power of negative 1 end exponent

    Question 237
    CBSEENCH11006234

    What do you understand by spontaneous and non-spontaneous processes? 

    Solution

    Spontaneous process. A process which has a natural tendency to take place either by itself or after initiation under a given set of conditions is known as a spontaneous process. For example,
    (i) Sugar dissolve in water and forms a solution.
    Sugar + water  rightwards arrow Solution of sugar in water
    (ii) In the domestic oven, coal keeps on burning once ignited.
    straight C left parenthesis straight s right parenthesis space plus space straight O subscript 2 left parenthesis straight g right parenthesis space space rightwards arrow for ignition of space CO subscript 2 left parenthesis straight g right parenthesis
    Non-spontaneous process: A process that has no natural tendency or urge to take place is called non-spontaneous process. However, many non-spontaneous processes can also be made to take place by supplying energy continuously from some external sources. For example:

    (i) Water can be made to flow uphill by the use of an electric motor pump.
    (ii) Electrolysis of water to separate it into pure hydrogen and pure oxygen.

     
    Question 238
    CBSEENCH11006235

    Is ∆H the only criterion for the feasibility of a process ? Comment.

    Solution
    No, it is a common observation that all systems tend to acquire a state of greater stability
    through the decrease of energy, for example,
    (i) Flow of water down a hill
    (ii) Chemical reactions such as
    straight C left parenthesis straight s right parenthesis space plus space straight O left parenthesis straight g right parenthesis space rightwards arrow space space CO subscript 2 left parenthesis straight g right parenthesis semicolon space space increment straight H space equals space minus 394 space kJ
straight H subscript 2 left parenthesis straight g right parenthesis space plus space 1 half straight O subscript 2 left parenthesis straight g right parenthesis space rightwards arrow space space straight H subscript 2 straight O left parenthesis l right parenthesis semicolon space increment straight H space equals negative 286 space kJ
    In all these cases, the system tends to change from higher energy state to lower energy state. Now a process in which energy of the system decreases has a negative value of ∆H (Exothermic reaction). Thus, a tendency to acquire minimum energy (–∆H) may be taken as the cause of spontaneity.
    Although for most of the spontaneous processes, ∆H is negative, yet it cannot be taken as the only criterion of spontaneity. There are many endothermic reactions (∆H is +ve) which occur spontaneously. For example,
    (i) Ammonium chloride dissolves in water with the absorption of heat i.e. ∆H is +ve.
    (ii) Water evaporates with the absorption of heat.
     
       straight H subscript 2 straight O left parenthesis l right parenthesis space rightwards arrow space space straight H subscript 2 straight O left parenthesis straight g right parenthesis semicolon space space increment straight H space equals space 40.6 space kJ space mol to the power of negative 1 end exponent
    Again there are spontaneous reactions which do not go to completion even though ∆H throughout remains negative.
    There are reactions where ∆H = 0 but still they are spontaneous. For example.
    CH subscript 3 COOH left parenthesis l right parenthesis space plus space straight C subscript 2 straight H subscript 5 OH left parenthesis l right parenthesis space space rightwards arrow space space CH subscript 3 COOC subscript 2 straight H subscript 5 left parenthesis l right parenthesis space plus space straight H subscript 2 straight O left parenthesis l right parenthesis
    Thus, we may conclude that negative value of ∆H is not the sole criterion for determining the spontaneity of the reaction.
    Question 239
    CBSEENCH11006236

    The tendency of a system to acquire a state of maximum randomness is the sole criterion for the spontaneity of a process. Comment.

     

    Solution

    No, there is a natural tendency of a system to attain a state of the greater randomness i.e. more disordered state. For example,
    (i) There is more randomness on mixing of two gases (which do not react chemically).
    (ii) Evaporation of water. The evaporation of water results in increase of randomness because the molecules in the vapour state have more randomness than in the liquid state
       straight H subscript 2 straight O left parenthesis straight l right parenthesis space space space rightwards arrow space space straight H subscript 2 straight O left parenthesis straight g right parenthesis
    (iii) Dissolution of ammonium chloride in water. Solid ammonium chloride has less randomness while in solution ammonium chloride particles move freely as space NH subscript 4 superscript plus space and space Cl to the power of minus space ions and hence randomness increases. 
      NH subscript 4 Cl left parenthesis straight s right parenthesis space plus space water space space space rightwards arrow space space space space NH subscript 4 superscript plus left parenthesis aq right parenthesis space plus space Cl to the power of minus left parenthesis aq right parenthesis
    If the randomness factor were the only criterion, then the process like liquefaction of gas or solidification of a liquid would not have been feasible since these were accompanied by a decrease in randomness. Hence the tendency of a system to acquire a state of maximum randomness is not the sole criterion for determining the spontaneity of the process.

    Question 240
    CBSEENCH11006237

    “Driving force is the overall tendency of a process to occur.” Comment on, the statement.

    Solution

    The overall tendency of a process to occur can be expressed on the resultant of two tendencies namely:
    (i) the tendency to acquire a state of minimum energy, and
    (ii) the tendency to acquire a state of maximum randomness or disorder.
    The overall tendency of a process to take place by itself is called the driving force.
    It should be noted that:
    (i) the two tendencies act independent of each other,
    (ii) the two tendencies may work in the same direction or opposite direction in a process and
    (iii) the driving force is the resultant of the magnitude of the two tendencies. When the two tendencies act in the opposite direction, the tendency with the greater magnitude determines whether the process is feasible or not. For example,
    (a) Evaporation of water. Evaporation of water is endothermic, therefore, energy factor opposes the process. But it is favoured by randomness factor.
    straight H subscript 2 straight O left parenthesis straight l right parenthesis space space space rightwards arrow space space space space stack straight H subscript 2 straight O left parenthesis straight g right parenthesis semicolon with greater space randomness below space space space space space space
space space increment straight H space space asymptotically equal to space plus space 44 space kJ space space

    Since the process is known to take place, randomness factor must be greater than energy factor.
    (b) The reaction between hydrogen and oxygen to form water. It is an exothermic reaction, therefore, favours the process, but randomness factor opposes the reaction.
    straight H subscript 2 left parenthesis straight g right parenthesis space plus space 1 half straight O subscript 2 left parenthesis straight g right parenthesis space space space rightwards arrow space space space space straight H subscript 2 straight O left parenthesis straight l right parenthesis semicolon space
space space increment straight H space equals space minus 286 space kJ
    As the reaction takes place, the energy factor must be greater than the randomness factor.

    Question 241
    CBSEENCH11006238

    Define entropy and entropy change. What are the units of entropy?

    Solution

    The degree of randomness or disorderliness is expressed by a thermodynamic function called entropy. It may be defined as the property of a system which measures the degree of randomness or disorderliness in the system. It is denoted by S. It is a state function. It depends only on the initial and final state of the system and not on the path followed.
    If SA and SB are the entropies at state A and B, then entropy change ∆S is given by
    <pre>uncaught exception: <b>Http Error #404</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php line 61<br />#0 [internal function]: com_wiris_plugin_impl_HttpImpl_0(Object(com_wiris_plugin_impl_HttpImpl), NULL, 'http://www.wiri...', 'Http Error #404')
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('com_wiris_plugi...', Array)
#2 [internal function]: _hx_lambda->execute('Http Error #404')
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(532): call_user_func_array(Array, Array)
#4 [internal function]: haxe_Http_5(true, Object(com_wiris_plugin_impl_HttpImpl), Object(com_wiris_plugin_impl_HttpImpl), Array, Object(haxe_io_BytesOutput), true, 'Http Error #404')
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('haxe_Http_5', Array)
#6 [internal function]: _hx_lambda->execute('Http Error #404')
#7 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(27): call_user_func_array(Array, Array)
#8 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(444): com_wiris_plugin_impl_HttpImpl->onError('Http Error #404')
#9 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(458): haxe_Http->customRequest(true, Object(haxe_io_BytesOutput), NULL, NULL)
#10 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(40): haxe_Http->request(true)
#11 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(80): com_wiris_plugin_impl_HttpImpl->request(true)
#12 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#13 {main}</pre>
    For a chemical reaction, 
    increment straight S space equals space sum for blank of straight S subscript Products space minus space sum for blank of straight S subscript Reactants
    For a reversible process at equilibrium, the change in entropy may be expressed as,
    increment straight S space equals space straight q subscript rev over straight T
    Where qrev represents the total heat absorbed reversibly and isothermally at temperature T.

     A small change in entropy can be represented by dS since entropy is a state function. Thus, we may write
    dS space equals space straight delta subscript straight q subscript rev end subscript over straight T
    Units of entropy: The entropy change is expressed in terms of heat divided by absolute temperature. Thus entropy is expressed in terms of calories per degree i.e. cal deg–1 . This unit is called entropy unit i.e. e.u. In S.I. units, it is expressed in Joules per degree Kelvin i.e. JK–1 . ∆S is an extensive property and therefore its value depends on upon the amount of the substance involved. Therefore, units of entropy will be JK–1 mol–1.
    Question 242
    CBSEENCH11006239

    What is the physical significance of entropy?

    Solution

    Physical significance: Entropy has been regarded as a measure of disorder or randomness of a system. Thus when a system goes from a more orderly to less orderly state, there is an increase in its randomness and hence entropy of the system increases. Conversely, if the change is one in which there is an increase in orderliness, there is a decrease in entropy. For example, when a solid changes to a liquid, an increase in entropy takes place, because with the breaking of the orderly arrangement of the molecules in the crystal to the less orderly liquid state, the randomness increases. The process of vaporisation produces an increase in randomness in the distribution of molecules, hence an increase in entropy. When two gases are mixed, the molecules of the gases intermix to achieve more randomness.
    Thus, this concept of entropy (measure of randomness) has led to the conclusion that all substances in their normal crystalline state at absolute zero temperature would be in the condition of maximum orderly arrangement, because all motion has essentially ceased at ‘0 K.’ In other words, entropy of a substance at 0 K is minimum.

    Question 243
    CBSEENCH11006240

    Account for the following:
    (i) Why does real crystal have more entropy than an ideal crystal?

    (ii) Why the entropy of a pure substance is taken as zero at absolute zero?

    (iii) Why the entropy of the universe is continuously increasing?

    Solution

    (i) An ideal crystal has a perfect order of its constituent particles while a real crystal has less order because of some defects. Therefore, a real crystal has more entropy than an ideal crystal.
    (ii) Because at 0K, there is a complete order in all the crystals and no randomness, therefore, entropy is taken as zero.
    (iii) Because, in the universe, almost all processes are spontaneous and for all spontaneous processes, there is an increase in entropy.

    Question 244
    CBSEENCH11006241

    Which of the following reaction will have a greater change in entropy? Explain.

    <pre>uncaught exception: <b>Http Error #404</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php line 61<br />#0 [internal function]: com_wiris_plugin_impl_HttpImpl_0(Object(com_wiris_plugin_impl_HttpImpl), NULL, 'http://www.wiri...', 'Http Error #404')
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('com_wiris_plugi...', Array)
#2 [internal function]: _hx_lambda->execute('Http Error #404')
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(532): call_user_func_array(Array, Array)
#4 [internal function]: haxe_Http_5(true, Object(com_wiris_plugin_impl_HttpImpl), Object(com_wiris_plugin_impl_HttpImpl), Array, Object(haxe_io_BytesOutput), true, 'Http Error #404')
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('haxe_Http_5', Array)
#6 [internal function]: _hx_lambda->execute('Http Error #404')
#7 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(27): call_user_func_array(Array, Array)
#8 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(444): com_wiris_plugin_impl_HttpImpl->onError('Http Error #404')
#9 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(458): haxe_Http->customRequest(true, Object(haxe_io_BytesOutput), NULL, NULL)
#10 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(40): haxe_Http->request(true)
#11 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(80): com_wiris_plugin_impl_HttpImpl->request(true)
#12 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#13 {main}</pre>

    Solution
    Entropy increases in both the reactions. This is because the number of gaseous particles increases in both the cases.
    In reaction (i), all the products are molecules whereas, in reaction (ii), one-half of the particles are atoms which have no possibility of molecular vibrations. Hence reaction (i) has a greater change in entropy.
    Question 246
    CBSEENCH11006243

    In the following changes, state whether order has increased or decreased and consequently the direction of change of entropy of the system:

    left parenthesis straight i right parenthesis space straight H subscript 2 straight O left parenthesis straight l right parenthesis space space space space rightwards arrow space space space straight H subscript 2 straight O left parenthesis straight s right parenthesis
left parenthesis ii right parenthesis space Dry space ice space left parenthesis solid space CO subscript 2 right parenthesis space space rightwards arrow space space space CO subscript 2 left parenthesis straight g right parenthesis
left parenthesis iii right parenthesis space Steam space space rightwards arrow space space space water

    Solution

    (i) The order has increased, entropy decreases in the forward direction. 
    (ii) The order has decreased, entropy increases in the forward direction.
    (iii) The order has increased, entropy decreases in the forward direction.

    Question 247
    CBSEENCH11006244

    In the following changes, state whether order has increased or decreased and consequently by the direction of change of entropy of the system:

    left parenthesis straight i right parenthesis space Cr to the power of 3 plus end exponent space plus space 6 straight H subscript 2 straight O left parenthesis aq right parenthesis space space rightwards arrow space space Cr left parenthesis straight H subscript 2 straight O right parenthesis subscript 6 superscript 3 plus end superscript

left parenthesis ii right parenthesis space CO subscript 2 plus straight H subscript 2 straight O space rightwards arrow from Photosynthesis to Light of space space Carbohydrates space plus space straight O subscript 2

left parenthesis iii right parenthesis space Proteins space left parenthesis helical space form right parenthesis space space rightwards arrow with denaturation on top space Proteins space
left parenthesis random space coil space form right parenthesis

left parenthesis iv right parenthesis space Normal space egg space rightwards arrow space space hard space boiled space egg.

    Solution

    (i) The order has increased, entropy decreases in the forward direction.
    (ii) The order has increased, entropy decreases in the forward direction.
    (iii) The order has increased entropy decreases in the forward direction.
    (iv) The order has increased, entropy decreases in the forward direction.
    [Hint. Boiled egg is solid and less disordered as an ordinary normal egg which is a liquid].

    Question 248
    CBSEENCH11006245

    Will entropy increased or decrease during boiling of an egg? Comment on the statement.

    Solution
    Entropy increases during boiling of an egg, denaturation of proteins occur due to cleavage of hydrogen bond (H-bonds are broken). Since denatured proteins have a large number of random configuration whereas a normal protein exists in a particular configuration.

    Question 249
    CBSEENCH11006246

    The entropy of steam is more than that of water at its boiling point. Explain.

    Solution
    At the boiling point, both water and steam (water vapours) exist together and are in equilibrium. However, the entropy of steam is more because of greater randomness of the H2O molecules in the gaseous state than in the liquid state. 
    Question 250
    CBSEENCH11006247

    For an isolated system, ∆U = 0, what will be ∆S ?

    Solution

    Consider two bulbs each having gas connected by a stop-cock and isolated from the surrounding as an example of an isolated system. On opening the stop cock, the two gases mix up. As a result, more space is available for each gas to move apart i.e. system becomes more disordered. This shows that ∆S > 0 i.e. ∆S is positive.
      

    Question 251
    CBSEENCH11006248

    For the reaction 2 Cl left parenthesis straight g right parenthesis space rightwards arrow space space Cl subscript 2 left parenthesis straight g right parenthesis comma what are the signs of increment straight H space and space increment straight S.?

    Solution

    Since the given reaction
    <pre>uncaught exception: <b>Http Error #404</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php line 61<br />#0 [internal function]: com_wiris_plugin_impl_HttpImpl_0(Object(com_wiris_plugin_impl_HttpImpl), NULL, 'http://www.wiri...', 'Http Error #404')
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('com_wiris_plugi...', Array)
#2 [internal function]: _hx_lambda->execute('Http Error #404')
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(532): call_user_func_array(Array, Array)
#4 [internal function]: haxe_Http_5(true, Object(com_wiris_plugin_impl_HttpImpl), Object(com_wiris_plugin_impl_HttpImpl), Array, Object(haxe_io_BytesOutput), true, 'Http Error #404')
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('haxe_Http_5', Array)
#6 [internal function]: _hx_lambda->execute('Http Error #404')
#7 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(27): call_user_func_array(Array, Array)
#8 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(444): com_wiris_plugin_impl_HttpImpl->onError('Http Error #404')
#9 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(458): haxe_Http->customRequest(true, Object(haxe_io_BytesOutput), NULL, NULL)
#10 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(40): haxe_Http->request(true)
#11 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(80): com_wiris_plugin_impl_HttpImpl->request(true)
#12 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#13 {main}</pre>
    represents the formation of bonds, therefore energy is released i.e. ∆H is –ve, further 2 moles of atoms have greater randomness than 1 mole of molecules. Hence randomness decreases, i.e. ∆S is < 0 i.e. negative.     

    Question 252
    CBSEENCH11006249

    Prove that in a reversible process:
    (system) + ∆S(surroundings) = 0
    Or
    Prove that there is no net change in entropy in a reversible process.

    Solution

    Suppose heat is absorbed by the system reversible and the heat is lost by the surroundings also reversibly (process occurs under complete reversible condition).
    If qrev is the heat absorbed by the system reversibly, then the heat lost by the surroundings will also be qrev. If the process takes place isothermally at T kelvin, then Entropy change of the system
    straight S subscript system space equals space straight q subscript rev over straight T space space space space... left parenthesis 1 right parenthesis 
    Entropy change of the surroundings
    <pre>uncaught exception: <b>Http Error #404</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php line 61<br />#0 [internal function]: com_wiris_plugin_impl_HttpImpl_0(Object(com_wiris_plugin_impl_HttpImpl), NULL, 'http://www.wiri...', 'Http Error #404')
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('com_wiris_plugi...', Array)
#2 [internal function]: _hx_lambda->execute('Http Error #404')
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(532): call_user_func_array(Array, Array)
#4 [internal function]: haxe_Http_5(true, Object(com_wiris_plugin_impl_HttpImpl), Object(com_wiris_plugin_impl_HttpImpl), Array, Object(haxe_io_BytesOutput), true, 'Http Error #404')
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('haxe_Http_5', Array)
#6 [internal function]: _hx_lambda->execute('Http Error #404')
#7 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(27): call_user_func_array(Array, Array)
#8 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(444): com_wiris_plugin_impl_HttpImpl->onError('Http Error #404')
#9 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(458): haxe_Http->customRequest(true, Object(haxe_io_BytesOutput), NULL, NULL)
#10 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(40): haxe_Http->request(true)
#11 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(80): com_wiris_plugin_impl_HttpImpl->request(true)
#12 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#13 {main}</pre>
    Hence the total entropy change for the combined system and surroundings will be:
    increment straight S subscript sytem space plus space increment straight S subscript surroundings space equals space straight q subscript rev over straight T space minus space straight q subscript rev over straight T space equals space 0 space space space space... left parenthesis 3 right parenthesis
    Hence in a reversible process, the net entropy change for the combined system and the surroundings is zero i.e. there is no net change in entropy. 

    Question 253
    CBSEENCH11006250

    Prove that in an irreversible process:
    ∆S(system) + ∆S(surroundings) > 0

    Solution

    If any part of the process is irreversible, the process as a whole is irreversible. Suppose the total heat lost by the surrounding is qirrev. This heat is absorbed by the system. However, entropy change of the system is always calculated from the heat absorbed reversibly.
     Thus comma space increment straight S subscript system space equals space straight q subscript rev over straight T space space space space space... left parenthesis 1 right parenthesis
    Entropy change of the surroundings is given by
    <pre>uncaught exception: <b>Http Error #404</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php line 61<br />#0 [internal function]: com_wiris_plugin_impl_HttpImpl_0(Object(com_wiris_plugin_impl_HttpImpl), NULL, 'http://www.wiri...', 'Http Error #404')
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('com_wiris_plugi...', Array)
#2 [internal function]: _hx_lambda->execute('Http Error #404')
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(532): call_user_func_array(Array, Array)
#4 [internal function]: haxe_Http_5(true, Object(com_wiris_plugin_impl_HttpImpl), Object(com_wiris_plugin_impl_HttpImpl), Array, Object(haxe_io_BytesOutput), true, 'Http Error #404')
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('haxe_Http_5', Array)
#6 [internal function]: _hx_lambda->execute('Http Error #404')
#7 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(27): call_user_func_array(Array, Array)
#8 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(444): com_wiris_plugin_impl_HttpImpl->onError('Http Error #404')
#9 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(458): haxe_Http->customRequest(true, Object(haxe_io_BytesOutput), NULL, NULL)
#10 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(40): haxe_Http->request(true)
#11 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(80): com_wiris_plugin_impl_HttpImpl->request(true)
#12 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#13 {main}</pre>
    This is because of the large size of the surroundings due to which heat lost (qirrev) by the surroundings can be considered as the heat lost reversibly and isothermally at temperature T.
    The total entropy change for the combined system and surroundings is
    increment straight S subscript left parenthesis system right parenthesis end subscript space plus space increment straight S subscript left parenthesis surroundings right parenthesis end subscript space equals space straight q subscript rev over straight T space minus space straight q subscript irrev over straight T space space... left parenthesis 3 right parenthesis
    We know that the work done in a reversible process is the maximum work.
                            straight w subscript rev greater than space straight w subscript irrev space space space space space... left parenthesis 4 right parenthesis
    Also, internal energy (U) is a state function, the value of U is same whether the process is carried out reversibly or irreversibly. Hence
         increment straight U space equals space straight q subscript rev space minus space straight w subscript rev space space space space space
space space space space space space space equals straight q subscript irrev space minus space straight w subscript irrev space space space space space... left parenthesis 5 right parenthesis
    From relation (4) and (5), we conclude that
                              straight q subscript rev greater than space straight q subscript irrev
    because space space space space straight q subscript rev over straight T greater than space straight q subscript irrev over straight T
or space space space space space straight q subscript rev over straight T space minus space straight q subscript irrev over straight T greater than 0 space space space space space space... left parenthesis 6 right parenthesis
    Combining the result with the result given in equation (3),
           increment straight S subscript system space plus space increment straight S subscript surroundings greater than 0
    Thus, in an irreversible process, the entropy change for the combined system and the surroundings i.e. an isolated system is greater than zero i.e. an irreversible process is accompanied by a net increase of entropy.

    Question 254
    CBSEENCH11006251

    What do you understand by:
    (i) The entropy of fusion?
    (ii) The entropy of vapourisation ?

    Solution

    (i) The entropy of fusion. It may be defined as the entropy change when one mole of the solid substance changes into liquid form at its melting point. For example when ice melts as
          Water space rightwards harpoon over leftwards harpoon space space Water space left parenthesis straight l right parenthesis comma space space then
increment straight S subscript fusion space equals space straight S subscript water space minus space straight S subscript ice space equals space fraction numerator increment straight H subscript fusion over denominator straight T subscript straight f end fraction
    where ∆Hfusion is the enthalpy of fusion and Tis the fusion temperature. Since ∆Hfus is +ve, therefore ∆Sjfus is +ve, hence the process of fusion is accompanied by an increase of entropy.
    (ii) The entropy of vapourisation. It may be defined as the entropy change when one mole of the liquid changes into vapour at its boiling point.
           Liquid space rightwards harpoon over leftwards harpoon space space Gas
Mathematically comma space space space increment straight S subscript vap space equals space straight S subscript vap space minus space straight S subscript liq space equals space fraction numerator increment straight H subscript vap over denominator straight T subscript straight b end fraction
whereas space space increment straight S subscript vap space equals Entropy space of space vapourisation
space space space space space space space space space space space space space increment straight H subscript vap space equals space Enthalpy space of space vapourisation
space space space space space space space space space space space space space straight T subscript straight b space equals space Boiling space temperature space in space degree space kelvin.
    Since ∆Hvap is +ve, therefore ∆Svap is +ve, hence the process of vapourisation is accompanied by an increase of entropy.

    Question 255
    CBSEENCH11006252
    Question 258
    CBSEENCH11006255

    Calculate the entropy change in surroundings when 1.00 mol of H2O(l) is formed under standard conditions. ∆fH0 = –286 kJ mol–1.

    Solution

    The thermochemical equation is,
    space straight H subscript 2 left parenthesis straight g right parenthesis space plus space 1 half straight O subscript 2 space space space rightwards arrow space space straight H subscript 2 straight O left parenthesis l right parenthesis semicolon space triangle subscript straight f straight H to the power of 0 space equals space minus 286 space kJ space mol to the power of negative 1 end exponent
    From the above equation, it is clear that when 1 mol of H2O(l) is formed, 286 kJ of heat is released. The same amount of heat is absorbed by the surroundings.
    straight i. straight e. space space space space straight q subscript surr space equals space plus 286 space kJ space mol to the power of negative 1 end exponent
We space know comma space
increment straight S space equals space straight q subscript surr over straight T space equals space fraction numerator 286 space kJ space mol to the power of negative 1 end exponent over denominator 298 space straight K end fraction
space space space space equals space 0.9597 space kJ space straight K to the power of negative 1 end exponent mol to the power of negative 1 end exponent
space space space space equals space 959.7 space JK to the power of negative 1 end exponent space mol to the power of negative 1 end exponent

space space

    Question 259
    CBSEENCH11006256

    What are the two tendencies which determine the feasibility of process? How are the two related to each other?

    Solution

    The following two tendencies are responsible for determining the feasibility of a process:
    (i) The tendency of a system to acquire a state of minimum energy i.e. energy factor. It is expressed in terms of enthalpy change (∆H). A negative value of ∆H suggests that system has the tendency to proceed.
    (ii) The tendency of a system to acquire a state of maximum randomness i.e. randomness factor. It is expressed by T∆S where T is the absolute temperature and ∆S is the change in entropy. A positive value of T∆S indicates an inherent tendency of a process to occur.
    Relation between two tendencies:
    The overall tendency or the driving force of a process is expressed in terms of free energy change (∆G). This is expressed as ∆G = ∆H – T∆S
    This equation is called Gibb’s Helmholtz equation. For a spontaneous process, ∆G should have a negative value i.e. the system should undergo a decrease in its free energy.

     
    Question 260
    CBSEENCH11006257

    what is free energy? Prove that ∆G = ∆H – T∆S.

    Solution
    Free energy is a thermodynamic quantity and refers to the capacity of the system to do useful work. It may be defined as the amount of energy available from a system that can be put into useful work. Mathematically, free energy (G) is defined by the relation:
    G = H - TS     ...(1)
    where H is the heat content. T is absolute temperature and S is the entropy of the system. 
    H = U + PV
    therefore space space straight G space equals space straight U plus PV space minus space TS space space space space space space space... left parenthesis 2 right parenthesis
    The change in free energy (∆G) during the process may be expressed as:
    space increment straight G space equals space increment straight U space plus space increment left parenthesis PV right parenthesis space minus space increment left parenthesis TS right parenthesis space space space... left parenthesis 3 right parenthesis
    If the process is carried out at constant pressure and constant temperature, then
    space space space space space space space increment left parenthesis PV right parenthesis space equals space straight P increment straight V
and space space space increment left parenthesis TS right parenthesis space equals space straight T increment straight S
    Substituting the values in (3), we have,
    increment straight G space equals space increment straight U space plus space straight P increment straight V space minus space straight T increment straight S
    But at constant temperature and constant pressure. 
                     increment straight U space plus space straight P increment straight V space equals space increment straight H   
    Hence,
          
       increment straight G space equals space increment straight H space minus space straight T increment straight S space space space space space space... left parenthesis 4 right parenthesis
    This equation (4) is known as Gibb's Helmholtz equation. 
    Question 261
    CBSEENCH11006258

    Explain Gibb's Helmholtz equation.

    Solution

    Gibbs-Helmholtz equation is
                           increment straight G space equals space increment straight H space minus space straight T increment straight S
         where space increment straight G space equals free space energy space change
space space space space space space space space space increment straight H space equals space change space in space enthalpy space and
space space space space space space space space space straight T increment straight S space equals space change space in space randomness space at space temperature space straight T.
    Significance of increment straight G.
    The value of ∆G can be zero, positive or negative.
    (i) If ∆G = 0, the reaction is in the state of equilibrium i.e. ∆H = T∆S.
    (ii) If ∆G = – ve, the reaction is spontaneous in the forward direction.
    (iii) If ∆G = +ve, the reaction is non-spontaneous i.e. reaction is spontaneous in the reverse direction.

    Question 262
    CBSEENCH11006259

    Explain the state of reaction when:
    (a) ∆G < 0   (b) ∆G = 0   (c) ∆G > 0.

    Solution

    (a) If ∆G < 0 i.e. negative, the reaction will be spontaneous. ∆G can be negative if:
    (i) Both energy and the entropy factors are favourable and may have any magnitude i.e. ∆H is –ve and T∆S are +ve.
    (ii) When energy factor favours (∆H= –ve), but entropy factor opposes (T∆S = –ve), but ∆H ( –ve) > T∆S (–ve).
    (iii) When energy factor is not favouring (∆H = +ve) but entropy factor favours (T∆S = +ve). But T∆S (+ve) > ∆H (+ve).
    (b) ∆G = 0, the reaction is in an equilibrium state and thus there is no net change in either direction.
    This happens when one of the factors is favourable and the other is opposite but they are equal in magnitude.
    (c) ∆G > 0 i.e. +ve, the reaction will not be spontaneous, ∆G can be positive if:
    (i) both the factors oppose i.e. ∆H is +ve and T∆S is –ve,
    (ii) both the factors i.e. ∆H and T∆S have –ve sign and T∆S > ∆H,
    (iii) both the factors i.e. ∆H and T∆S have a +ve sign and ∆H > T∆S.

    Question 263
    CBSEENCH11006260

    When ∆G is positive, the process is always non-spontaneous. Explain.

    Solution

    ∆G can be positive only if;
    (i) both the factors oppose i.e. ∆H is +ve and T∆S is –ve,
    (ii) both the factors i.e. ∆H and T∆S have a negative sign and T∆S > ∆H,
    (iii) both the factors i.e. ∆H and T∆S have a +ve sign and ∆H > T∆S.

    Question 264
    CBSEENCH11006261

    Prove that ∆G = –T∆Stotal.

    Solution

    The change in entropy in a process carried out in a non-isolated system is given by
    ∆Stotal = ∆Ssystem + ∆Ssurroundings ...(1)
    Consider an isothermal process carried out at constant pressure in which heat q is transferred by the surroundings to the system.
    increment straight S subscript surroundings space equals space fraction numerator negative straight q over denominator straight T end fraction
But space straight q subscript straight p space equals space increment straight H
therefore space space space increment straight S subscript surroundings space equals space minus fraction numerator increment straight H over denominator straight T end fraction
    Substituting this value in (1), we have,
                        increment straight S subscript total space equals space increment straight S space minus space fraction numerator increment straight H over denominator straight T end fraction 
              or space space space space space straight T increment straight S subscript total space equals space straight T increment straight S space minus space increment straight H
or space space space space space minus straight T increment straight S subscript total space equals space increment straight H space minus space straight T increment straight S
But space space space space space space space space increment straight G space equals space increment straight H space minus space straight T increment straight S
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets Gibb apostrophe straight s space minus Helmoltz space equation close square brackets
therefore space space space space space space space space space increment straight G space space equals space minus straight T increment straight S subscript total space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis space space space space space space space space space space space space space space space  
     
    It has been shown that increment straight S subscript total must be positive for a process to be spontaneous. Therefore, equation (2) becomes useful in predicting the spontaneity of a process in terms of ∆G.

    Question 265
    CBSEENCH11006262

    What is free energy change? Show that the change in free energy is equal to useful work done.
    or
    prove that –∆G = w(useful work)

    Solution

    (i) The overall criterion of a process to occur spontaneously i.e. driving force is expressed in terms of free energy change (∆G).
    Free energy change (∆G) is related to enthalpy change (∆H) and entropy change (∆S) as ∆G = ∆H – T∆S [Gibbs-Helmoltz equation] For a spontaneous process, ∆G should have negative value.
    (ii) According to first law of thermodynamics,
    increment straight U space equals space straight q plus straight w
    where q is heat absorbed by the system. ∆U is the change in internal energy and w is the work done on the system.
    If we are to determine the work a system can do, then w should be taken as – w.
    therefore space space space space space increment straight U space equals space straight q minus straight w
or space space space space space space space straight q space equals space increment straight U space plus straight w
    Now w includes expansion as well as non-expansion work. 
    straight q space equals space increment straight U space plus space straight w subscript exp space plus space straight w subscript non minus exp end subscript space space space... left parenthesis 1 right parenthesis
    But work due to expansion at constant temperature is given by P∆V.
    therefore space space space straight w subscript exp space equals space straight P increment straight V
    wnon-exp is also called useful work because this type of work can be used for useful effect e.g. electrical work.
    therefore space space equation space left parenthesis 1 right parenthesis space becomes
therefore space space space space space space space space space space space straight q space equals space increment straight U space plus space straight P increment straight V space plus space straight w subscript non minus exp end subscript
or space space space space space space space space space space space space straight q space equals space increment straight H space plus space straight w subscript non minus exp end subscript
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets because space increment straight H space equals space increment straight U space plus space straight P increment straight V close square brackets
But space space space space space space space increment straight S space equals space straight q subscript rev over straight T
space therefore space space space space space space space space straight q subscript rev space equals space straight T increment straight S
    Substituting this value in (2), we have,
                           space straight T increment straight S space equals space increment straight H plus space straight w subscript non minus exp end subscript
    or     increment straight H space minus space straight T increment straight S space equals space minus straight w subscript non minus exp end subscript
           But space increment straight G space equals space increment straight H minus space straight T increment straight S
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets Gibb apostrophe straight s space Helmoltz space equation close square brackets
    therefore space space space space increment straight G space equals space minus straight w subscript nonexp
or space space space space space space minus increment straight G space equals space straight w subscript nonexp
    This means that decrease in free energy of a system (–∆G) is a measure of the non-expansion or useful work done by the system in a process or –∆G = wuseful work

    Question 266
    CBSEENCH11006263

    Predict the enthalpy change, free energy change and entropy change when ammonium chloride is dissolved in water and the solution becomes colder.

    Solution

    (i) Enthalpy change is positive since the solution becomes colder due to intake of heat from the solution.
    (ii) Free energy change is negative since the dissolution of ammonium chloride takes place spontaneously.
    (iii) Entropy change is positive since more ordered solid ammonium chloride is changed to less ordered solution of ammonium chloride containing larger number of ions left parenthesis NH subscript 4 superscript plus comma space space Cl to the power of minus right parenthesis.

    Question 267
    CBSEENCH11006264
    Question 268
    CBSEENCH11006265
    Question 269
    CBSEENCH11006266

    The following data is known about ZnSO4:
    increment straight H space equals space 7.25 space kJ space mol to the power of negative 1 end exponent space and space increment straight S space equals space 7.0 space JK to the power of negative 1 end exponent space mol to the power of negative 1 end exponent Calculate its melting point.

    Solution

    At melting point, increment straight G space equals space 0 semicolon
                       increment straight H space equals space 7.25 space kJ space mol to the power of negative 1 end exponent semicolon
increment straight S space equals space 7.0 space JK to the power of negative 1 end exponent space mol to the power of negative 1 end exponent
space space space space space space space equals space 7.0 space cross times space 10 to the power of negative 3 end exponent kJ space straight K to the power of negative 1 end exponent space mol to the power of negative 1 end exponent
       Now comma space space space increment straight H space equals space straight T increment straight S
therefore space space space space space space space straight T space equals space fraction numerator increment straight H over denominator increment straight S end fraction space equals space fraction numerator 7.25 space kJ space mol to the power of negative 1 end exponent over denominator 7 cross times 10 to the power of negative 3 end exponent space kJK to the power of negative 1 end exponent space mol to the power of negative 1 end exponent end fraction
space space space space space space space space space space space equals 1035.7 space straight K

    Question 270
    CBSEENCH11006267

    From the following values of ∆H and ∆S, decide whether or not these reactions will be spontaneous at 298 K:

    Reaction A:
    ∆H = – 10.5 X 103 J mol–1
    ∆S = + 31 JK–1 mol–1

    Reaction B:
    ∆H = – 11.7 X 103 J mol–1 ;
    ∆S = –105 jK–1 mol–1.

    Solution

    (i) Reaction A:
    According to Gibb’s Helmholtz equation,
    increment straight G space equals space increment straight H space minus space straight T increment straight S
space space space space equals space minus 10.5 space cross times space 10 cubed straight J space mol to the power of negative 1 end exponent space minus left parenthesis 298 space straight K right parenthesis space cross times space left parenthesis 31 space JK to the power of negative 1 end exponent space mol to the power of negative 1 end exponent right parenthesis
space space space space equals space minus 10500 space straight J space mol to the power of negative 1 end exponent space minus 9238 space straight J space mol to the power of negative 1 end exponent
space space space space equals space minus 19738 space straight J space mol to the power of negative 1 end exponent
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space
    Since ∆G is –ve, the reaction A will be spontaneous at 298 K.
    (ii) Reaction B:
      increment straight G space equals space increment straight H space minus space straight T increment straight S
space space space space space space space equals space minus 11.7 space cross times space 10 cubed straight J space mol to the power of negative 1 end exponent
space space space space space space space space space space space space space space space space space space space space space space space space space space space minus left parenthesis 298 space straight K right parenthesis space cross times space left parenthesis negative 105 space JK to the power of negative 1 end exponent space mol to the power of negative 1 end exponent right parenthesis
space space space space space space equals negative 11700 space straight J space mol to the power of negative 1 end exponent space plus space 31290 space straight J space mol to the power of negative 1 end exponent
space space space space space space equals space 19590 space straight J space mol to the power of negative 1 end exponent
    As ∆G is +ve, the reaction B will not be spontaneous at 298 K.

    Question 271
    CBSEENCH11006268

    Calculate the free energy change of the reaction straight C left parenthesis graphite right parenthesis space plus space straight O subscript 2 left parenthesis straight g right parenthesis space space space rightwards arrow space space space CO subscript 2 left parenthesis straight g right parenthesis
    left parenthesis Given space increment straight H space equals space minus 300 space kJ space mol to the power of negative 1 end exponent semicolon space space increment straight S space equals space 3 space JK to the power of negative 1 end exponent space mol to the power of negative 1 end exponent space at space 300 space straight K right parenthesis.

    Solution

    According to Gibb's Helmoltz equation,
                      increment straight G space equals space increment straight H space minus space straight T increment straight S space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
    Here          increment straight H space equals space minus 300 space kJ space mol to the power of negative 1 end exponent
                            equals space minus 30000 space straight J space mol to the power of negative 1 end exponent
                            increment straight S space equals space 3 space JK to the power of negative 1 end exponent space mol to the power of negative 1 end exponent space space and space straight T space equals space 300 space straight K
    Substituting the values in (1), we have,
       increment straight G space equals space minus 30000 space straight J space mol to the power of negative 1 end exponent space minus space left parenthesis 300 space straight K right parenthesis space cross times space left parenthesis 3 JK to the power of negative 1 end exponent space mol to the power of negative 1 end exponent right parenthesis
space space space space space space space equals space minus 30000 space straight J space mol to the power of negative 1 end exponent space minus 900 space straight J space mol to the power of negative 1 end exponent
space space space space space space space equals space minus 30900 space straight J space mol to the power of negative 1 end exponent
or space space space space minus 30.9 space kJ

    Question 272
    CBSEENCH11006269

    For the reaction:
    straight N subscript 2 left parenthesis straight g right parenthesis space plus space 3 straight H subscript 2 left parenthesis straight g right parenthesis space space rightwards arrow space space 2 NH subscript 3 left parenthesis straight g right parenthesis comma
    increment straight H equals negative 95.4 space kJ space and space increment straight S space equals space minus 198.3 space kJ divided by straight K.

    Calculate the temperature at which it attains equilibrium.


    Solution

    According to Gibb's Helmoltz equation,
                increment straight G space equals space increment straight H space minus space straight T increment straight S
    which it attains equilibrium,
    increment straight G space equals space 0
          0 space equals space increment straight H space minus space straight T increment straight S
        or space space increment straight H space equals space straight T increment straight S
therefore space space space space space straight T space equals space fraction numerator increment straight H over denominator increment straight S end fraction space equals space fraction numerator negative 95.4 space kJ over denominator negative 198.3 space kJ space straight K to the power of negative 1 end exponent end fraction space equals space 0.48 space straight K.

    Question 273
    CBSEENCH11006270

    At what temperature, reduction of lead oxide to lead by carbon
                                    PbO left parenthesis straight s right parenthesis space plus space straight C left parenthesis straight s right parenthesis space space space rightwards arrow space space Pb left parenthesis straight s right parenthesis space plus space CO left parenthesis straight g right parenthesis
    becomes spontaneous? For this reason increment straight H space and space increment straight S are 108.4 kJ mol-1 and 190.0 JK-1 mol-1 respectively. increment straight G space equals space increment straight H space minus space straight T increment straight S

    Solution

    According to Gibb's Helmoltz equation  increment straight G space equals space increment straight H space minus space straight T increment straight S
    At equilibrium,
     increment straight G space equals space 0
space space space space space 0 space equals space increment straight H space minus straight T increment straight S
or space space straight T space equals space fraction numerator increment straight H over denominator increment straight S end fraction                   
      Here space increment straight H space equals space 108.4 space kJ space mol to the power of negative 1 end exponent
space space space space space space space space space space space space space equals space 108400 space straight J space mol to the power of negative 1 end exponent
space space increment straight S space equals space 190.0 space JK to the power of negative 1 end exponent space mol to the power of negative 1 end exponent
    therefore space space space space straight T space equals space fraction numerator 108400 space straight J space mol to the power of negative 1 end exponent over denominator 190.0 space JK to the power of negative 1 end exponent space mol to the power of negative 1 end exponent end fraction space equals space 570.5 space straight K
    Above this temperature, ∆G will be negative and the reaction will become spontaneous.

    Question 274
    CBSEENCH11006271

    For the reaction at 298 K
                      2 straight A plus straight B rightwards arrow straight C
    increment straight H space equals space 400 space kJ space mol to the power of negative 1 end exponent space and space increment straight S space equals space 0.2 space kJ space straight K to the power of negative 1 end exponent mol to the power of negative 1 end exponent.

    At what temperature will the reaction become spontaneous considering increment straight H space and space increment straight S to be constant over the temperature range?

    Solution

    According to Gibb's Helmholtz equation,
                         space increment straight G space minus space increment straight H space minus space straight T increment straight S
    At equilibrium,
                    increment straight G space equals space 0
space space space space space 0 space equals space increment straight H space minus space straight T increment straight S
or space space space straight T space equals space fraction numerator increment straight H over denominator increment straight S end fraction space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
     Here space space increment straight H space equals space 400 space kJ space mol to the power of negative 1 end exponent
space space space space space space space space space space increment straight S space equals space 0.2 space kJ space straight K to the power of negative 1 end exponent space mol to the power of negative 1 end exponent
    Substituting the values in equation (1), we get
              straight T space equals space fraction numerator 400 space kJ space mol to the power of negative 1 end exponent over denominator 0.2 space kJ space straight K to the power of negative 1 end exponent mol to the power of negative 1 end exponent end fraction space equals space 2000 space straight K
    Above this temperature, ∆G will be negative and reaction becomes spontaneous.
                                            

    Question 275
    CBSEENCH11006272

    For the reaction 
        2 straight A left parenthesis straight g right parenthesis space plus space straight B left parenthesis straight g right parenthesis space space space rightwards arrow space space space 2 straight D left parenthesis straight g right parenthesis
increment straight U to the power of 0 space equals space minus 10.5 space kJ space and space increment straight S to the power of 0 space equals space minus 44.1 space JK to the power of negative 1 end exponent.

    Calculate increment straight G to the power of 0 for the reaction and predict whether the reaction may occur spontaneously. 

    Solution

    We know, 
         <pre>uncaught exception: <b>Http Error #404</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php line 61<br />#0 [internal function]: com_wiris_plugin_impl_HttpImpl_0(Object(com_wiris_plugin_impl_HttpImpl), NULL, 'http://www.wiri...', 'Http Error #404')
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('com_wiris_plugi...', Array)
#2 [internal function]: _hx_lambda->execute('Http Error #404')
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(532): call_user_func_array(Array, Array)
#4 [internal function]: haxe_Http_5(true, Object(com_wiris_plugin_impl_HttpImpl), Object(com_wiris_plugin_impl_HttpImpl), Array, Object(haxe_io_BytesOutput), true, 'Http Error #404')
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('haxe_Http_5', Array)
#6 [internal function]: _hx_lambda->execute('Http Error #404')
#7 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(27): call_user_func_array(Array, Array)
#8 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(444): com_wiris_plugin_impl_HttpImpl->onError('Http Error #404')
#9 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(458): haxe_Http->customRequest(true, Object(haxe_io_BytesOutput), NULL, NULL)
#10 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(40): haxe_Http->request(true)
#11 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(80): com_wiris_plugin_impl_HttpImpl->request(true)
#12 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#13 {main}</pre>  Here comma space space increment straight U to the power of 0 space equals space minus 10.5 space kJ semicolon space space straight R space equals space 8.314 space cross times space 10 to the power of negative 3 end exponent kJ semicolon space space straight T space equals space 298 space straight K
    increment ng space equals space straight n subscript straight p space minus space straight n subscript straight r space equals space 2 minus 3 space equals space minus 1
    Substituting the values in equation (1), we get
      increment straight H to the power of 0 space equals space minus 10.5 space kJ plus left parenthesis negative 1 right parenthesis thin space left parenthesis 8.314 space cross times space 10 to the power of negative 3 end exponent space kJ space left parenthesis 298 right parenthesis
space space space space space space space equals negative 10.5 space minus 2.48 space equals negative 12.198 space kJ
    According to Gibb's Helmholtz equation,
      space space space space space increment straight G to the power of 0 space equals space increment straight H to the power of 0 space minus space straight T increment straight S to the power of 0
therefore space space space increment straight G to the power of 0 space equals space minus 12.98 space kJ space minus space 298 left parenthesis negative 44.1 space cross times space 10 to the power of negative 3 end exponent kJ right parenthesis
space space space space space space space space space space space space space equals space minus 12.98 space kJ space plus space 13.14 space kJ space equals space 0.16 space space kJ
               
    Since ∆G0 is positive, the reaction will not occur spontaneously.

    Question 276
    CBSEENCH11006273

    For the reaction
    <pre>uncaught exception: <b>Http Error #404</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php line 61<br />#0 [internal function]: com_wiris_plugin_impl_HttpImpl_0(Object(com_wiris_plugin_impl_HttpImpl), NULL, 'http://www.wiri...', 'Http Error #404')
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('com_wiris_plugi...', Array)
#2 [internal function]: _hx_lambda->execute('Http Error #404')
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(532): call_user_func_array(Array, Array)
#4 [internal function]: haxe_Http_5(true, Object(com_wiris_plugin_impl_HttpImpl), Object(com_wiris_plugin_impl_HttpImpl), Array, Object(haxe_io_BytesOutput), true, 'Http Error #404')
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('haxe_Http_5', Array)
#6 [internal function]: _hx_lambda->execute('Http Error #404')
#7 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(27): call_user_func_array(Array, Array)
#8 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(444): com_wiris_plugin_impl_HttpImpl->onError('Http Error #404')
#9 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(458): haxe_Http->customRequest(true, Object(haxe_io_BytesOutput), NULL, NULL)
#10 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(40): haxe_Http->request(true)
#11 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(80): com_wiris_plugin_impl_HttpImpl->request(true)
#12 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#13 {main}</pre>
    increment straight H space equals space 30.56 space kJ space mol to the power of negative 1 end exponent space and space increment straight S space equals space 0.06 space kJK to the power of negative 1 end exponent space mol to the power of negative 1 end exponent left parenthesis at space 1 space atm right parenthesis, calculate the temperature at which increment straight G is equal to zero. Also predict the direction of the reaction at:
    (i) temperature
    (ii) below this temperature

    Solution

    Let increment straight G be zero at temperature TK.
      Now comma space increment straight G space equals space increment straight H space minus space straight T increment straight S
therefore space space space space space space space 0 space equals space increment straight H space minus space straight T increment straight S
therefore space space space space space space space straight T space equals space fraction numerator increment straight H over denominator increment straight S end fraction space equals space fraction numerator 30.56 space kJ space mol to the power of negative 1 end exponent over denominator 0.066 space kJ space straight K to the power of negative 1 end exponent space mol to the power of negative 1 end exponent end fraction
space space space space space space space space space equals space 463.03 space straight K
    (i) At this temperature, the reaction proceeds in either direction at the same rate and it represents the state of equilibrium. 
    (ii) Below this temperature,
                     T = 462 K (say)
    therefore space space space space space space increment straight G space equals space increment straight H space minus straight T increment straight S
space space space space space space space space space space space space space space space space equals space 30.56 space kJ space mol to the power of negative 1 end exponent space minus space left parenthesis 462 space straight K right parenthesis space cross times space left parenthesis 0.066 space kJ space straight K to the power of negative 1 end exponent space mol to the power of negative 1 end exponent right parenthesis
space space space space space space space space space space space space space space space space equals space 30.56 space kJ space mol to the power of negative 1 end exponent space minus space 30.942 space kJ space mol to the power of negative 1 end exponent
space space space space space space space space space space space space space space space space space equals space plus 0.068 space kJ space mol to the power of negative 1 end exponent
    As ∆G is +ve below this temperature, the reaction will not be spontaneous.

    Question 278
    CBSEENCH11006275

    What do you understand by:
    (i) Standard free energy change (∆rG0)
    (ii) Standard free energy of formation (∆fG0).

    Solution

    (i) Standard free energy change (∆G0): It is defined as ‘the free energy change for a process at 298K in which the reactants in their standard states are converted into the products in their standard states’. Thus,
    increment subscript straight r straight G to the power of 0 space equals space sum from blank to blank of straight G to the power of 0 space space left parenthesis Products right parenthesis space minus space sum from blank to blank of straight G to the power of 0 left parenthesis reactants right parenthesis
    The value of ∆G0 for a reaction can be derived from the standard free energies of formation (∆fG0).
    (ii) Standard free energy of formation (∆fG0) of a compound is defined as ‘the change in free energy when 1 mole of a compound is formed from its constituent elements in their standard states”. Thus,
    increment subscript straight r straight G to the power of 0 space equals space begin inline style sum from blank to blank of end style increment subscript straight f straight G to the power of 0 left parenthesis products right parenthesis space minus space sum from blank to blank of increment subscript straight f straight G to the power of 0 left parenthesis reactants right parenthesis
                 = [Sum of the standard free energies of formation of products] - [Sum of the standard free energies of formation of reactants]
    It may be pointed here that ‘the standard free energy of formation of an element in its standard state is zero’.

    Question 280
    CBSEENCH11006277

    How is ∆rG0 related to the equilibrium constant K?

    Solution
    The standard free energy change ∆rG0 of a reaction is related to the equilibrium constant (K) by the relation,
    space increment straight G to the power of 0 space equals space minus 2.303 space RT space log space straight K
    where R is the gas constant (= 8.314 JK–1 mol–1); T is the temperature in kelvin.
    Question 281
    CBSEENCH11006278

    For the equilibrium
    PCl subscript 5 space space rightwards harpoon over leftwards harpoon space space space space PCl subscript 3 left parenthesis straight g right parenthesis space plus space Cl subscript 2 left parenthesis straight g right parenthesis space at space 298 space straight K comma straight K space equals space 1.8 space cross times space 10 to the power of negative 7 end exponent
    What is the ∆G0 for the reaction?

    Solution

    Here,   straight K space equals space 1.8 space cross times space 10 to the power of negative 7 end exponent comma space space space straight T space equals space 298 space straight K comma
    We know, space increment subscript straight r straight G to the power of 0 space equals space minus 2.303 space RT space log space straight K
    Substituting the values, we get,
      increment straight G to the power of 0 space equals space minus 2.303 space cross times space 8.314 space cross times space 298 space cross times space log space left parenthesis 1.8 space cross times space 10 to the power of negative 7 end exponent right parenthesis
space equals space 34484.2 space straight J
space equals 34.4842 space kJ space mol to the power of negative 1 end exponent

    Question 282
    CBSEENCH11006279

    The equilibrum constant for a reaction is 10. What will be the value of ∆G0 ? R = 8.314 JK–1 mol–1, T = 300 K. 

    Solution

    We know, 
            increment straight G to the power of 0 space equals space minus 2.303 space RT space log space straight K
Here comma space straight K space equals space 10 semicolon space space straight R equals space 8.314 space JK to the power of negative 1 end exponent space mol to the power of negative 1 end exponent semicolon
space space space space space space space space space straight T space space equals space 300 space straight K
    Substituting the values, we get,
             increment straight G to the power of 0 space equals space minus 2.303 space cross times space left parenthesis 8.314 space JK to the power of negative 1 end exponent space mol to the power of negative 1 end exponent right parenthesis space
space space space space space space space space space space space space space space space space cross times space left parenthesis 300 space straight K right parenthesis space cross times space log space 10
space space space space space equals space minus 5744.1 space straight J space mol to the power of negative 1 end exponent space space

    Question 283
    CBSEENCH11006280

    Calculate increment subscript straight r straight G to the power of 0 for conversion of oxygen to ozone, 3 over 2 straight O subscript 2 left parenthesis straight g right parenthesis space space rightwards arrow space space space space straight O subscript 2 left parenthesis straight g right parenthesis space at space 298 space straight K comma If straight K subscript straight P for this conversation is 2.47 space cross times space 10 to the power of negative 29 end exponent.

    Solution

    We know, 
           increment straight G degree space equals space minus 2.303 space RT space log space straight K
    Here,    
      Here comma space space space straight K equals space 2.47 space cross times space 10 to the power of negative 29 end exponent semicolon
space space space space space space space space space space space straight R space equals space 8.314 space JK to the power of negative 1 end exponent space mol to the power of negative 1 end exponent semicolon space straight T space equals space 298 space straight K
space space space Substituting space the space values comma space we space get space
space space space space space increment straight G to the power of 0 space equals space minus 2.303 space cross times space left parenthesis 8.314 space JK to the power of negative 1 end exponent space mol to the power of negative 1 end exponent right parenthesis space cross times space
space space space space space space space space space space space space space space space space space space space space left parenthesis 298 space straight K right parenthesis space cross times space log space left parenthesis 2.47 space cross times space 10 to the power of negative 29 end exponent right parenthesis
space space space space space space space space space space space space space equals space 163000 space straight J space mol to the power of negative 1 end exponent
space space space space space space space space space space space space space equals 163 space kJ space mol to the power of negative 1 end exponent
space space space

    Question 284
    CBSEENCH11006281

    Calculate the equilibrium constant for the reaction at 400 K:

    space space 2 NOCl left parenthesis straight g right parenthesis space space space rightwards harpoon over leftwards harpoon space space space 2 NO left parenthesis straight g right parenthesis space plus space Cl subscript 2 left parenthesis straight g right parenthesis
    increment subscript straight r straight H to the power of 0 space equals space 77.2 space KJ space mol to the power of negative 1 end exponent space and
increment subscript straight r straight S to the power of 0 space equals space 122 space JK to the power of negative 1 end exponent space mol to the power of negative 1 end exponent space 400 space straight K.
                
                                    
           
           

    Solution

    We know, 
           increment subscript straight r straight G to the power of 0 space equals space increment subscript straight r straight H to the power of 0 space minus space straight T increment subscript straight r straight S to the power of 0                    ...(1)
       Now space space space increment straight H to the power of 0 space equals space 77.2 space KJ space mol to the power of negative 1 end exponent space equals space 77200 space straight J space mol to the power of negative 1 end exponent
space space space space space space space space space space space space space space straight T space equals space 400 straight K space and space increment subscript straight r straight S to the power of 0 space equals space 122 space JK to the power of negative 1 end exponent space mol to the power of negative 1 end exponent
    Substituting the values in (1), we have,
           increment subscript straight r straight G to the power of 0 space equals space 77200 space straight J space mol to the power of negative 1 end exponent space minus space left parenthesis 400 space straight K right parenthesis space cross times space left parenthesis 122 space JK to the power of negative 1 end exponent space mol to the power of negative 1 end exponent right parenthesis
space space space space space space space space equals space 77200 space straight J space mol to the power of negative 1 end exponent space minus space 48800 space straight J space mol to the power of negative 1 end exponent
space space space space space space space space equals space 28400 space straight J space mol to the power of negative 1 end exponent
    Now space space space increment subscript straight r straight G to the power of 0 space equals space minus 2.303 space RT space log space straight K
28400 space straight J space mol to the power of negative 1 end exponent space equals space minus 2.303 space cross times space left parenthesis 8.314 space JK to the power of negative 1 end exponent space mol to the power of negative 1 end exponent right parenthesis
space space space space space space space space space space space space space space space space space space space space space space space space space cross times space left parenthesis 400 space straight K right parenthesis space log space straight K
therefore space space log space straight K space equals space fraction numerator 28400 space straight J space mol to the power of negative 1 end exponent over denominator left parenthesis 2.303 space cross times space 8.314 space cross times space 400 right parenthesis straight J space mol to the power of negative 1 end exponent end fraction
space space space space space space space space space space space space equals space minus 3.708
    log space straight K space equals space minus 4 plus 4 minus 3.708 space equals space 4 with bar on top.292
space space space straight K space equals space Antilog space left parenthesis stack 4. with bar on top space 292 right parenthesis
space space space space space space space space equals space 1.96 space cross times space 10 to the power of negative 4 end exponent

    Question 285
    CBSEENCH11006282
    Question 286
    CBSEENCH11006283

    The equilibrium constant at 25 degree straight C for the process  <pre>uncaught exception: <b>Http Error #404</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php line 61<br />#0 [internal function]: com_wiris_plugin_impl_HttpImpl_0(Object(com_wiris_plugin_impl_HttpImpl), NULL, 'http://www.wiri...', 'Http Error #404')
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('com_wiris_plugi...', Array)
#2 [internal function]: _hx_lambda->execute('Http Error #404')
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(532): call_user_func_array(Array, Array)
#4 [internal function]: haxe_Http_5(true, Object(com_wiris_plugin_impl_HttpImpl), Object(com_wiris_plugin_impl_HttpImpl), Array, Object(haxe_io_BytesOutput), true, 'Http Error #404')
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('haxe_Http_5', Array)
#6 [internal function]: _hx_lambda->execute('Http Error #404')
#7 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(27): call_user_func_array(Array, Array)
#8 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(444): com_wiris_plugin_impl_HttpImpl->onError('Http Error #404')
#9 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(458): haxe_Http->customRequest(true, Object(haxe_io_BytesOutput), NULL, NULL)
#10 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(40): haxe_Http->request(true)
#11 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(80): com_wiris_plugin_impl_HttpImpl->request(true)
#12 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#13 {main}</pre> <pre>uncaught exception: <b>Http Error #404</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php line 61<br />#0 [internal function]: com_wiris_plugin_impl_HttpImpl_0(Object(com_wiris_plugin_impl_HttpImpl), NULL, 'http://www.wiri...', 'Http Error #404')
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('com_wiris_plugi...', Array)
#2 [internal function]: _hx_lambda->execute('Http Error #404')
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(532): call_user_func_array(Array, Array)
#4 [internal function]: haxe_Http_5(true, Object(com_wiris_plugin_impl_HttpImpl), Object(com_wiris_plugin_impl_HttpImpl), Array, Object(haxe_io_BytesOutput), true, 'Http Error #404')
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('haxe_Http_5', Array)
#6 [internal function]: _hx_lambda->execute('Http Error #404')
#7 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(27): call_user_func_array(Array, Array)
#8 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(444): com_wiris_plugin_impl_HttpImpl->onError('Http Error #404')
#9 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(458): haxe_Http->customRequest(true, Object(haxe_io_BytesOutput), NULL, NULL)
#10 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(40): haxe_Http->request(true)
#11 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(80): com_wiris_plugin_impl_HttpImpl->request(true)
#12 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#13 {main}</pre>

    Calculate the value of increment subscript straight r straight G to the power of 0 space at space 25 degree straight C space left parenthesis straight R space equals space 8.314 space JK to the power of negative 1 end exponent space mol to the power of negative 1 end exponent right parenthesis. In which direction is the reaction spontaneous when reactants and products are under standard conditions?

    Solution
    space Here comma space space space straight K space equals 2.0 space cross times space 10 to the power of 7
space space space space space space space space space space straight T space equals space 25 plus 273 space equals space 298 space straight K
We space know comma space space increment subscript straight r straight G to the power of 0 space equals space minus 2.303 space RT space log space straight K
    Substituting the values, we get,
         increment subscript straight r straight G to the power of 0 space equals space minus 2.303 space cross times space left parenthesis 8.314 space JK to the power of negative 1 end exponent space mol to the power of negative 1 end exponent right parenthesis space space
space space space space space space space space space space space space space space space cross times space left parenthesis 298 space straight K right parenthesis space log space left parenthesis 2.0 space cross times space 10 to the power of 7 right parenthesis
space space space space space space space space space space equals negative 12023.4 space straight J space equals space minus 12.023 space kJ

    Since increment subscript straight r straight G to the power of 0 is negative, the reaction is spontaneous in the forward direction.
    Question 287
    CBSEENCH11006284

    At 60°C, dinitrogen tetroxide is fifty percent dissociated. Calculate the standard free energy change at this temperature and at one atmosphere. 

    Solution

    N2O4 (g)     rightwards harpoon over leftwards harpoon       2NO2(g)
    Initial 1 mole                 0
    At eqn. 1 - 0.5           2 x 0.5
           = 0.5 mol            = 1 mol
    Total number of moles = 0.5 + 1  = 1.5 mol
    straight p subscript straight N subscript 2 straight O subscript 4 end subscript space equals fraction numerator 0.5 over denominator 1.5 space end fraction cross times 1 space space atm space equals space 1 third atm
straight p subscript NO subscript 2 end subscript space equals space fraction numerator 1 over denominator 1.5 end fraction cross times 1 space atm space equals space 2 over 3 atm

    According to law of chemical equilibrium
     straight K subscript straight p space equals space straight p subscript NO subscript 2 end subscript over straight p subscript straight N subscript 2 straight O subscript 4 end subscript space equals space fraction numerator open parentheses begin display style 2 over 3 end style close parentheses squared over denominator open parentheses begin display style 1 third end style close parentheses end fraction space equals space 1.33 space atm


    We know, 
           
     increment straight G to the power of 0 space equals space minus 2.303 space RT space log space straight K subscript straight p space space space space space space... left parenthesis 1 right parenthesis
    Substituting the values in equation (1), we get
                increment straight G to the power of 0 space equals space minus 2.303 space left parenthesis 8.314 space JK to the power of negative 1 end exponent space mol to the power of negative 1 end exponent right parenthesis thin space left parenthesis 333 space straight K right parenthesis space log space 1.33
space space space space space space space space equals space minus 790 space straight J space mol to the power of negative 1 end exponent

    Question 289
    CBSEENCH11006286

    State second law of thermodynamics in different ways.

    Solution

    (i) It is impossible to convert heat completely into an equivalent amount of work without producing some change in some other part of the system.
    (ii) All natural and spontaneous processes take place in one direction only and are thermodynamically irreversible.
    (iii) It is impossible to convert heat from a reservoir into work by a cyclic process without transferring to a colder reservoir.
    (iv) Heat cannot pass itself from a colder to a hotter body.
    (v) It is impossible for a self-acting machine, unaided by any external agency, to convey heat from a body at lower temperature to a body at a higher temperature.

    Question 290
    CBSEENCH11006287

    State second law of thermodynamics in terms of entropy.

    Solution

    All spontaneous processes are accompanied by a net increase of entropy, i.e. for all spontaneous processes, the total entropy change (sum of the entropy changes of the system and the surroundings) is positive.
    Since all naturally occurring processes are spontaneous and are accompanied by a net increase of entropy, therefore the second law of thermodynamics may also be stated as: “The entropy of the inverse is continuously increasing and tends to be maximum.

    Question 291
    CBSEENCH11006288

    Give at least two statements of second law of thermodynamics.

    Solution

    (i) All spontaneous processes (or naturally occurring processes) are thermodynamically irreversible.
    (ii) The entropy of the universe is continuously increasing.
    (iii) Total energy absorbed by a system cannot be converted completely into work.

    Question 292
    CBSEENCH11006289

    Define third law of thermodynamics. Give its molecular interpretation. What is the most important application of this law?

    Solution

    Third law of thermodynamics states: “The entropy of all perfectly crystalline solids may be taken as zero at absolute zero.”
    Molecular interpretation: Entropy is a measure of disorder. Thus, at absolute zero a perfectly crystalline solid has a perfect order of its constituent particles i.e. there is no disorder at all. Hence absolute entropy is taken as zero.
    Application. It helps in the calculation of the absolute entropies of the substances at room temperature (or at any temperature T). A simplified expression for the absolute entropy of solids at temperature T is given by,
    straight S space equals space integral subscript 0 superscript straight T straight C subscript straight p space dT over straight T space equals space straight C subscript straight p dln space straight T
space space space space equals space straight C subscript straight p ln space straight T
space space equals 2.303 space straight C subscript straight p space log space straight T
    where Cp is the heat capacity of the substance at constant pressure.

    Question 293
    CBSEENCH11006290

    Explain the effect of temperature on feasibility for:

    (i) endothermic process

    (ii) exothermic process in terms of Gibb’s Helmoltz equation.

    Solution
    Gibb’s Helmoltz equation is
    increment straight G space equals space increment straight H space minus space straight T increment straight S
    (i) Endothermic process: ∆H is positive, thus it always opposes the process. Now,
    (a) If T∆S is negative and opposes the process, then ∆G will be positive and the process is always non-spontaneous.
    (b) When T∆S is positive i.e. favourable, then ∆G may either be positive or negative.
    At low temperature:T∆S may have a small value and ∆H may be greater than T∆S. Under these conditions, ∆G(=∆ H + T∆S) may be positive and the reaction may not be spontaneous at low temperature.
    Increasing temperature: With the increase in temperature, the magnitude of the favourable factor T∆S increases while ∆H does not change much. Hence at high temperature, the magnitude of T∆S will be quite large and more than ∆H so that ∆G becomes negative. This means that endothermic processes are favoured and are more probable at high temperature.

    (ii) Exothermic process: ∆H is always negative and, therefore, it is favourable. Now,

    (a) If T∆S is positive i.e. favourable then ∆G have only negative value and the process is spontaneous at all temperatures.

    (b) If T∆S is negative i.e. unfavourable, then ∆G can have positive or negative value.

    At high temperature: –T∆S will have large magnitude and ∆G will be positive and as such, the process may not be spontaneous.
    At low temperature. The value of ∆H may become greater than the small value of T∆S and ∆G becomes negative and the process is spontaneous under these conditions. Hence exothermic processes are favoured and more probable at low temperature.
     
    Question 294
    CBSEENCH11006291

    When does endothermic processs become spontaneous? Explain.

    Solution
    It becomes spontaneous at high temperature. This is because at high temperature, the magnitude of the favourable factors T∆S increases while ∆H does not change much. Hence at high temperature, the magnitude of T∆S will be quite large and more than ∆H so that ∆G becomes negative. This means that endothermic processes are favoured and are more probable at high temperature.
    Question 295
    CBSEENCH11006292

    How is the concept of coupling of reactions useful in explaining the occurrence of non-spontaneous reaction?

    Solution
    Non-spontaneous reactions (for which ∆G > 0) can be made spontaneous if these reactions are carried by coupling with some other reactions having very large negative Gibbs energy values so that the Gibbs energy for the two continued reactions become negative. These reactions are called coupling reactions and the Gibbs energy of the continued reactions become negative i.e. overall ∆G for the coupled reaction become negative.
    Question 296
    CBSEENCH11006293

    (a) What are Exergonic and Endergonic reactions?

    (b) Given that the standard heat of formation of NH3(g) as represented by the equation

    1 half straight N subscript 2 left parenthesis straight g right parenthesis space plus space 3 over 2 straight H subscript 2 left parenthesis straight g right parenthesis space space rightwards arrow space space NH subscript 3 left parenthesis straight g right parenthesis

    is – 46.191 kJ. The standard entropies of N2(g), H2(g) and NH3(g) are 191.62, 130.12 and 193.3 JK–1 mol–1 respectively. Calculate the standard free energy of formation (∆G0) for NH3. Is the reaction feasible?

    Solution
    (a) A reaction which is accompanied by the decrease of free energy is called exergonic reaction. All spontaneous processes are exergonic. It means in an exoergic reaction, ∆G is less than zero i.e. ∆G is negative.
    A reaction Which is accompanied by the increase of free energy is called endergonic reaction. All non-spontaneous processes are endergonic. It means an endergonic reaction ∆G is greater than zero i.e. ∆G is positive.
    (b) Here,
    increment straight G to the power of 0 space equals negative 46.191 space kJ space equals space minus 46191 space straight J
space space straight T space equals space 298 space straight K
    We know,
       increment straight S to the power of 0 space equals space straight S to the power of 0 subscript Products space minus space straight S to the power of 0 subscript Reactants
space space space space space space space equals straight S subscript NH subscript 3 end subscript superscript 0 space minus space open square brackets 1 half straight S subscript straight N subscript 2 end subscript superscript 0 space plus space 3 over 2 straight S subscript straight H subscript 2 end subscript superscript 0 close square brackets
space space space space space space space equals space 193.3 space minus space open square brackets 1 half cross times 191.72 plus 3 over 2 cross times 130.12 close square brackets
space space space space space space space equals 193.3 minus left square bracket 95.81 plus 3 cross times 65.06 right square bracket
space space space space space space space equals 193.3 space minus space left square bracket 95.18 plus 195.18 right square bracket
space space space space space space space equals negative 97.69 space straight J
    Also,
    increment subscript straight r straight G to the power of 0 space equals space increment subscript straight r straight H to the power of 0 space minus space straight T increment subscript straight r straight S to the power of 0
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space open square brackets Gibb apostrophe straight s space minus space Helmholtz space equation close square brackets
    Substituting the values, we have,
    <pre>uncaught exception: <b>Http Error #404</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php line 61<br />#0 [internal function]: com_wiris_plugin_impl_HttpImpl_0(Object(com_wiris_plugin_impl_HttpImpl), NULL, 'http://www.wiri...', 'Http Error #404')
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('com_wiris_plugi...', Array)
#2 [internal function]: _hx_lambda->execute('Http Error #404')
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(532): call_user_func_array(Array, Array)
#4 [internal function]: haxe_Http_5(true, Object(com_wiris_plugin_impl_HttpImpl), Object(com_wiris_plugin_impl_HttpImpl), Array, Object(haxe_io_BytesOutput), true, 'Http Error #404')
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('haxe_Http_5', Array)
#6 [internal function]: _hx_lambda->execute('Http Error #404')
#7 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(27): call_user_func_array(Array, Array)
#8 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(444): com_wiris_plugin_impl_HttpImpl->onError('Http Error #404')
#9 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(458): haxe_Http->customRequest(true, Object(haxe_io_BytesOutput), NULL, NULL)
#10 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(40): haxe_Http->request(true)
#11 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(80): com_wiris_plugin_impl_HttpImpl->request(true)
#12 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#13 {main}</pre>
    Since the value of ∆rG° is negative, the reaction is feasible.
    Question 298
    CBSEENCH11006295

    (i) What are the limitations of criterion for randomness?
    (ii) Calculate the standard free energy of formation of straight H subscript 2 straight O subscript 2.The free change for the reaction.
    straight H subscript 2 straight O subscript 2 space space rightwards arrow space space space straight H subscript 2 straight O space plus space 1 half straight O subscript 2 space space is
space space space space space space space space increment straight G to the power of 0 space equals space minus 125.10 space kJ space and
increment straight G subscript straight f superscript 0 left parenthesis straight H subscript 2 straight O right parenthesis space equals space minus 228.4 space kJ space mol to the power of negative 1 end exponent

    Solution
    (i) Processes like solidification of a liquid and liquefaction of a gas are accompanied by a decrease in randomness (entropy). If randomness factor were the only criterion of the spontaneity of a reaction, then these processes would not have been feasible. In other words, the tendency to acquire maximum randomness (entropy) is a factor which determines the spontaneity of a reaction, but it is not the sole criterion.
    (ii) We know that,
    increment subscript straight f straight G degree space equals space sum from blank to blank of triangle straight G subscript Products superscript 0 space space minus space straight G subscript reactants superscript 0
    equals space open square brackets increment subscript straight f straight G subscript left parenthesis straight H subscript 2 straight O right parenthesis end subscript superscript 0 space plus space 1 half increment straight G subscript fO subscript 2 end subscript superscript 0 space straight O subscript 2 superscript 0 close square brackets space minus space increment subscript straight f straight G to the power of 0 left parenthesis straight H subscript 2 straight O subscript 2 right parenthesis
    Substituting the values, we have,
       negative 125.10 space equals space open square brackets negative 228.4 space plus space 1 half cross times space zero close square brackets space minus space increment subscript straight f straight G subscript left parenthesis straight H subscript 2 straight O subscript 2 right parenthesis end subscript superscript 0
or space space space space space increment subscript straight f straight G subscript left parenthesis straight H subscript 2 straight O subscript 2 right parenthesis end subscript superscript 0 space equals space minus 228.4 space plus space 125.10 space equals space minus 103.30 space kJ space mol to the power of negative 1 end exponent.
    Question 299
    CBSEENCH11006296

    Given:
    space straight N subscript 2 left parenthesis straight g right parenthesis space plus space space 3 straight H subscript 2 left parenthesis straight g right parenthesis space space rightwards arrow space space 2 NH subscript 3 left parenthesis straight g right parenthesis semicolon space space increment subscript straight r straight H to the power of 0 space equals space minus 92.4 space kJ space mol to the power of negative 1 end exponent
    What is the standard enthalpy of formation of NH subscript 3 gas?


    Solution

    Standard enthalpy of formation of a compound is the change in enthalpy that takes place during the formation of 1 mole of a substance in its standard form its constituent elements in their standard state.
    writing the given equation for 1 mole of NH3 (g).
    1 half straight N subscript 2 left parenthesis straight g right parenthesis space plus 3 over 2 straight H left parenthesis presubscript 2 straight g right parenthesis rightwards arrow NH subscript 3 left parenthesis straight g right parenthesis
therefore comma
Standard space enthalpy space of space formation space of space NH subscript 3 left parenthesis straight g right parenthesis
equals bevelled 1 half increment subscript straight r space straight H to the power of 0
equals bevelled 1 half left parenthesis negative 92.4 space KJ space mol to the power of negative 1 end exponent right parenthesis
equals negative 46.2 space straight K space straight J space mol to the power of negative 1 end exponent

    Question 301
    CBSEENCH11006298

    For an isolated system, <pre>uncaught exception: <b>Http Error #404</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php line 61<br />#0 [internal function]: com_wiris_plugin_impl_HttpImpl_0(Object(com_wiris_plugin_impl_HttpImpl), NULL, 'http://www.wiri...', 'Http Error #404')
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('com_wiris_plugi...', Array)
#2 [internal function]: _hx_lambda->execute('Http Error #404')
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(532): call_user_func_array(Array, Array)
#4 [internal function]: haxe_Http_5(true, Object(com_wiris_plugin_impl_HttpImpl), Object(com_wiris_plugin_impl_HttpImpl), Array, Object(haxe_io_BytesOutput), true, 'Http Error #404')
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('haxe_Http_5', Array)
#6 [internal function]: _hx_lambda->execute('Http Error #404')
#7 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(27): call_user_func_array(Array, Array)
#8 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(444): com_wiris_plugin_impl_HttpImpl->onError('Http Error #404')
#9 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(458): haxe_Http->customRequest(true, Object(haxe_io_BytesOutput), NULL, NULL)
#10 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(40): haxe_Http->request(true)
#11 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(80): com_wiris_plugin_impl_HttpImpl->request(true)
#12 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#13 {main}</pre>what will be increment straight S?

    Solution

    Here, increment straight S will be positive i.e., greater than zero
    since,<pre>uncaught exception: <b>Http Error #404</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php line 61<br />#0 [internal function]: com_wiris_plugin_impl_HttpImpl_0(Object(com_wiris_plugin_impl_HttpImpl), NULL, 'http://www.wiri...', 'Http Error #404')
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('com_wiris_plugi...', Array)
#2 [internal function]: _hx_lambda->execute('Http Error #404')
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(532): call_user_func_array(Array, Array)
#4 [internal function]: haxe_Http_5(true, Object(com_wiris_plugin_impl_HttpImpl), Object(com_wiris_plugin_impl_HttpImpl), Array, Object(haxe_io_BytesOutput), true, 'Http Error #404')
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/php/Boot.class.php(769): call_user_func_array('haxe_Http_5', Array)
#6 [internal function]: _hx_lambda->execute('Http Error #404')
#7 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(27): call_user_func_array(Array, Array)
#8 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(444): com_wiris_plugin_impl_HttpImpl->onError('Http Error #404')
#9 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/haxe/Http.class.php(458): haxe_Http->customRequest(true, Object(haxe_io_BytesOutput), NULL, NULL)
#10 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(40): haxe_Http->request(true)
#11 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(80): com_wiris_plugin_impl_HttpImpl->request(true)
#12 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#13 {main}</pre>, increment straight S will be positive and the reaction will be spontaneous.

    Question 302
    CBSEENCH11006299

    For the reaction,
       2 Cl left parenthesis straight g right parenthesis space rightwards arrow space Cl subscript 2 left parenthesis straight g right parenthesis comma space what space are space the space signs space of space increment straight H space and space increment straight S ?

    Solution

    incrementH and incrementS are negative.

    The given reaction represents the formation of chlorine molecule from chlorine atoms. here, the bond formation is taking place. Therefore, energy is being released. Hence, incrementH is negative.
    Also, two moles of atoms have more randomness than one mole of molecules. Since spontaneity is decreased, incrementS is negative for the given reaction.

    Question 303
    CBSEENCH11008039

    The heats of combustion of carbon and carbon monoxide are −393.5 and −283.5 kJ mol−1, respectively. The heat of formation (in kJ) of carbon monoxide per mole is:

    • 676.5

    • -676.5

    • -110.5

    • 110 s

    Solution

    C.

    -110.5

    C(s) + O2 (g) → CO2 (g); ΔH = -393.5 kJ mol-1 ... (i)
    CO + O2/2 → CO2 (g); ΔH = - 283.5 kJ mol-1 ....(ii)
    On subtracting Eq. (ii) from Eq. (i), we get
    C (s) + O2/2 (g) → CO (g)

    ΔH = (-393.5 + 283.5) kJ mol-1 = - -110 kJ mol-1

    Question 305
    CBSEENCH11008054

    The standard Gibbs energy change at 300 K for the reaction, 2A  ⇌ B +C is 2494.2J at a given time, the composition of the reaction mixture isleft square bracket straight A right square bracket space equals space 1 half comma space left square bracket straight B right square bracket space equals 2 and left square bracket straight C right square bracket space equals space 1 half, The reaction proceeds in the [R= 8.314 JK/mol, e = 2.718]

    • forward direction because Q>Kc

    • reverse direction because Q>Kc

    • forward direction because Q < Kc

    • reverse direction because Q < Kc

    Solution

    B.

    reverse direction because Q>Kc

    We know,
    ΔG = ΔGo + RTlnQ .. (i) 
    Given,
    ΔGo  = 2494.2J
     straight Q space equals fraction numerator left square bracket straight B right square bracket right square bracket straight C right square bracket over denominator left square bracket straight A right square bracket squared end fraction space equals space fraction numerator 2 space straight x begin display style 1 half end style over denominator open parentheses begin display style 1 half end style close parentheses squared end fraction space equals space 4
    thus,
    putting the value in equation (i)
     = 2494.2 +8.314 + 300 In 4
    = 28747.27 J
    = positive value
    Also, we have
    increment straight G space equals space RT space ln space straight Q over straight K
    If ΔG is positive, Q >K
    therefore, reaction shifts in the reverse direction

    Question 306
    CBSEENCH11008061

    For the complete combustion of ethanol, C2H5OH (l) + 3O2 (g) → 2CO2 (g) + 3H2(l), the amount of heat produced as measured in a bomb calorimeter, is 1364.47 kJ mol-1 at 25oC. Assuming ideality the enthalpy of combustion, CH, for the reaction will be (R = 8.314 JK-1 mol-1)

    • -1366.95 kJ mol-1

    • -1361.95 kJ mol-1

    • -1460.50 kJ mol-1

    • -1350.50 kJ mol-1

    Solution

    A.

    -1366.95 kJ mol-1

    C2H5OH (l) + 3O2 (g) → 2CO2 (g) + 3H2(l),
    ∆U = - 1364.47 kJ/mol
    ∆H = ∆U +∆ngRT
    ∆ng = -1
    ∆H = - 1364.47 +fraction numerator negative 1 space straight x space 8.314 space straight x space 298 over denominator 1000 end fraction
    [Here, value of R in unit of J must be converted into kJ]
     = - 1364.47-2.4776
     = -1366.94 kJ/mol
    Question 308
    CBSEENCH11008078

    The incorrect expression among the following is

    • fraction numerator increment space straight G subscript system over denominator increment straight G subscript total end fraction space equals space minus straight T
    • In isothermal process

      straight W subscript reversible space equals negative nRT space ln straight V subscript straight f over straight V subscript straight i

    • In space straight K space equals space fraction numerator increment straight H to the power of straight o minus straight T increment straight S over denominator RT end fraction
    • straight K space equals space straight e to the power of increment straight G to the power of straight o divided by RT end exponent

    Solution

    C.

    In space straight K space equals space fraction numerator increment straight H to the power of straight o minus straight T increment straight S over denominator RT end fraction

    Option C has incorrect expression. The correct expression is,
    increment straight G to the power of straight o space equals space increment straight H to the power of straight o space minus straight T increment straight S to the power of straight o
increment straight G to the power of straight o space equals nRT space log space straight K
therefore equals negative RT space log space straight K space equals increment straight H to the power of straight o minus straight T increment straight S to the power of straight o
therefore space log space straight K space equals space minus space open parentheses fraction numerator increment straight H to the power of straight o minus straight T increment straight S to the power of straight o over denominator RT end fraction close parentheses

    Question 312
    CBSEENCH11008105

    The solubility product of silver bromide is 5.0 x 10-13. The quantity of potassium bromide (molar mass taken as 120 g mol–1)to be added to 1 litre of 0.05 M solution of silver nitrate to start the precipitation of AgBr is

    • 1.2 x 10-10

    • 1.2 x 10-9 g

    • 6.2 x 10-5

    • 5.0 x 10-8 g

    Solution

    A.

    1.2 x 10-10

    Ksp of AgBr = [Ag+][Br-] = 5.0 x 10-13
    [Ag+] = 0.05 M
    left square bracket Br to the power of minus right square bracket space equals space fraction numerator 5.0 space straight x space 10 to the power of negative 13 end exponent over denominator 0.05 end fraction space equals space 1 space straight x space 10 to the power of negative 11 end exponent space straight M
    Moles of KBr = 1 x 10-11 x 1 = 1 x 10-11
    weight of KBr  1 x 10-11 x 120 = 1.2 x 10-19 g

    Question 313
    CBSEENCH11008107

    For a particular reversible reaction at temperature T, ΔH and ΔS were found to be both +ve. If Te is the temperature at equilibrium, the reaction would be spontaneous when 

    • Te>T

    • T >Te

    • Te is 5 times T

    • T=Te

    Solution

    A.

    Te>T

    For a particular reversible reaction at T temperature
    ΔG = ΔH-TΔS
    When ΔH, S is positive
    ΔG = +ΔH- T (+ΔS)
    For a spontaneous process, ΔG must be negative, it is possible only at high temperature.
    That mean T> Te

    Question 314
    CBSEENCH11008108

    Δ U is equal to

    • Isochoric work

    • Isobaric work

    • Adiabatic work

    • Isothermal work

    Solution

    C.

    Adiabatic work

    From 1st law thermodynamics:
    ΔU = q + w
    For adiabatic process :
    q = 0
    ∴ ΔU = w
    ∴ Work involves in the adiabatic process is at the expense of a change in internal energy of the system.

    Question 315
    CBSEENCH11008114

    Given
    C(grahite) + O2(g) → CO2(g)
    ΔrH°  = - 393.5 kJ mol-1
    H2(g) + 1/2O2(g) → H2O (l)
    ΔrH°  = +890.3 kJ mol-1
    Based on the above thermochemical equations, the value of ΔrH° at 298 K for the reaction
    C(grahite) + 2H2(g) →CH4 will be

    •  +74.8 kJ mol–1 

    • +144.0 kJ mol–1

    • –74.8 kJ mol–1

    • –144.0 kJ mol–1

    Solution

    C.

    –74.8 kJ mol–1

    CO2(g) + 2H2O (l)→ CH4 (g) + 2O2(g);
    ΔrH°= 890.3
    ΔfH° –393.5 –285.8 ? 0
    ΔrH°= Σ(ΔfH°)products -Σ(ΔfH°)reactant
    890.3 = [ 1 x(ΔfH°)CH4 + 2x0]-[1x(-393.5)+2(-285.8)]
    fH°)CH4 = 890.3-965.1 = -74.8 kJ/mol

    Question 316
    CBSEENCH11008118

    In a fuel cell methanol is used as fuel and oxygen gas is used as an oxidizer. The reaction is
    CH3OH(l) + 3/2O2(g) → CO2(g) + 2H2O(l)
    At 298 K standard Gibb’s energies of formation for CH3OH(l), H2O(l) and CO2(g) are –166.2, –237.2 and –394.4 kJ mol–1 respectively. If
    standard enthalpy of combustion of methanol is –726 kJ mol–1, efficiency of the fuel cell will be:

    • 80%

    • 97%

    • 87%

    • 90%

    Solution

    B.

    97%

    CH3OH(l) + 3/2O2(g) → CO2(g) + 2H2O(l)
    Also ∆G°f CH3 OH( l) = -166.2 kJ mol-1

    ∆Gf°H2O (l ) = -237.2 kJ mol-1
    ∆Gf°CO2 (l ) = -394.4 kJ mol-1
    ∆G = Σ∆Gf° products −Σ∆Gf° reactants
    = -394.4 -2 (237.2) + 166.2
    = −702.6 kJ mol-1
    now Efficiency of fuel cell = ∆G/∆H×100

    = (702.6/726) x100
    = 97%

    Question 320
    CBSEENCH11008145

    In the reaction,
    2Al(s) + 6HCl(aq) → 2Al3+ (aq) + 6Cl¯(aq) + 3H2(g)

    • 6L HCl(aq) is consumed for every 3L H2(g) produced

    • 33.6 L H2(g) is produced regardless of temperature and pressure for every mole Al that reacts

    • 67.2 L H2(g) at STP is produced for every mole Al that reacts

    • 11.2 L H2(g) at STP is produced for every mole HCl (aq) consumed

    Solution

    D.

    11.2 L H2(g) at STP is produced for every mole HCl (aq) consumed

    2Al(s) + 6HCl(aq) → 2Al3+ (aq) + 6Cl¯(aq) + 3H2(g)
    For each mole of HCl reacted, 0.5 mole of H2 gas is formed at STP.
    1 mole of an ideal gas occupies 22.4 lit at STP.
    Volume of H2 gas formed at STP per mole of HCl reacted is 22.4 × 0.5 litre

    Question 322
    CBSEENCH11008149

    In the conversion of limestone to lime, CaCO3(s) → CaO(s) + CO2(g) the values of ∆Hº and ∆Sº are + 179.1 kJ mol–1 and 160.2 J/K respectively at 298K and 1 bar. Assuming that ∆Hº and ∆Sº do not change with temperature, temperature above which conversion of limestone to lime will be spontaneous is

    • 1008 K

    • 1200 K

    • 845 K

    • 1118 K

    Solution

    D.

    1118 K

    We know, ∆G = ∆H-T∆S
    So, lets find the equilibrium temperature, i.e. at which
    ∆G = 0
    ∆H-T∆S
    T= 179.1 x 1000/160.2
    = 1118 K
    So, at the temperature above this, the reaction becomes will spontaneous.

    Question 328
    CBSEENCH11008190

    If the bond dissociation energies of XY, X2 and Y2 (all diatomic molecules) are in the ratio of 1:1:0.5 and ∆f H for the formation of XY is -200 kJ mole-1. The bond dissociation energy of X2 will be

    • 100 kJ mol-1

    • 800 kJ mol-1

    • 300 kJ mol-1

    • 400 kJ mol-1

    Solution

    B.

    800 kJ mol-1

    XY→ X(g) + Y(g) ; ∆H +a kJ/ mole ............(i)
    X2 → 2X; ∆H = +a kJ/mole........(ii)
    Y2 → 2Y; ∆H =+0.5a kJ/mole.......(iii)
    1 half space straight X subscript 2 space plus 1 half space straight Y subscript 2 space rightwards arrow space XY semicolon
increment straight H space equals space open parentheses plus straight a over 2 plus fraction numerator begin display style 0.5 end style over denominator 2 end fraction straight a minus straight a close parentheses kJ divided by mol
plus straight a over 2 space plus fraction numerator 0.5 straight a over denominator 2 end fraction minus straight a space equals space minus 200
straight a space equals space 800

    Question 329
    CBSEENCH11008211

    The enthalpies of combustion of carbon and carbon monoxide are -393.5 and -283 kJ mol-1 respectively. The enthalpy of formation of carbon monoxide per mole is

    • 110.5 kJ

    • -110.5 kJ

    • -676.5 kJ

    • 676.5 kJ

    Solution

    B.

    -110.5 kJ

    left parenthesis straight I right parenthesis space straight C space left parenthesis straight s right parenthesis space plus space straight O subscript 2 space left parenthesis straight g right parenthesis space rightwards arrow with space space on top space CO subscript 2 space left parenthesis straight g right parenthesis end subscript space space semicolon space increment straight H space equals space minus space 393.5 space kJ
left parenthesis II right parenthesis space CO space left parenthesis straight g right parenthesis space plus space 1 half space straight O subscript 2 space left parenthesis straight g right parenthesis space rightwards arrow for space space of space CO space left parenthesis straight g right parenthesis space semicolon space increment straight H space equals space minus 283.0 kJ
substracting space left parenthesis straight I right parenthesis space from space left parenthesis II right parenthesis
left parenthesis III right parenthesis space straight C left parenthesis straight s right parenthesis space plus space 1 half space straight O subscript 2 space left parenthesis straight g right parenthesis space rightwards arrow with space space space on top space CO space left parenthesis straight g right parenthesis space increment straight H space equals space minus space 110.0 space kJ
    This equation (III) also represents formation of ore mole of CO and thus enthalpy change is the heat formation of CO (g)
    Question 330
    CBSEENCH11008216

    Which of the following lines correctly show the temperature dependence of equilibrium constant K, for an exothermic reaction?

    • A and D

    • A and B

    • B and C

    • C and D

    Solution

    B.

    A and B

    G° = - RT ln KH° - TS° = - RT ln K-H°RT+S°R = ln K

    Therefore ln K vs 1/T the graph will be a straight line with slope equal to -H°R.Since reaction is
    exothermic, therefore H° itself will be negative resulting in positive slope.

    Question 331
    CBSEENCH11008217

    The combustion of benzene (l) gives CO2(g) and H2O(l). Given that heat of combustion of benzene at constant volume is –3263.9 kJ mol–1 at 250C; the heat of combustion (in kJ mol–1) of benzene at constant pressure will be (R = 8.314 JK–1 mol–1)

    • –3267.6

    • 4152.6

    • –452.46

    • 3260

    Solution

    A.

    –3267.6

    C6H6 (l) + 152 O2 (g)  6CO2 (g) +3H2O (l)  

    Δng = 6 - 7.5
    = -1.5 (change in gaseous mole)
    ΔU or ΔE = - 3263.9 kJ
    ΔH = ΔU + ΔngRT
    Δng = - 1.5
    R = 8.314 JK-1 mol-1
    T = 298 K
    So ΔH = -3263.9 + (-1.5) 8.314 x 10-3 x 298
    = -3267.6 kJ
    ΔH = Heat at constant pressure
    ΔU/ΔE = Heat at constant volume
    R = gas constant

    Question 332
    CBSEENCH11008241

    Which of the following statements is correct for a reversible process in a state of equilibrium?

    • ΔG = -2.303RT log K
    • ΔG = 2.303RT log K

    • ΔG0 = -2.303RT log K

    • ΔG0 = 2.303RT log K

    Solution

    C.

    ΔG0 = -2.303RT log K

     ΔG =ΔG0+2.303RT log K log Q
    At equilibrium when Δ G = 0 and Q = K
     then ΔG = ΔG0 +2.303 RT log K = 0
    ΔG0 = -2.303 RT log K

    Question 333
    CBSEENCH11008262

    A reaction having equal energies of activation for forward and reverse reactions has

    • ΔS =0
    • ΔG =0
    • ΔH = 0
    • ΔH = ΔG=ΔS = 0

    Solution

    C.

    ΔH = 0

    Energy profile diagram for are reaction is as from the figure it is clear that

    (Ea)b = (Ea)f +ΔH
    [Here (Ea)b = activation energy of backward reaction and (Ea)f = activation energy of forward reaction].
    If (Ea)b = (Ea)b = (Ea)f
    then ΔH = 0

    Question 334
    CBSEENCH11008270

    In which of the following reactions, standard reaction entropy changes (ΔSo) is positive and standard Gibb's energy change (ΔGo) decreases sharply with increasing temperature?

    • C (graphite) +1/2 O2 (g) → CO (g)

    • CO (g) +1/2 (g) → CO2 (g)

    • Mg(s)  +1/2O2 (g) → MgO (s)

    • 1/2 C (graphite) +1/2 O2 (g) → 1/2 CO2 (g)

    Solution

    A.

    C (graphite) +1/2 O2 (g) → CO (g)

    Among the given reactions only in te case of 
    C (graphite) +1/2 O2 (g) → CO (g)
    entropy increases because randomness (disorder) increases. Thus, standard entropy change (ΔSo) is positive.
    Moreover, it is a combustion reaction and all the combustion reactions are generally exothermic, ie. ΔHo=-ve
    We know that
    ΔGo = ΔHo-TΔSo
    ΔGo = -ve-T(+ve)
    Thus, as the temperature increases, the value of ΔGo decreases.

    Question 338
    CBSEENCH11008302

    Which of the following is the correct option for free expansion of an ideal gas under an adiabatic condition?

    • straight q space not equal to space 0 comma space increment straight T space equals space 0 comma space straight W space equals 0
    • straight q space equals space 0 comma space increment straight T space equals space 0 comma space straight W space equals space 0
    • straight q space equals 0 comma space increment straight T space less than thin space 0 comma space straight W not equal to 0
    • straight q space equals 0 comma space increment straight T space not equal to 0 comma space straight W space equals space 0

    Solution

    B.

    straight q space equals space 0 comma space increment straight T space equals space 0 comma space straight W space equals space 0

    For an adiabatic process, q = 0 and for free expansion, W = 0,
    Therefore ΔT = 0.

    Question 339
    CBSEENCH11008303

    Enthalpy change for the reaction,

    4H (g) → 2H2 (g) is - 869.6 kJ

    The dissociation energy of H - H bond is

    • -869.6 kJ

    • +434.8 kJ

    • +217.4 kJ

    • -434.8 kJ

    Solution

    B.

    +434.8 kJ

    4H (g) → 2H2 (g); ΔH = - 869.6 kJ
    2H2 (g) → 4 H (g); ΔH =  869.6 kJ
    H2 (g) → 2 H (g); ΔH = 869.6/2 = 434.8 kJ

    Question 344
    CBSEENCH11008370

    Three moles of an ideal gas expanded spontaneously into the vacuum. The work done will be

    • infinte

    • 3 J

    • 9 J

    • zero

    Solution

    D.

    zero

    W = pext. ΔV
    For vaccum,
    ptext = 0
    therefore,
    W = 0  ΔV = 0

    Question 345
    CBSEENCH11008372

    Match List I (equation) with List II (types of the process) and select the correct option.

    List I (Equations)
    List II (Types of process)

    A

    KP > Q

    1

    Non-spontaneous

    B

    ΔGo < RT In Q

    2

    Equilibrium

    C

    KP = Q

    3

    Spontaneous and endothermic

    D

    T> ΔH/ ΔS

    4

    Spontaneous

    • A
      B
      C
      D
      1
      2
      3
      4
    • A B C D
      3 4 2 1
    • A B C D
      4 1 2 3
    • A B C D
      2 1 4 3

    Solution

    C.

    A B C D
    4 1 2 3

    A) When KP > Q, the reaction goes in the forward direction, ie, the reaction is spontaneous.
    B) Given ΔGo < RT lnQ, thus, ΔGo = + ve and hence, the reaction is non-spontaneous.
    C) At equilibrium, Kp = Q


    D) T > ΔH/ΔS or TΔS >ΔH
    Thus condition is true for spontaneous endothermic reactions (as ΔG greater than equal to ΔH- TΔS)
    Question 347
    CBSEENCH11008399

    Which of the following are not state functions?
    I) q + W
    II) q
    III) W
    IV) H-TS

    • (I) and (IV)

    • (II) (III) and (IV)

    • (I), (II) and (III)

    • (II) and (III)

    Solution

    D.

    (II) and (III)

    A state function is the property of the system whose value depends only on the initial and final state of the system and is independent of the path.
    Therefore, 
    Internal energy (ΔE) = q +W
    It is a state function because it is independent of the path. It is an extensive property.
    ∴ Gibbs energy (G) = H -TS
    It is also a state function because it is independent of the path. It is also extensive property. 
    Heat (q) and work (W) are not state functions being path dependent.

    Question 348
    CBSEENCH11008403

    For the gas phase, reaction,

    PCl5 (g) ⇌ PCl3 (g) Cl2 (g)
    Which of the following conditions are correct?

    • Δ H = 0 and ΔS > 0

    • ΔH >0 and ΔS > 0

    • Δ H < 0 and ΔS < 0

    • ΔH > 0 and ΔS < 0

    Solution

    B.

    ΔH >0 and ΔS > 0

    ΔH = ΔE + ΔnRT

    Δn = number of moles of product - number of moles of reactants
    ΔG = ΔH - TΔS
    For a spontaneous process, ΔG must be negative

    PCl5 (g) ⇌ PCl3 (g) Cl2 (g)
     In this  reaction
    Δn = 2-1 = 1
    Thus, ΔH is positive, ie, >0
    If ΔH is positive, then  to maintain the value of ΔG negative, ΔS should be positive , ie, ΔS>0.

    Question 349
    CBSEENCH11008430

    Consider the following reactions:

    straight i right parenthesis space straight H to the power of plus space left parenthesis straight g right parenthesis thin space space plus space OH to the power of minus space left parenthesis aq right parenthesis space equals space straight H subscript 2 straight O space left parenthesis straight l right parenthesis
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space increment straight H space equals space minus space straight x subscript 1 space kJ space mol to the power of blank to the power of negative 1 end exponent end exponent
ii right parenthesis space straight H subscript 2 space left parenthesis straight g right parenthesis thin space space plus space straight O subscript 2 space left parenthesis straight q right parenthesis space equals space straight H subscript 2 straight O space left parenthesis straight l right parenthesis
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space increment straight H space equals space minus space straight x subscript 2 space kJ space mol to the power of blank to the power of negative 1 end exponent end exponent
iii right parenthesis space CO subscript 2 space left parenthesis straight g right parenthesis thin space space plus space straight H subscript 2 space left parenthesis straight g right parenthesis space equals space straight H subscript 2 straight O space left parenthesis straight l right parenthesis space plus space CO subscript 2 space left parenthesis straight g right parenthesis
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space increment straight H space equals space minus space straight x subscript 3 space kJ space mol to the power of blank to the power of negative 1 end exponent end exponent
iv right parenthesis straight C subscript 2 straight H subscript 2 space left parenthesis straight g right parenthesis thin space space plus 5 over 2 space straight O subscript 2 space left parenthesis straight g right parenthesis space equals space straight H subscript 2 straight O space left parenthesis straight l right parenthesis space plus 2 CO subscript 2 space left parenthesis straight g right parenthesis
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space increment straight H space equals space plus space straight x subscript 4 space kJ space mol to the power of blank to the power of negative 1 end exponent end exponent
    Enthalpy of formation of H2O (l) is:

    • - x2 kJ mol-1

    • + x3 kJ mol-1

    • - x4 kJ mol-1

    • + x1 kJ mol-1

    Solution

    A.

    - x2 kJ mol-1

    Enthalpy of formation: The amount of heat evolved or absorbed during the formation of 1 mole of a compound from its constituent elements is known as heat of formation. SO, the correct answer is:
    straight H subscript 2 space left parenthesis straight g right parenthesis space space plus space 1 half space straight O subscript 2 space left parenthesis straight g right parenthesis thin space rightwards arrow space straight H subscript 2 straight O space left parenthesis straight l right parenthesis space semicolon increment straight H equals negative straight x subscript 2 space kJ space mol to the power of negative 1 end exponent

    Question 351
    CBSEENCH11008437

    Assume each reaction is carried out in an open container. For which reaction will ΔH = ΔE?

    • H2 (g) + Br2 (g) →2HBr (g)

    • C (s) + 2 H2O (g) → 2 H2 (g) + CO2 (g)

    • PCl5 (g) →PCl3 (g) + Cl2 (g) 

    • 2CO (g) + O2 (g) → 2 CO2 (g)

    Solution

    A.

    H2 (g) + Br2 (g) →2HBr (g)

    As we know that
     ΔH = ΔE + PΔV
    ΔH = ΔE +ΔnRT ..(1)
    where ΔH → change in enthalpy of the system (standard heat at constant pressure)
    Δ E → change in internal energy of system (Standard heat at constant volume)
    Δn → no. of gaseous moles of product - no. of gaseous moles of reactant
    R → gas constant
    T → absolute temperature
    If Δ n = 0 for reactions which is carried out in an open container, therefore, Δn = 0 for reactions which are carried out in an open container, therefore, ΔH  =ΔE
    so for reaction (1) Δn = 2-2 = 0
    Hence, for reaction (1) , ΔH =ΔE 

    Question 352
    CBSEENCH11008442

    The enthalpy of combustion of H2, cyclohexene (C6H10) and cyclohexene (C6H12) are -241, -3800 and -3920 kJ per mol respectively.The heat of hydrogenation of cyclohexane is:

    • -212 kJ mol

    • +121 kJ mol

    • +242 kJ per mol

    • -242 kJ per mol

    Solution

    A.

    -212 kJ mol


    ΔH= [ΔH of combustion of cyclohexane -(ΔH of combustion of cyclohexene +ΔH of combustion of H2)]
    = -[-3920 -(3800-24)] kJ
    = - [3920 + 4041] kJ
    =-[121] kJ
    =--121 kJ

    Question 353
    CBSEENCH11008456

    A gas is allowed to expand in a well-insulated container against a constant external pressure of 2.5 atm from an initial volume of 2.50 L to a final volume of 4.50 L. The change in internal energy ΔU of the gas in joules will be

    • 1136.5 J

    • -500 J

    • -505 J

    • +505 J

    Solution

    C.

    -505 J

    ΔU = q + w
    For adiabatic process, q = 0
    ∴ ΔU = w
    = – P·ΔV
    = –2.5 atm × (4.5 – 2.5) L
    = –2.5 × 2 L-atm
    = –5 × 101.3 J
    = –506.5 J
    = –505 J

    Question 354
    CBSEENCH11008462

    For a given reaction, ΔH = 35.5 kJ mol–1 and ΔS = 83.6 JK–1 mol–1. The reaction is spontaneous at (Assume that ΔH and ΔS do not vary with temperature)

    • T < 425 K

    • T > 425 K

    • All temperatures

    •  T > 298 K

    Solution

    B.

    T > 425 K

    ∵ ΔG = ΔH – TΔS
    For a reaction to be spontaneous, ΔG = –ve
    i.e., ΔH < TΔS

    therefore, T> ΔH/ΔS
    = 35.5 x 103J/83.6JK-1
    i.e T>425 K

    Question 355
    CBSEENCH11008472

    Consider the change in oxidation state of Bromine corresponding to different emf values as shown in the diagram below :

    BrO4- 1.82BrO3-1.5 VHBrO1.595Br21.0652 VBr-

    Then the species undergoing disproportionation is

    • BrO3-

    • BrO4-

    • HBrO

    • Br2

    Solution

    C.

    HBrO

    Calculate Ecell° corresponding to each compound undergoing disproportionation reaction. The reaction for which Ecell° comes out +ve is spontaneous.

    HBrO   Br2Eo = 1.595 V, SRP (cathode)HBrO    BrO3-Eo = - 1.5 V, SOP (anode)2HBrO   Br2 + BrO3-Ecello = SRP (cathode)- SRP (anode)= 1.595 - 1.5= 0.095 VEcell0> 0  Go < 0 [spontaneous]

    Question 356
    CBSEENCH11008474

    Which one of the following conditions will favour maximum formation of the product in the reaction,

    A2 (g) + B2 (g)       X2 (g)r H = - XkJ?

    • Low temperature and high pressure

    • Low temperature and low pressure

    • High temperature and low pressure

    • High temperature and high pressure

    Solution

    A.

    Low temperature and high pressure

    A2 (g)+ B2 (g)   X2 (g);  H = - xkJ

    On increasing pressure equilibrium shift in a direction where number of moles decreases i.e. forward direction.

    On decreasing temperature, equilibrium shift n exothermic direction i.e., forward direction.

    So high pressure and lower temperature favour maximum formation of product.

    Question 357
    CBSEENCH11008475

    The bond dissociation energies of X2, Y2 and XY are in the ratio of 1 : 0.5: 1. ΔH for the formation of XY is –200 kJ mol–1. The bond dissociation energy of X2 will be

    • 200 kJ mol-1

    • 100 kJ mol-1

    • 400 kJ mol-1

    • 800 kJ mol-1

    Solution

    D.

    800 kJ mol-1

    Let B.E of x2,y2 and xy are x kJ mol-1, 0.5 x kJ mol-1 and x kJ mol-1 respectively

    12x2 + 12y2  xy;H = - 200 kJ mol-1H = - 200 = Σ(B.E)reactant - Σ(B.E)product = 12  x (x) +12 x (0.5)x-[1x (x)]On solving we get, B.E of X2 = x = 800 kJ mol-1

    Question 358
    CBSEENCH11008476

    The correction factor ‘a’ to the ideal gas equation corresponds to

    • Density of the gas molecules

    • Volume of the gas molecules

    • Forces of attraction between the gas molecules

    • Electric field present between the gas molecules

    Solution

    C.

    Forces of attraction between the gas molecules

    In the real gas equation, P + an2V2 (V-nb) = nRT van der Waal's constant, 'a' signifies intermolecular forces of attraction.

    Question 359
    CBSEENCH11008484

    The energy released when 6 moles of octane is burnt in air will be [Given, ΔHf for CO2 (g). H2O(g) and C8H18 (l), respectively are -490, -240 and +160J/mol]

    • -37.4 kJ

    • -20 kJ

    • -6.2 kJ

    • -35.5 kJ

    Solution

    D.

    -35.5 kJ

    C +O2   CO2; G = - 490 J ...(i)H2 + 12O2    H2O ; H =- 240 J ...(ii)8C + 9H2   C8H18; H = +160 J .... (iii)

    On applying, 8 x Eq. (i)  + 9x Eq. (ii) -Eq. (iii), we get

    C8H18 + 252O2   8CO2  + 9H2OHR0 = [8 x (-490)] + [9 x (-240)] + 160 = -5920 J mol-1

    Hence, energy exchange when 6 moles of octane is burnt in air = - 5920 x 6 = -35520 J = -35.5 kJ

    Mock Test Series

    Sponsor Area

    Sponsor Area

    NCERT Book Store

    NCERT Sample Papers

    Entrance Exams Preparation

    8