Physics Part Ii Chapter 9 Mechanical Properties Of Solids
  • Sponsor Area

    NCERT Solution For Class 11 Physics Physics Part Ii

    Mechanical Properties Of Solids Here is the CBSE Physics Chapter 9 for Class 11 students. Summary and detailed explanation of the lesson, including the definitions of difficult words. All of the exercises and questions and answers from the lesson's back end have been completed. NCERT Solutions for Class 11 Physics Mechanical Properties Of Solids Chapter 9 NCERT Solutions for Class 11 Physics Mechanical Properties Of Solids Chapter 9 The following is a summary in Hindi and English for the academic year 2021-2022. You can save these solutions to your computer or use the Class 11 Physics.

    Question 1
    CBSEENPH110024918

    State hooke’s law?

    Solution

    Hooke’s law states that the extension produced in the wire is directly proportional to the load applied within the elastic limit i.e. Acc to Hooke’s low Stress α Strain Stress = E x Strain E = Modulus of elasticity

    Question 2
    CBSEENPH110024928

    Define modulas of elasticity and write down its Unit and Dimensions.

    Solution

    Modulus of elasticity = Stress / Strain, As Strain is a dimensionless quantity being a ratio between change in dimension to the original dimension, the dimensions of Modulus of Elasticity are the same as that of stress. That is kg/mm^2 are the dimensions of Modulus of Elasticity.

    Question 3
    CBSEENPH110024929

    Write down the relation beween three types of moduli and poissons ration?

    Solution

    3 Types of Elastic Moduli. Young's modulus (E) describes tensile elasticity, or the tendency of an object to deform along an axis when opposing forces are applied along that axis; it is defined as the ratio of tensile stress to tensile strain. It is often referred to simply as the elastic modulus.

    Question 4
    CBSEENPH11020358
    Question 8
    CBSEENPH11020476

    One solid sphere A and another hollow sphere B are of same mass and same outer radii. Their moment of inertia about their diameters are respectively IA and IB such that


    Where dA and dB are their densities.

    • IA = IB

    • IA > IB

    • IA < IB

    • IA/IB = dA/dB

    Solution

    C.

    IA < IB

    Let same mass and same outer radii of solid sphere and hollow sphere are M and R respectively. The moment of inertia of solid sphere A about its diameter
    straight I subscript straight A space equals space 2 over 5 space MR squared .... (i)
    Similarly the moment of inertia of hollow sphere (spherical shell) B about its diameter
    straight I subscript straight B space equals space 2 over 3 space thin space MR squared  (ii)
    It is clear from eqs. (i) and (ii). IA < IB

    Question 9
    CBSEENPH11020481

    What would be the work done in stretching a wire.

      Solution

      Work done in stretching the wire = potential energy stored


      12 x stress x strain x volume= 12 x FA x lL x AL = 12 Fl

      Question 10
      CBSEENPH11020500

      A granite rod of 60 cm length is clamped at its middle point and is set into longitudinal vibrations. The density of granite is 2.7 x 103 kg/mand its Young’s modulus is 9.27 x 1010 Pa. What will be the fundamental frequency of the longitudinal vibrations?

      • 7.5 kHz

      • 5 kHz

      • 2.5 kHz

      • 10 kHz

      Solution

      B.

      5 kHz

      In solids, Velocity of wave

      V = Yρ = 9.27 x 10102.7 x 103v = 5.83 x 103 m/sec

      Since rod is clamped at middle fundamental wave shape is as follow

      λ2 = L λ = 2Lλ = 1.2 m( L - 60 cm = 0.6 m )using v = fλ f = vλ =5.85 x 1031.2= 4.88 x 103 Hz  5 KHz

      Question 12
      CBSEENPH11020504

      A solid sphere of radius r made of a soft material of bulk modulus K is surrounded by a liquid in a cylindrical container. A massless piston of the area a floats on the surface of the liquid, covering an entire cross section of cylindrical container. When a mass m is placed on the surface of the piston to compress the liquid, the fractional decrement in the radius of the sphere, (dr/r), is

      • mg/Ka

      • Ka/mg

      • Ka/3mg

      • mg/3Ka

      Solution

      D.

      mg/3Ka

      Bulk modulus, K = Volumetric stressVolumetric strainK= mgadVV  dVV = mgKa ....(i)Volume of sphere,V = 43πR3Fractional Change in volume dVV = 3drr .... (ii)Using equ (i) & (ii) 3drr = mgKa drr = mg3Ka (fractional decrement in radius)

      Question 14
      CBSEENPH11020833
      Question 16
      CBSEENPH11020847

      The fundamental frequency in an open organ pipe is equal to the third harmonic of a closed organ pipe. If the length of the closed organ pipe is 20 cm, the length of the open organ pipe is

      • 13.2 cm

      • 8 cm

      • 16 cm

      • 12.5 cm

      Solution

      A.

      13.2 cm

      For closed organ pipe, third harmonic

      n = (2N-1)V4l = 3V4l( N =2)

      For open organ pipe, 

      n = NV2l=V2l'( N= 1)According to question,3V4l = V2l' l' = 4l3 x2 = 2l3 =2 x 203 = 13.33 cm 

      Question 17
      CBSEENPH11026129

      The dimensional formula for Young's modulus is

      • M L-1 T-2

      • Mo L T-2

      • M L T-2

      • M L2T-2

      Solution

      A.

      M L-1 T-2

      The formula for the Young's modulus

      Y =stressstrainDimension of Y = M L-1 T-2Mo Lo To                             =M L-1T-2

      Young's modulus is the ratio of stress, which has units of pressure, to strain, which is dimensionless; therefore, Young's modulus has units of pressure.

      Sponsor Area

      Question 18
      CBSEENPH11026170

      The maximum number of possible interference maxima for slit-separation equal to twice the wavelength in Young's double slit experiment is

      • infinite

      • five

      • three

      • zero

      Solution

      B.

      five

      For possible interference maxima on the screen, the condition is

      d sinθ = n λ

      Given:- d = slit - width = 2 λ

      ∴  2 λ sinθ = n λ

      ⇒ 2 sinθ = n

      The maximum value of sinθ is 1, hence,

      n = 2 × 1 = 2

      Thus, Eq. (i) must be satisfied by 5 integer values ie, -2, -1, 0, 1, 2. Hence, the maximum
      number of possible interference maxima is 5.

      Question 19
      CBSEENPH11026217

      A wire can be broken by applying load of 200 N. The force required to break another wire of the same length and same material, but double in diameter is

      • 200 N

      • 400 N

      • 600 N

      • 800 N

      Solution

      C.

      600 N

      Young's modulus

             Y = F LA l

              F = Y A l L

               F ∝ A

      ⇒       F  ∝ r2

      ⇒       F  ∝ d2

      ∴       F1F2  = d12d22

      Given:-   d1 = d, d2 = 2d and F1 = 200N

      ∴       200F2 = d22d2

                       = 14

      ⇒        F2 = 4 × 200

                 F2  = 800 N

      Question 20
      CBSEENPH11026218

      A cube of side 40 mm has its upper face displaced by 0.1 mm by a tangential force of 8 kN. The shearing modulus of cube is

      • 2 × 109 Nm-2

      • 4 × 109 Nm-2 

      • 8 × 109 Nm-2

      • 16 × 109 Nm-2

      Solution

      A.

      2 × 109 Nm-2

      Shearing modulus of cube

             η = F lAl

             η = 8 × 103 × 40 ×10-340 × 10-32 ×0.1 × 10-3 

              η = 2 × 109 N m-2

      Question 21
      CBSEENPH11026227

      If Young's double slit experiment is performed i water instead of air, then

      • no fringes would be seen

      • fringe width would decrease

      • fringe width would increase

      • fringe width would remain unchanged

      Solution

      B.

      fringe width would decrease

      Fridge width 

                β = d

      ⇒        β ∝ λ

      If the experiment is performed in water, wavelength A decreases, so, fringe width also decreases.

      Question 22
      CBSEENPH11026233

      In Young's double slit experiment with sodium vapour lamp of wavelength 589 nm and the slits 0.589 mm apart, the half angular width of the central maximum is

      • sin-1 (0.01)

      • sin-1 (0.0001)

      • sin-1 (0.001)

      • sin-1 (0.1)

      Solution

      C.

      sin-1 (0.001)

      In Young's double slit experiment, half angular width is given by

                sin θ = λd

                       = 589 × 10-90.589 × 10-3

                       = 10-3

      ⇒           θ  = sin-1 ( 0.001 )

      Question 23
      CBSEENPH11026249

      The Bulk modulus for an incompressible liquid is

      • zero

      • unity

      • infinity

      • between O and 1

      Solution

      C.

      infinity

      Bulk modulus:- The ratio of hydraulic stress to hydraulic strain called bulk modulus. It is denoted by B.

             B = -pVV             ......(i)

      The negative sign indicates that with an increase in pressure, a decrease in volume occurs. That is p is positive,  ΔV is negative

       For incompressible fluid, ΔV = 0

      ⇒ Equation(i) becomes

          B = -p0 = infinite

      Question 24
      CBSEENPH11026253

      In Young's double slit experiment with sodium vapour lamp of wavelength 589 nm and the slits 0.589 mm apart, the half angular width of the central maximum is

      • sin-1 (0.01)

      • sin-1 (0.0001)

      • sin-1 (0.001)

      • sin-1 (0.1)

      Solution

      C.

      sin-1 (0.001)

      In Young's double slit experiment half angular width is given by

                   sin θ = λd

                            = 589 × 109 0.589 × 10-3

                           = 10-3

      ⇒            θ  = sin-1 (0.001)

      Question 25
      CBSEENPH11026262

      If the ratio of lengths, radii and Young's modulus of steel and brass wires shown in the figure are a, b Brass and c respectively, the ratio between the increase in lengths of brass and steel wires would

                        

      • b2 a2 c

      • b c2 a2

      • b a22 c

      • a2 b2 c

      Solution

      D.

      a2 b2 c

      Free body diagram of the two blocks are

            l1l2 = a ,    r1r2 = b   , Y1Y2 = c

      Let Young's modulus of steel is Y1  and of brass is Y2

                Y1F1 . l1A1 l1                                 .... (i)

       and    Y2F2 l2A2 l2                                 .... (ii)

      Dividing Eq. (i) by Eq. (ii), we get

                 Y1Y2 = F1 . l1A1 . l1F2 . l2A2 . l2

      ⇒        Y1Y2 = F1 . A2 . l1 . l2F2 . A1 . l2 .l1                     .....(iii)

      Force on steel wire from free body diagram 

          T = F1 = 2 g N

      Force on brass wire from free body diagram

           F2 = T' = T + 2g

                = 4 g N

      Now, putting the values of F1 , F2   Eq. (iii) we get

           Y1Y2 = 2 g4 g . π r22π r12 .l1l2. l 2l1

            c = 12 1b2. a l2l1

      ⇒  l1 l2 = a2 b2 c

      Question 26
      CBSEENPH11026301

      A steel wire of 1 m long and l mm2 cross-section area is hanged from rigid end when weight of 1 kg is hang from it, then change in length will be

      (Young's coefficient for wire Y = 2 x 1011 N/m2 )

      • 0.5 mm

      • 0.25 mm

      • 0.05 mm

      • 5 mm

      Solution

      C.

      0.05 mm

      Young's coefficient of elasticity

       Given m = 1 kg = 1000 g

          Area of cross section 1 mm2 = 10-6 m2

      G          Y = m g Lπ r2 L

                  ΔL = m g L π r2 Y

                      = 103 ×10 × 110-6 × 2× 1011     

                       = 5 × 10-2      

                Δ L = 0.05 mm

      Question 27
      CBSEENPH11026333

      What is the change in the volume of 1.0 L kerosene, when it is subjected to an extra pressure of 2.0 x 105 Nm-2 from the following data? Density of kerosene = 800 kg m-3  and speed of sound in kerosene= 1330 ms-1.

      • 0.97 cm-3

      • 0.66 cm-3

      • 0.15 cm-3

      • 0.59 cm-3

      Solution

      C.

      0.15 cm-3

      As, we know that

               v = Rρ

      where, k = bulk modulus of elasticity

      ⇒    k = v2 ρ

                = (1330)2 × 800 N/m2

      Also   k = F AV V

             ΔV = pressurek

                  = 2 × 1051330 × 1330 × 800

              ΔV  = 0.15 cm3

      Question 28
      CBSEENPH11026336

      Find the increase in pressure required to decrease the volume of water sample by 0.01%. Bulk modulus of water = 2.1 × 109 Nm-2 .

      • 4.3x 104 N/m2

      • 1.8 × 107 N/m2 

      • 2.1 × 105 N/m2

      • 3.7 × 104 N/m2

      Solution

      C.

      2.1 × 105 N/m2

      Given:-  Bulk modulus of water B = 2.1 × 109 N/m2

      Also given that

          VV = 0.01 %

                  = 0.01100

           VV= 10-4

      We know that,

      The ratio of change in pressure to the fractional volume compression is called the bulk modulus of the material.

           B = p VV

           p = B VV

               = 2.1 × 109 × 10-4

          p = 2.1 × 105 N/m2

      Question 29
      CBSEENPH11026361

      The intensity of each of the two slits in Young's double slit experiment is ICalculate the minimum separation between the points on the screen, where intensities are 2I0 and I0 If fringe width is b

      • b5

      • b8

      • b12

      • b4

      Solution

      C.

      b12

      We know that, intensity, 

             I = 4 l0 cos2 ϕ2

      Case (i)

           2 I0 = 4 I0 cos2 ϕ2

           ϕ = 2 πλ x

           π2 = 2 πλ Δx

            π2 = 2πλ Y1D                     x = Y1D  and  ϕ = π2

      ⇒     Y1 = λ D4 d                            .....(i)

      Case (ii)

            I0 = 4I0 cos2 ϕ2 

      ∴      ϕ = 2 πλ Δx

             2π3 = 2 πλ Y2 dD                  ϕ = 2π3 and  x = y2 dD

                    Y2λ D3 d

      ∴     ΔY = Y2 -  Y1

                  = λ D3d - λ D4d

                   = λ D12 d

               λDd = b

           ΔY = b12

      Question 31
      CBSEENPH11026439

      For a constant hydraulic stress P on an object with bulk modulus (B), the fractional change in the volume of object will be

      • PB

      • BP

      • PB

      • BP2

      Solution

      A.

      PB

      Bulk modulus:-  It is the ratio of hydraulic strain to the corresponding hydraulic strain is called Bulk modulus. 

      It is denoted by symbol B

                B = -PV  V

      ⇒         VV = PB 

      Question 32
      CBSEENPH11026456

      Young's modulus for a steel wire is 2 x 1011 Pa and its elastic limit is 2.5 x 108 Pa. By how much can a steel wire 3 m long and 2 mm in diameter be stretched before the elastic limit is exceeded?

      • 3.75  mm

      • 7.50 mm

      • 4.75 mm

      • 4.00 mm

      Solution

      A.

      3.75  mm

      The cross-sectional area of a wire of radius r = l mm= 10-3m is  A = π r2 = 3.14 x 10-6 m2.
      The maximum force that can be applied without exceeding the elastic limit is therefore

                F = FAmax × A

                F = (2.5 × 108 N m-2 ) ( 3.14 × 10-6 m2 )

                 F = 785 N

      When this force is applied, the wire will stretch by

                ΔL = LY FA

                      = 3 m 785 N2 × 1011 Nm2 3.14 × 10-6 m2

                       = 3.75 × 10-3 m

                  ΔL = 3.75 mm

      Mock Test Series

      Sponsor Area

      Sponsor Area

      NCERT Book Store

      NCERT Sample Papers

      Entrance Exams Preparation