ABCD is a cyclic quadrilateral and AD is a diameter. If ∠DAC = 55° then value of ∠ABC is
-
55°
-
35°
-
145°
-
125°
C.
145°

In ΔACD
∠DAC = 55°
∠ACD = 90°
∠D = 180° - 55° - 90° = 35°
∴ ∠ABC + ∠ADC = 180°
⟹ ∠ABC = 180° - 35° = 145°
Sponsor Area
ABCD is a cyclic quadrilateral and AD is a diameter. If ∠DAC = 55° then value of ∠ABC is
55°
35°
145°
125°
C.
145°
Sponsor Area
ABCD is a cyclic quadrilateral. Diagonals AC and BD meets at P. If and
, then
measures
A.
ABCD is a cyclic trapezium in which AD || BC. If , then
is
110°
80°
70°
90°
C.
70°
ABCD is a rectangle where the ratio of the lengths of AB and BC is 3 : 2. If P is the mid point of AB, then the value of is
D.
ABCD is a trapezium with AD and BC parallel sides. E is a point on BC. The ratio of the area of ABCD to that of AED is
D.
Sponsor Area
Mock Test Series