Laws of Motion

Question
CBSEENPH11026153

A bomb of mass 30 kg at rest explodes into two pieces of masses 18 kg and 12 kg. The velocity of 18 kg mass is 6 ms'.The kinetic energy of the other mass is

  • 256 J

  • 486 J

  • 524 J

  • 324 J

Solution

B.

486 J

The linear momentum of the exploding part will remain conserved.

Applying coservation of linear momentum,

m1 u1 =m2 u2

Here, m1 = 18kg, m2 = 12kg

u1 = 6ms-1, u2 = ?

u2 = 18×612 9 ms-1

Thus kinetic energy of 12 kg mass

K2 =12m1u22       = 12×12×92       = 6× 81K2   = 486 J

Question
CBSEENPH11026274

A boy on a cycle pedals around a circle of 20 metres radius at a speed of 20 m/s. The combined mass of the body and the cycle makes with the vertical so that it may not fall is (g = 9.8 m/s2 )

  • 60.25o

  • 63.90o

  • 26.12o

  • 30.00o

Solution

B.

63.90o

A body that travels an equal distance in equal amounts of time along a circular path has a constant speed but not constant velocity. This is because velocity is a vector and thus it has magnitude as well as direction.

               v = ( Rg tanθ )1/2

               tan θ = v2r g

               = 40020 × 900

         tan θ = 63.70o 

         tanθ ≈ 63.90o

Question
CBSEENPH11026238

A bullet of mass 20 g and moving with 600 m/s collides with a block of mass 4 kg hanging with the string. What is velocity of bullet when it comes out of block, if block rises to height 0.2 m after collision?

  • 200 m/s

  • 150 m/s

  • 400 m/s

  • 300 m/s

Solution

A.

200 m/s

Linear momentum is a product of the mass (m) of an object and the velocity (v) of the object.

According to conservation of linear momentum

          m1 v1 = m1 v + m2 v2

where v1 is the velocity of the bullet before the collision, v  is the velocity of bullet after the collision and v2 is the velocity of the block.

∴     0.02 × 600 = 0.02 v + 4 v2

We have

       v2 = 2gh

           = 2 × 10 × 0.2

       v2 = 2 m/s

∴      0.02 × 600 = 0.02 v + 4 × 2

⇒             0.02 v = 12 - 8

⇒                    v = 40.02

⇒                      v = 200 m/s

Sponsor Area

Question
CBSEENPH11020887

A car of mass 1000 kg moves on a circular track of radius 20 m. If the coefficient of friction of 0.64. The maximum velocity with which the car can be moved is

  • 11.2m/s

  • 112m/s

  • 0.64×201000×100m/s

  • 100064×20m/s

Solution

A.

11.2m/s

   Vmax=μrg=0.64×20×9.8 where,μ-coefficient of friction Vmax=11.2 m/s

Sponsor Area

Question
CBSEENPH11026281

A car of mass 1000 kg moves on a circular track of radius 40 m. If the coefficient of friction is 1.28. The maximum velocity with which the car can be moved, is

  • 22.4 m/s

  • 112 m/s

  • 0.64 × 401000 × 100m/s

  • 1000 m/s

Solution

A.

22.4 m/s

A car moves in a circular track so it perform circular motion. 

According to second law the force providing this acceleration is

           fcmv2R

But according to static friction

         fs ≤ μs N

     f = m v2R  μs N

     vmax = μ R g

Given:-  μ = 1.28 

where μ is  the coefficient of friction 

  R = 40 m 

The maximum velocity

          vmaxμ R g 

                   = 1.28 × 40 × 9.8

             vmax = 22.4 m/s