Dual Nature of Radiation and Matter

Question
CBSEENPH12047915

The graph 1λ and stopping potential (V) of three metals having work function ϕ1 , ϕ2 and  ϕ3 in an experiment of photoelectric effect is plotted as shown in the figure. Which one of the following statement is/are correct? [Here λ is the wavelength of the incident ray ]

     WiredFaculty

(i) Ratio of work functions  ϕ1  :  ϕ2  :  ϕ3 = 1 : 2 : 4

(ii) Ratio of work functions ϕ1 :  ϕ2  : ϕ3 = 4 : 2 : 1

(iii) tanθ ∝ h ce, where h = Planck's constant, c = speed of light

(iv)The violet colour-light can eject photoelectrons from metals 2 and 3

  • (i), (iii)

  • (i), (iv)

  • (ii), (iii)

  • (i), (ii) and (iv)

Solution

A.

(i), (iii)

According to Einstein photoelectric equation,

       E = Kmaxϕ

        h cλ = ϕ + eVs

∴     Vs hcλ - ϕ  1e

   Vs versus 1λ graph is a straight line.

    Slope 

           tanθ = h ce

  The curves intersect the 1λ axis, where Vs is zero

∴   h cλ - ϕ = 0

⇒   1λ = ϕh c

For metal 1

      ϕ1h c = 0.001

For metal 2

       ϕ2hc = 0.002

For metal 3

         ϕ3hc = 0.004

∴   ϕ1 : ϕ2 : ϕ3 = 1 : 2 : 4

For metal 1

    λO1 = hcϕ = 10.001 = 1000 nm

For metal 2, threshold wavelength,

     λO2 = hcϕ = 10.002 = 500 nm

Simillarly, 

      λO3 = hcϕ = 10.004 = 250 nm

          λvoilet = 400 nm

 For metal 1     

    λvoilet < λthreshold

  For metal 3 

           λvoilet >  λthreshold

Question
CBSEENPH12040044

The ground state energy of hydrogen atom is -13.6 eV. When its electron is in the first excited state, its excitation energy is

  • 3.4 eV

  • 6.8 eV

  • 10.2 eV

  • zero

Solution

C.

10.2 eV

Excitation energy is defined as the energy required to take the electron from ground level orbit to any higher order orbit (ie, n = 2,3,4...)

Given, ground state energy of hydrogen atom

E1 = - 13.6/(2)2 eV

Energy of electron in first excited state (ie, n = 2)
E2 = - 13.6/ (2)2 eV

Therefore, excitation energy

ΔE = E2-E1
 =(-13.6/4) - (-13.6)
 = - 3.4 + 13.6 = 10.2 eV

Question
CBSEENPH12047807

The kinetic energy of an electron, which is accelerated in the potential difference of 100 V, is

  • 1.6 × 10-17 J

  • 1.6 × 10-14 J

  • 1.6 × 10-10 J

  • 1.6 × 10-8 J

Solution

A.

1.6 × 10-17 J

The energy transferred to electrons is e V joules. So each electron gains kinetic energy equal to the amount of energy transferred from the electrical supply. The electron starts from rest ( near enough ) so the Kinetic energy gained is given by 1 / 2 mv2 where m is the mass of electron and v is speed.

KE = e V

    = 1.6 × 10-19 × 100

KE = 1.6 × 10-17 J

Question
CBSEENPH12047713

The light rays having photons of energy 1.8 eV are falling on a metal surface having a work function 1.2 eV. What is the stopping potential to be applied to stop the emitting electrons?

  • 3 eV

  • 1.2 eV

  • 0.6 eV

  • 1.4 eV

Solution

C.

0.6 eV

The stopping potential depends on the kinetic energy of the electrons, which is affected only by the frequency of incoming light and not by its intensity.

The maximum kinetic energy of the photoelectron
(KE)max = E - Φ  =1.8-1.2
            =  0.6  eV
i.e   eVo = (KE)max

or    eVo = 0.6 eV

∴ Stopping potential Vo = 0.6 V

Sponsor Area

Question
CBSEENPH12047706

The minimum wavelength of X-ray emitted by X-ray tube is 0.4125 Ao. The accelerating voltage is

  • 30 kV

  • 50 kV

  • 80 kV

  • 60 kV

Solution

A.

30 kV

From the formula

e V =hcλV =h ce λ  =6.6×10-34×3×1081.6×10-19×0.4125×10-10 =30 × 103 volt =30 kvolt

Sponsor Area