Continuity and Differentiability

Sponsor Area

Question
CBSEENMA12034419

Check the continuity of the function f given by f(x) = 2 x + 3 at x = 1.

Solution

Here space space space space space space space space space space space space space space space space space space space space space space space straight f left parenthesis straight x right parenthesis equals 2 straight x plus 3
Lt with straight x rightwards arrow 1 below space straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 1 below space left parenthesis 2 straight x plus 3 right parenthesis equals 2 left parenthesis 1 right parenthesis plus 3 equals 2 plus 3 equals 5
Now space straight f space is space defined space at space straight x equals 1
and space space straight f left parenthesis 1 right parenthesis equals 2 left parenthesis 1 right parenthesis plus 3 equals 2 plus 3 equals 5
therefore stack Lt space with straight x rightwards arrow 1 below space straight f left parenthesis straight x right parenthesis equals straight f left parenthesis 1 right parenthesis equals 5
therefore space straight f space is space continous space at space straight x equals 1.

Sponsor Area

Question
CBSEENMA12034421

Prove that the function f(x) = 5 x – 3 is continuous at x = 0, at x  = – 3 and at x = 5.

Solution

Here space straight f left parenthesis straight x right parenthesis equals 5 straight x minus 3
left parenthesis straight i right parenthesis space Lt with straight x rightwards arrow 0 below space straight f left parenthesis straight x right parenthesis equals stack space Lt with straight x rightwards arrow 0 below space left parenthesis 5 straight x minus 3 right parenthesis equals 5 left parenthesis 0 right parenthesis minus 3 equals 0 minus 3 equals negative 3
Now space space straight f space is space defined space at space straight x equals 0
and space space straight f left parenthesis 0 right parenthesis equals 5 left parenthesis 0 right parenthesis minus 3 equals 0 minus 3 equals negative 3
therefore space Lt with straight x rightwards arrow 0 below space straight f left parenthesis straight x right parenthesis equals space straight f left parenthesis 0 right parenthesis equals negative 3
therefore space straight f space is space continous space at space straight x equals 0.
left parenthesis ii right parenthesis space stack Lt space with straight x rightwards arrow negative 3 below space straight f left parenthesis straight x right parenthesis equals stack space Lt with straight x rightwards arrow negative 3 below space left parenthesis 5 straight x minus 3 right parenthesis equals 5 left parenthesis negative 3 right parenthesis minus 3 equals negative 15 minus 3 equals negative 18
Now space straight f space is space defined space at space straight x equals negative 3
and space space straight f left parenthesis negative 3 right parenthesis equals 5 left parenthesis negative 3 right parenthesis minus 3 equals negative 15 minus 3 equals negative 18
therefore stack space Lt space with straight x rightwards arrow negative 3 below space straight f left parenthesis straight x right parenthesis equals straight f left parenthesis negative 3 right parenthesis equals negative 18
therefore space straight f space is space continous space at space straight x equals negative 3.
left parenthesis iii right parenthesis stack space Lt space with straight x rightwards arrow 5 below straight f left parenthesis straight x right parenthesis equals stack space Lt with straight x rightwards arrow 5 below space left parenthesis 5 straight x minus 3 right parenthesis equals 5 left parenthesis 5 right parenthesis minus 3 equals 25 minus 3 equals 22
Now space straight f space is space defined space at space straight x equals 5
and space space straight f left parenthesis 5 right parenthesis equals 5 left parenthesis 5 right parenthesis minus 3 equals 25 minus 3 equals 22
therefore Lt with straight x rightwards arrow 5 below space straight f left parenthesis straight x right parenthesis equals straight f left parenthesis 5 right parenthesis equals 22
therefore straight f space is space continous space at space straight x equals 5.

Question
CBSEENMA12034423

Examine the continuity of the function f(x) = 2x2 –1 at.x = 3

Solution

Here
      straight f left parenthesis straight x right parenthesis equals 2 straight x squared minus 1
Lt with straight x rightwards arrow 3 below space straight f left parenthesis straight x right parenthesis equals Lt with straight x rightwards arrow 3 below space left parenthesis 2 straight x squared minus 1 right parenthesis equals 2 left parenthesis 3 right parenthesis squared minus 1
equals 2 left parenthesis 9 right parenthesis minus 1 equals 18 minus 1 equals 17
Now space straight f space is space defined space at space straight x equals 3
and space space space space straight f left parenthesis straight x right parenthesis equals 2 left parenthesis 3 right parenthesis squared minus 1 equals 2 left parenthesis 9 right parenthesis minus 1 equals 18 minus 1 equals 17
therefore Lt with straight x rightwards arrow 3 below space space space straight f left parenthesis straight x right parenthesis equals straight f left parenthesis 3 right parenthesis equals 17
therefore space straight f space is space continous space at space straight x equals 3.

Question
CBSEENMA12034425

Prove that the function f(x) = xn is continuous at x = n, where n is a positive integer.

Solution

Syntax error from line 1 column 421 to line 1 column 428.