Application of Integrals

Sponsor Area

Question
CBSEENMA12035654

A retired person wants to invest an amount of Rs. 50, 000. His broker recommends investing in two type of bonds ‘A’ and ‘B’ yielding 10% and 9% return respectively on the invested amount. He decides to invest at least Rs. 20,000 in bond ‘A’ and at least Rs. 10,000 in bond ‘B’. He also wants to invest at least as much in bond ‘A’ as in bond ‘B’. Solve this linear programming problem graphically to maximise his returns.

Solution

Maximize Z  =  0.1x + 0.09 y
x + y ≤ 50000
x  ≥ 20000
y  ≥ 10000
y ≤ x

 

z=0.1 x+0.09y

P1 (20000,10000)

2900

P2(40000,10000)

4900

P3(25000,25000)

4750

P4(20000,20000)

3800

 
when A invest 400000 & B invest 10000 his return is maximum.

Sponsor Area

Question
CBSEENMA12035687

Minimum and maximum z = 5x + 2y subject to the following constraints:
x – 2y ≤ 2
3x + 2y ≤ 12
−3x + 2y ≤ 3
x ≥ 0, y ≥ 0

Solution

straight x minus 2 straight y less-than or slanted equal to 2
3 straight x plus 2 straight y less-than or slanted equal to 12
minus 3 straight x plus 2 straight y less-than or slanted equal to 3
straight x greater-than or slanted equal to 0 comma space straight y greater-than or slanted equal to 0
Converting the inequations into equations, we obtain the lines
x – 2y = 2…..(i)
3x + 2y = 12……(ii)
−3x + 2y = 3……(iii)
x = 0, y = 0


From the graph, we get the corner points as
A(0, 5), B(3.5, 0.75), C(2, 0), D(1.5, 3.75), O(0, 0)
The values of the objective function are: 
Point (x,y) Values of the objective function
Z= 5x+2y
A(0, 5) 5 × 0 + 2 × 5 = 10
B(3.5, 0.75) 5 x 3.5 +2 x 0.75 =19 (Maximum)
C(2, 0) 5 x 1.5 +2 x 3.75 =15
O(0,0) 5 x 0 + 2 x 0 = 0 (Minimum)
The maximum value of Z is 19 and its minimum value is 0.

Question
CBSEENMA12035717

Using integration, find the area of the region bounded by the triangle whose vertices are (-1, 2), (1, 5) and (3, 4).

Solution

Consider the vertices, A(-1, 2), B(1, 5) and C(3, 4).
Let us find the equation of the sides of the triangle increment ABC.
Thus, the equation of AB is:
fraction numerator straight y minus 5 over denominator 5 minus 2 end fraction space equals space fraction numerator straight x minus 1 over denominator 1 plus 1 end fraction
rightwards double arrow 3 straight x minus 2 straight y plus 7 space equals space 0
Similarly comma space the space equation space of space BC space is colon
fraction numerator straight y minus 4 over denominator 4 minus 5 end fraction equals fraction numerator straight x minus 3 over denominator 3 minus 1 end fraction
rightwards double arrow straight x plus 2 straight y minus 11 space equals 0
Also comma space the space equation space of space CA space is colon
fraction numerator straight y minus 4 over denominator 4 minus 2 end fraction space equals fraction numerator straight x minus 3 over denominator 3 plus 1 end fraction
rightwards double arrow straight x minus 2 straight y plus 5 space equals 0

Now the area of increment ABC = Area of increment ADB + Area of increment BDC
therefore space Area space of space increment ADB space equals space integral subscript negative 1 end subscript superscript 1 open square brackets fraction numerator 3 straight x plus 7 over denominator 2 end fraction minus fraction numerator straight x plus 5 over denominator 2 end fraction close square brackets dx
Similarly comma space Area space of space increment BDC equals space integral subscript 1 superscript 3 open square brackets fraction numerator 11 minus straight x over denominator 2 end fraction minus fraction numerator straight x plus 5 over denominator 2 end fraction close square brackets dx
Thus comma space Area space of space increment ADB space plus space Area space of space increment BDC
equals space integral subscript negative 1 end subscript superscript 1 open square brackets fraction numerator 3 straight x plus 7 over denominator 2 end fraction minus fraction numerator straight x plus 5 over denominator 2 end fraction close square brackets dx plus integral subscript 1 superscript 3 open square brackets fraction numerator 11 minus straight x over denominator 2 end fraction minus fraction numerator straight x plus 5 over denominator 2 end fraction close square brackets dx
equals integral subscript negative 1 end subscript superscript 1 open square brackets fraction numerator 2 straight x plus 2 over denominator 2 end fraction close square brackets dx plus integral subscript 1 superscript 3 open square brackets fraction numerator 6 minus 2 straight x over denominator 2 end fraction close square brackets dx
equals integral subscript negative 1 end subscript superscript 1 open square brackets straight x plus 1 close square brackets dx plus integral subscript 1 superscript 3 open square brackets 3 minus straight x close square brackets dx
equals open square brackets straight x squared over 2 plus straight x close square brackets subscript negative 1 end subscript superscript 1 space plus space open square brackets 3 straight x minus straight x squared over 2 close square brackets subscript 1 superscript 3
equals 0 plus 2 plus 9 minus 9 over 2 minus 3 plus 1 half
equals 2 plus 9 over 2 minus 5 over 2
equals 4 space square space units

Question
CBSEENMA12035753

Using integration, find the area bounded by the curve x2 = 4y and the line x = 4y – 2.

Solution

The shaded area OBAO represents the area bounded by the curve x2 = 4y and the line x = 4y – 2.

Let A and B be the points of intersection of the line and parabola.
Co-ordinates of point A are open parentheses negative 1 comma space 1 fourth close parentheses. space Co-ordinates of point B are (2, 1).
Area OBAO = Area OBCO + Area OACO   ...(1)
Area OBCO = 
equals integral subscript 0 superscript 2 fraction numerator straight x plus 2 over denominator 4 end fraction dx minus integral subscript 0 superscript 2 straight x squared over 4 dx
equals 1 fourth open square brackets straight x squared over 2 plus 2 straight x close square brackets subscript 0 superscript 2 minus 1 fourth open square brackets straight x cubed over 3 close square brackets subscript 0 superscript 2
equals 1 fourth open square brackets 2 plus 4 close square brackets minus 1 fourth open square brackets 8 over 3 close square brackets
equals 3 over 2 minus 2 over 3 equals 5 over 6
Area OACO = 
  equals integral subscript negative 1 end subscript superscript 0 fraction numerator straight x plus 2 over denominator 4 end fraction dx minus integral subscript negative 1 end subscript superscript 0 straight x squared over 4 dx
equals 1 fourth open square brackets straight x squared over 2 plus 2 straight x close square brackets subscript negative 1 end subscript superscript 0 space minus space 1 fourth open square brackets straight x cubed over 3 close square brackets subscript negative 1 end subscript superscript 0
equals 1 fourth open square brackets negative fraction numerator left parenthesis negative 1 right parenthesis squared over denominator 2 end fraction minus 2 left parenthesis negative 1 right parenthesis close square brackets minus 1 fourth open square brackets negative open parentheses negative 1 close parentheses cubed over 3 close square brackets
equals 1 fourth open square brackets negative 1 half plus 2 close square brackets minus 1 fourth open square brackets 1 third close square brackets
equals 3 over 8 minus 1 over 12 equals 7 over 24
Therefore, required area = open parentheses 5 over 6 plus 7 over 24 close parentheses space equals 9 over 8 sq. units