Sponsor Area

DC Circuits And Measurements

Question
ICSEENIPH12029770

In the circuit shown in Figure 3, E1 = 17V,E2 = 21V, R1 = 2μ, R2=3μ R1=2μ R2= 3μ and R3 = 5μ.

Using Kirchoffs laws, find the currents flowing through the resistors R1,R2 and R3. (Internal resistance of each of the batteries is neglegible.)

WiredFaculty

Solution

(a) Applying Kirchoffs voltage Law to Loop ABEF

R1l1 + IR3 - E1 = 0 2I1 + 5I

                      = 17 I = I1 + l2 2I1 + 5I1 + 5l1 
                      = 17

7I1 + 5I2           = 17                          ... (i)

Applying voltage law to Loop BCDE, we have

R2I2 + R3I - 2I = 0 3I2 + 5I1 + 5I2 

                      = 21
5I1 + 8I2           = 21                    ... (ii)

Solving equations (i) and (ii)
Multiplying eq. (1) by 5 throughout

[ 7I1 + 5I2 = 17] x5  
  35I1 + 25I2 = 85                            ... (iii)
Multiplying eq. (2) by 7 throughout, we get
[ 5I+ 8I2 = 21 ] x7  
  35I1 + 56I2 = 147                          ... (iv)

On solving equations (iii) and (iv), we get
-31 I2 = -62
This implies, 
I2 = 2 Amp, and
I1 = 1 Amp
Current in R1=I1 = 1 Amp
Current in R2 =I2 = 2 Amp
Therefore,
Current in R3 =I1+I2 = 3 Amp


Question
ICSEENIPH12029800

Which conservation principle is involved in Kirchoffs first law of electric circuits?

Solution

Law of Conservation of charge.

Question
ICSEENIPH12029817

In the circuit shown in Figure 4 below, E is a battery of emf 6V and internal resistance 1Ω. Find the reading of the ammeter A, if it has negligible resistance :

WiredFaculty


Solution

Equivalent resistors across the terminal AB is given by, 
WiredFaculty
WiredFaculty 
Reading on the ammeter = 0.5 A

Question
ICSEENIPH12029818

With the help of a neatly drawn and lebelled diagram, obtain balancing condition of a Wheatstone bridge.

Solution

Current are distributed as shown in the figure below.
Resistances P, Q, R and S are shown.
Division of current are marked.
WiredFaculty
Applying KVL to the mesh ABD,

i1P + igG - (i - i1)R = 0                                  ---(i)

Applying KVL to the mash BCD,

(ii - ig)Q - (i - ii + ig)s - igG =0                     ---(ii)

under balanced condition ig = 0

iP = (i - ii)R                                              ---(iii)

iQ = (i - ii)S                                             ---(iv)

Dividing eq. (iii) by eq. (iv)
straight P over straight Q space equals space R over S