Sponsor Area

Cylinder Cone and Sphere

Question
ICSEENIMA10018841

A certain number of metallic cones, each of radius  2 cm  and height  3 cm  are melted and recast into a solid sphere of radius  6 cm. Find the number of cones.

Solution

Let the number of cones be  n.

Let the radius of the sphere be  rs = 6 cm

Radius of a cone be  rc = 2 cm

And height of the cone be  h = 3 cm

Volume of sphere = n ( Volume of a metallic cone )

 

 43 π rs3 = n  13 π rc2 h  43 π rs3 = n  13 π rc2 h   4 rs3rc2 h = n n =  4 ( 6 )3( 2 )2 ( 3 )  n= 4 x 2164 x 3 n = 72

Hence, the number of cones is  72.

Question
ICSEENIMA10018842

Solve the following inequation, write the solution set and represent it on the number line.

- 3 ( x - 7 )  15 - 7 x > x + 13,       x  R

Solution

- 3 ( x - 7 )  15 - 7 x > x + 13 - 3 ( x - 7 )  15 - 7 x       and        15 - 7 x > x + 13  - 3 x + 21  15 - 7 x       and        45 - 21 x > x + 1  - 3 x + 7 x  15 - 21       and        45 - 1  > x + 21 x 4 x  - 6         and          44 > 22 x x  - 32      and       2 > x x  - 1.5      and      2 > xThe solution set is   x : x  R,    - 1.5  x < 2 .

 

 WiredFaculty

Question
ICSEENIMA10018861

A model of a ship is made to a scale  1 : 300 

(i) The length of the model of ship is  2 m. Calculate the lengths of the ship.

(ii) The area of the deck ship is  180,000 m2. Calculate the area of the deck of the model.

(iii) The volume of the model in  6.5 m3. Calculate the volume of the ship.

Solution

( i ) Scale factor k = 1300

Length of the model of the ship  =  k x Length of the ship

 2 = 1300 x Length of the ship Length of the ship = 600 m

 

( ii ) Area of the deck of the model =  k x  Area of the deck of the ship

 Area of the deck of the model =  1300 2 x 180,000                                                    = 190000 x 180,000                                                    = 2 m2

 

( iii ) Volume of the model  =  k3 x  Volume of the ship

 6.5 =  1300 3 x Volume of the ship Volume of the ship = 6.5 x 27000000  = 175500000 m3