Triangles

Sponsor Area

Question
CBSEENMA9009806

In quadrilateral ACBD, AC = AD and AB bisects ∠A (See the given figure). Show that ΔABC ≅ ΔABD. What can you say about BC and BD?

 wiredfaculty.com

Solution

In ΔABC and ΔABD,

AC = AD (Given)

∠CAB = ∠DAB (AB bisects ∠A)

AB = AB (Common)

∴ ΔABC ≅ ΔABD (By SAS congruence rule)

∴ BC = BD (By CPCT)

Therefore, BC and BD are of equal lengths.

Sponsor Area

Question
CBSEENMA9009807

ABCD is a quadrilateral in which AD = BC and ∠DAB = ∠CBA (See the given figure). Prove that

(i) ΔABD ≅ ΔBAC

(ii) BD = AC

(iii) ∠ABD = ∠BAC.

 wiredfaculty.com

Solution

In ΔABD and ΔBAC,

AD = BC (Given)

∠DAB = ∠CBA (Given)

AB = BA (Common)

∴ ΔABD ≅ ΔBAC (By SAS congruence rule)

∴ BD = AC (By CPCT)

And, ∠ABD = ∠BAC (By CPCT)

Question
CBSEENMA9009808

AD and BC are equal perpendiculars to a line segment AB (See the given figure). Show that CD bisects AB.

 wiredfaculty.com

Solution

In ΔBOC and ΔAOD,

∠BOC = ∠AOD (Vertically opposite angles)

∠CBO = ∠DAO (Each 90º)

BC = AD (Given)

∴ ΔBOC ≅ ΔAOD (AAS congruence rule)

∴ BO = AO (By CPCT)

⇒ CD bisects AB.

Question
CBSEENMA9009809

l and m are two parallel lines intersected by another pair of parallel lines p and q (see the given figure). Show that ΔABC ≅ ΔCDA.

 wiredfaculty.com

Solution

In ΔABC and ΔCDA,

∠BAC = ∠DCA (Alternate interior angles, as p || q)

AC = CA (Common)

∠BCA = ∠DAC (Alternate interior angles, as l || m)

∴ ΔABC ≅ ΔCDA (By ASA congruence rule)