Sponsor Area
Motion and Time
Classify the following as motion along a straight line, circular or oscillatory motion:
(i) Motion of your hands while running.
(ii) Motion of a horse pulling a cart on a straight road.
(iii) Motion of a child in a merry-go-round.
(iv) Motion of a child on a see-saw.
(v) Motion of the hammer of an electric bell.
(vi) Motion of a train on a straight bridge.
(i) Oscillatory motion
While running, the hands move to and fro and repeat their motion after a given interval of time. Hence, it is an oscillatory motion.
(ii)Straight line
The horse is pulling a cart on a straight road. Therefore, it has a motion along a straight line.
(iii)Circular motion
Merry-go-round has a circular motion. Therefore, a child sitting inside it will also have a circular motion.
(iv) Oscillatory motion
The child on a see-saw goes up and down continuously. It oscillates up-down. Therefore, it is an oscillatory motion.
(v)Oscillatory motion
The hammer hits the electric bell and vibrates rapidly. Therefore, it is an oscillatory motion.
(vi) Straight line
The train is moving on a straight bridge. Therefore, it has a motion along a straight line.
Which of the following are not correct?
(i) The basic unit of time is second.
(ii) Every object moves with a constant speed.
(iii) Distances between two cities are measured in kilometres.
(iv) The time period of a given pendulum is not constant.
(v) The speed of a train is expressed in m/h.
(i) Correct
Second is the SI unit of time.
(ii) Not correct
An object can move with constant or variable speed.
(iii) Correct
The distance between two cities can be very large. Since kilometre is a bigger unit of distance, the distance between two cities is measured in kilometres.
(iv) Not correct
Time period of a pendulum depends on the length of the thread. Hence, it is constant for a particular pendulum.
(v) Not correct
The speed of a train is measured either in km/h or in m/s.
A simple pendulum takes 32 s to complete 20 oscillations. What is the time period of the pendulum?
Number of oscillations = 20
Total time taken to complete 20 oscillations = 32 s
The distance between two stations is 240 km. A train takes 4 hours to cover this distance. Calculate the speed of the train.
Distance between the two stations = 240 km
Time taken = 4 h
Sponsor Area
Mock Test Series
Mock Test Series



