Sponsor Area

Algebraic Expressions

Question
CBSEENMA7000991

Get the algebraicexpressions in the following cases using variables, constants and arithmetic operations.

(i) Subtraction of z from y.

(ii) One-half of the sum of numbers x and y.

(iii) The number z multiplied by itself.

(iv) One-fourth of the product of numbers p and q.

(v) Numbers x and y both squared and added.

(vi) Number 5 added to three times the product of number m and n.

(vii) Product of numbers y and z subtracted from 10.

(viii)Sum of numbers and b subtracted from their product.

Solution

(i) y − z

(ii) 12(x+y)

(iii) z2

(iv) 14 ( pq )

(v) x2 + y2

(vi) 5 + 3 (mn)

(vii) 10 − yz

(viii) ab − (a + b)

Question
CBSEENMA7000992

Identify the numerical coefficients of terms (other than constants) in the following expressions:

(i) 5 − 3t2 (ii) 1 + t2 + t3 (iii) x + 2xy+ 3y

(iv) 100m + 1000n (v) − p2q2 + 7pq (vi) 1.2a + 0.8b

(vii) 3.14 r2 (viii) 2 (b) (ix) 0.1y + 0.01 y2

Solution

Row

Expression

Terms

Coefficients

(i)

5 − 3t2

− 3t2

− 3

(ii)

1 + t + t2 + t3

t

t2

t3

1

1

1

(iii)

+ 2xy + 3y

x

2xy

3y

1

2

3

(iv)

100m + 1000n

100m

1000n

100

1000

(v)

− p2q2 + 7pq

− p2q2

7pq

− 1

7

(vi)

1.2a +0.8b

1.2a

0.8b

1.2

0.8

(vii)

3.14 r2

3.14 r2

3.14

(viii)

2(l + b)

2l

2b

2

2

(ix)

0.1+ 0.01y2

0.1y

0.01y2

0.1

0.01

Question
CBSEENMA7000993

(a) Identify terms which contain x and give the coefficient of x.

(i) y2x + y (ii) 13y2− 8yx (iii) x + y + 2

(iv) 5 + zx (v) 1 + x+ xy (vi) 12xy2 + 25

(vii) 7x + xy2

(b) Identify terms which contain y2 and give the coefficient of y2.

(i) 8 − xy2 (ii) 5y2 + 7x (iii) 2x2y −15xy2 + 7y2

Solution

(a)

Row

Expression

Terms with x

Coefficient of x

(i)

y2x + y

y2x

y2

(ii)

13y2 − 8yx

− 8yx

−8y

(iii)

x + y + 2

x

1

(iv)

5 + z + zx

zx

z

(v)

1 + xy

x

xy

1

y

(vi)

12xy2 + 25

12xy2

12y2

(vii)

7xxy2

7x

xy2

7

y2

(b)

Row

Expression

Terms with y2

Coefficient of y2

(i)

8 − xy2

xy2

− x

(ii)

5y2 + 7x

5y2

5

(iii)

2x2y + 7y2

−15xy2

7y2

−15xy2

7

−15x

Question
CBSEENMA7000994

Classify into monomials, binomials and trinomials.

(i) 4y − 7z (ii) y2 (iii) x + y − xy

(iv) 100 (v) ab − a − b (vi) 5 − 3t

(vii) 4p2− 4pq2 (viii) 7mn (ix) z2 − 3z + 8

(x) a2 + b2 (xi) z2 + z (xii) 1 + x + x2

Solution

The monomials, binomials, and trinomials have 1, 2, and 3 unlike terms in it respectively.

(i) 4y − 7z

Binomial

(ii) y2

Monomial

(iii) x + y − xy

Trinomial

(iv) 100

Monomial

(v) ab − a − b

Trinomial

(vi) 5 − 3t

Binomial

(vii) 4p2q − 4pq2

Binomial

(viii) 7mn

Monomial

(ix) z2 − 3z + 8

Trinomial

(x) a2 + b2

Binomial

(xi) z2 + z

Binomial

(xii) 1 + x + x2

Trinomial