Trigonometric Functions

Sponsor Area

Question
CBSEENMA11013620

Find the values of x and y when.

space space space space space space space space left parenthesis 2 straight x comma space straight x plus straight y right parenthesis space equals space left parenthesis 6 comma space 2 right parenthesis

Solution

 

(2x, x + y) = (6, 2)
rightwards double arrow   2x = 6  or x = 3
and       x + y = 2 or  3+y = 2 or y = -1
Hence, x = 3, y = -1

Sponsor Area

Question
CBSEENMA11013621

space space space space space space space space open parentheses straight x over 3 plus 1 comma space straight y minus 2 over 3 close parentheses equals open parentheses 5 over 3 comma 1 third close parentheses,  find the values of x and y.

Solution

space space space space space space space space space space space space space space space space open parentheses straight x over 3 plus 1 comma space straight y minus 2 over 3 close parentheses equals open parentheses 5 over 3 comma 1 third close parentheses
rightwards double arrow      space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space straight x over 3 plus 1 equals 5 over 3 space space or space straight x over 3 equals 5 over 3 or space straight x space equals space 2


and           space space space space space space space space space space space space space space space space space space space space space space space space space space space straight y minus 2 over 3 equals 1 third or space straight y equals 1 third plus 2 over 3 equals 3 over 3 or space straight y equals 1
Hence, x =2, y =1

Question
CBSEENMA11013626

Find the values of x and y when

(x2--x, y-3y+2)=(0, 0)

Solution

(x-x, y-3y+2) = (0, 0)
rightwards double arrow        x-x = 0 or x(x-1)=0 or x = 0, 1
and y-3y+2 = 0 or (y-1) (y-*2) = 0 or y = 1, 2
Hence,  x = 0, x = 1, y = 1, y = 2

Question
CBSEENMA11013632

If A = {a, b, c} and B = {p, q}, then find :

(i) A x B (ii) B x A (iii) A x A (iv) B x B (v) n (A x B) (vi) n (B x A) (vii) n (A x A) (viil) n (B x B).

Solution

(i) A  X B = {a, b, c} x (p, q} = {{a, p}, {a, q}, (b, p}, {b, q}, {c, p}, {c, q}}
(ii) B x A = {p, q} x {a, b, c} = {{p, a, }.{p, b}.{p, c}.{q, a}.{q, b}.{q, c}}
(iii} A x A = {a, b, c} x {a, b, c} = {(a, a), (a, b), (a, c), (b,l, a), (b,, b), (b, c), (c a), (c, b), (c, c)}
(iv) B x B = {p.q} x {p.q} = {(p.p), (p.q), (p.q), (p.q)
(v) n(A x B) = n(A) x n(B) = 3 x 2 = 6
(vi) n(B xA) = n(B) x n(A) = 2 x 3 = 6
(vii) n(A xA) = n(A)  x n(A) = 3 x 3 = 9
(viii) n(B x B) = n(B) x n(B) = 2 x 2 = 4