Electric Field: Electric Dipole

Question
ICSEENIPH12029861

Obtain an expresssion for intensity of electric field in end on position. i.e., axial position of an electric dipole.  

Solution

Let an electric dipole is taken which constitutes (+q) and (- q) charge separated by the distance 2l.

Let from the mid point of the dipole at a distance ‘r’ is the point P at intensities due to (+q) and (-q) charge respectively.

straight E subscript 1 space equals space fraction numerator 1 over denominator 4 πε subscript straight o end fraction fraction numerator straight q over denominator left parenthesis straight r space minus space straight l right parenthesis squared end fraction space semicolon spacedirection along the dipole axis. 
E2fraction numerator 1 over denominator 4 πε subscript straight o end fraction space fraction numerator q over denominator left parenthesis r plus l right parenthesis squared end fraction semicolon direction opposite to the dipole axis. 
Resultant electric field intensity E = E1 - E2
 Error converting from MathML to accessible text. 


Question
ICSEENIPH12029888

Electric field intensity ‘E’ at a point P (Figure 1) at a perpendicular distance ‘r’ from an infinitely long line charge X’X having linear charge density X is given by:


  • straight E space equals space open parentheses fraction numerator 1 over denominator 4 πε subscript straight o end fraction close parentheses space fraction numerator 2 straight lambda over denominator straight r squared end fraction
  • straight E space equals space open parentheses fraction numerator 1 over denominator 4 πε subscript straight o end fraction close parentheses space fraction numerator 2 straight lambda over denominator straight r end fraction
  • straight E space equals space open parentheses fraction numerator 1 over denominator 4 πε subscript straight o end fraction close parentheses space straight lambda over straight r squared
  • straight E space equals space open parentheses fraction numerator 1 over denominator 4 πε subscript straight o end fraction close parentheses space straight lambda over straight r

Solution

B.

straight E space equals space open parentheses fraction numerator 1 over denominator 4 πε subscript straight o end fraction close parentheses space fraction numerator 2 straight lambda over denominator straight r end fraction

Question
ICSEENIPH12029936

Draw (at least three) electric lines of force due to an electric dipole.

Solution

Electric lines of dipole.

Question
ICSEENIPH12029954

With the help of a labelled diagram, obtain an expression for the electric field intensity ‘E’ at a point P in broad side position (i.e., equatorial plane) of an electric dipole. 

Solution

Electric field intensity at a point on the broad side-on position equatorial line: Consider an electric dipole consisting of two equal but opposite charges -q and +q separated by a vector distance 2l. Let P be a point at a distance r from the centre of the dipole O. The electric intensity at P due to the dipole is the vector sum of the field due to the charge -q at A and +q at B.

Electric intensity at P due to - q = EAfraction numerator 1 over denominator 4 πε subscript straight o end fraction space fraction numerator q over denominator A P squared end fraction
But    AP2 = r2 +l2;    
where AO = OB = l
Magnitude of EA is |EA| = fraction numerator 1 over denominator 4 πε subscript straight o end fraction space fraction numerator q over denominator left parenthesis space r squared space plus space l squared right parenthesis space end fraction

Electric space intensity space at space straight P space due space to space plus space straight q comma

straight E with rightwards harpoon with barb upwards on top subscript straight B space equals space fraction numerator 1 over denominator 4 πε subscript straight o end fraction straight q over BP squared comma space directed space along space PD

But comma space

BP squared space equals space open parentheses straight r squared space plus space straight I squared close parentheses

Magnitude space of space straight E with rightwards harpoon with barb upwards on top subscript straight B space is comma space

open vertical bar straight E subscript straight B close vertical bar space equals space fraction numerator 1 over denominator 4 πε subscript straight o end fraction fraction numerator straight q over denominator straight r squared space plus space straight l squared end fraction


The resultant intensity is the vector sum ofstraight E with rightwards harpoon with barb upwards on top subscript A space a n d space stack E subscript B with rightwards harpoon with barb upwards on top.
EA and EB can be resolved into two components.
The y-components of the fields cancel each other because EA sin θ = EB sin θ and they are oppositely directed. The x-components add up to give the resultant field E.
Magnitude space of space straight E space is comma

open vertical bar straight E close vertical bar space equals space straight E subscript straight A space cos space straight theta space plus space straight E subscript straight B space cos space straight theta

straight E space equals space fraction numerator 1 over denominator 4 πε subscript straight o end fraction fraction numerator straight q over denominator straight r squared plus straight l squared end fraction space cos space straight theta space plus space fraction numerator 1 over denominator 4 πε subscript straight o end fraction fraction numerator straight q over denominator straight r squared plus straight l squared end fraction space cos space straight theta

space space space equals space 2 space straight x space fraction numerator 1 over denominator 4 πε subscript straight o end fraction space fraction numerator straight q over denominator straight r squared space plus space straight l squared end fraction space cos space straight theta

From space the space right space angled space OPB comma space

cos space straight theta space equals space OB over PB space equals space 1 over open parentheses straight r squared space plus space straight l squared close parentheses to the power of bevelled 1 half end exponent

straight E space equals space 2 space straight x space fraction numerator 1 over denominator 4 πε subscript straight o end fraction space straight x space fraction numerator straight q over denominator left parenthesis straight r squared space plus space straight l squared right parenthesis end fraction space straight x space fraction numerator 1 over denominator left parenthesis straight r squared space plus space straight l squared right parenthesis to the power of bevelled 1 half end exponent end fraction

The space dipole space moment comma space straight p space equals space 2 lq space

straight E space equals space fraction numerator 1 over denominator 4 πε subscript straight o end fraction space fraction numerator straight p over denominator left parenthesis straight r squared space plus space straight l squared right parenthesis to the power of bevelled 3 over 2 end exponent end fraction 
E is directed along PC.
The direction of E can be found out by drawing the line of force passing through the point P.
The direction of E at P is opposite to the direction of the dipole moment p . 
i.e., parallel to the line joining the two charges and directed from + q to - q.
Then, 
straight E subscript eq space equals space fraction numerator 1 over denominator 4 πε subscript straight o end fraction space straight x space open parentheses straight p over open parentheses straight r squared close parentheses to the power of 3.2 end exponent close parentheses space equals space fraction numerator 1 over denominator 4 πε subscript straight o end fraction. straight p over straight r cubed

  
When r > > I, then l2 is very small compared to r2.
Eaxialfraction numerator 1 over denominator 4 πε subscript straight o end fraction space equals space fraction numerator 2 p over denominator r cubed end fraction
From the above two equations for Eeq and Eaxial we find that the electric intensity at an axial point is twice the electric intensity at a point on the equatorial position, lying at the same distance from the centre of the dipole.