Laws of Motion

Question
CBSEENPH11020806

A uniform rod of length l and mass m is free to rotate in a vertical plane about A. The rod initially in horizontal position is released. The initial angular acceleration of the rod is: (Moment of inertia of rod about A is fraction numerator straight m l squared over denominator 3 end fraction)

  • fraction numerator 3 straight g over denominator 2 straight l end fraction
  • fraction numerator 2 straight l over denominator 3 straight g end fraction
  • fraction numerator 3 straight g over denominator 2 straight l squared end fraction
  • mg straight l over 2

Solution

A.

fraction numerator 3 straight g over denominator 2 straight l end fraction

The moment of inertia of the uniform rod about an axis through the end and perpendicular to length is
           straight I space equals space fraction numerator straight m l squared over denominator 3 end fraction
where m is mass of rod and l its length.
Torque left parenthesis straight t space equals space Iα right parenthesis acting on centre of gravity of rod is given by
                  straight t equals mg l over 2
or               Iα space equals space mg l over 2
or space space fraction numerator straight m l squared over denominator 3 end fraction straight alpha space equals space mg l over 2
therefore space space space space straight alpha space equals fraction numerator 3 straight g over denominator 2 l end fraction

 

Question
CBSEENPH11020820

Two cars moving in opposite directions approach each other with speed of 22 m/s and 16.5 m/s respectively. The driver of the first car blows a horn having a frequency 400 Hz. The frequency heard by the driver of the second car is [velocity of sound 340 m/s]

  • 350 Hz

  • 311 Hz

  • 411 Hz

  • 448 Hz

Solution

D.

448 Hz

straight f subscript straight A space equals space straight f open square brackets fraction numerator straight v plus straight v subscript 0 over denominator straight v minus straight v subscript straight s end fraction close square brackets
space equals space 400 space open square brackets fraction numerator 340 space plus 16.5 over denominator 340 minus 22 end fraction close square brackets
straight f subscript straight A space equals space 448 space Hz

Question
CBSEENPH11020825

An arrangement of three parallel straight wires placed perpendicular to plane of paper carrying same current ‘I’ along the same direction is shown in Fig. Magnitude of force per unit length on the middle wire ‘B’ is given by

  • fraction numerator straight mu subscript straight o straight I over denominator 2 πd end fraction
  • fraction numerator 2 straight mu subscript straight o straight I over denominator πd end fraction
  • fraction numerator square root of straight mu subscript straight o straight I end root over denominator πd end fraction
  • fraction numerator straight mu subscript 0 straight I squared over denominator square root of 2 πd end fraction

Solution

D.

fraction numerator straight mu subscript 0 straight I squared over denominator square root of 2 πd end fraction

Force between BC and AB will be same in magnitude.

straight F subscript BC space equals straight F subscript BA space equals space fraction numerator straight mu subscript 0 straight I squared over denominator 2 πd end fraction
straight F space equals space square root of 2 straight F subscript BC
space equals space square root of 2 fraction numerator straight mu subscript 0 straight I squared over denominator 2 πd end fraction
straight F space equals space fraction numerator straight mu subscript 0 straight I squared over denominator square root of 2 πd end root end fraction

Question
CBSEENPH11020849

A body initially at rest and sliding along a frictionless track from a height h (as shown in the figure) just completes a vertical circle of diameter AB = D. The height h is equal to

  • 3D/2

  • D

  • 5D/4

  • 7D/5

Solution

C.

5D/4

As track is frictionless, so total mechanical energy will remain constant,

i.e., 0 + mgh = 12mvL2 + 0using v2 - u2 = 2gh,h = vL22g ( u = 0)For completing the vertical circle VL 5gRor, h = 5gR2g = 52R = 54D