Laws of Motion

Question
CBSEENPH11020674

A mass m moving horizontally (along the x -axis) with velocity v collides and sticks to mass of 3m moving vertically upward (along the y -axis) with velocity 2v. The final velocity of the combination

  • 1 half straight v space bold i with bold hat on top space plus 3 over 2 straight v space bold j with bold hat on top
  • 1 third straight v space bold i with bold hat on top space plus 2 over 3 straight v space bold j with bold hat on top
  • 2 over 3 straight v space bold i with bold hat on top space plus 1 third straight v space bold j with bold hat on top
  • 3 over 2 straight v space bold i with bold hat on top space plus 1 fourth straight v space bold j with bold hat on top

Solution

A.

1 half straight v space bold i with bold hat on top space plus 3 over 2 straight v space bold j with bold hat on top

From the law of conservation of linear momentum

mv + (3m)(2v) = (4m)v'
mv + 6mv j = 4 mv'

straight v apostrophe space equals space 1 fourth space straight v space bold i space plus space 6 over 4 space straight v space bold j

straight v apostrophe space equals space 1 fourth space straight v space bold i bold space plus 3 over 2 space straight v space bold j

Question
CBSEENPH11020679

A block of mass m is in contact with the cart C as shown in the figure


The coefficient of static friction between the block and the cart is μ. The acceleration α of the cart that will prevent the block from falling satisfies

  • straight alpha space greater than mg over straight mu
  • straight alpha space greater than space straight g over μm
  • straight alpha space greater or equal than space straight g over straight mu
  • straight alpha space less than space straight g over straight mu

Solution

C.

straight alpha space greater or equal than space straight g over straight mu

When a cart moves with some acceleration toward right then a pseudo force (mα) acts on block towards left. The force (mα) is action force by a block on the cart. Now, block will remain static w.r.t cart if frictional force 
μR space greater or equal than space mg

rightwards double arrow space straight mu space mα space greater or equal than space mg space space space left square bracket space as space straight R space equals space mα right square bracket

rightwards double arrow space straight alpha space greater or equal than space straight g over straight mu

Question
CBSEENPH11020686

A ball moving with velocity 2 ms-1 collides head on with another stationary ball of double the mass. If the coefficient of restitution is 0.5, then their velocities (in ms-1) after collision will be

  • 0,1

  • 1,1

  • 1,0.5

  • 0,2

Solution

A.

0,1

If two bodies collide head on with coefficient of restitution
straight e space equals space fraction numerator straight v subscript 2 minus straight v subscript 1 over denominator straight u subscript 1 minus straight u subscript 2 end fraction
From space the space law space of space conservation space of space linear space momentum

straight m subscript 1 straight u subscript 1 plus straight m subscript 2 straight u subscript 2 space equals space straight m subscript 1 straight v subscript 1 space plus straight m subscript 2 straight v subscript 2
rightwards double arrow space straight v subscript 1 space equals space open square brackets fraction numerator straight m subscript 1 minus em subscript 2 over denominator straight m subscript 1 plus straight m subscript 2 end fraction close square brackets straight u subscript 1 plus open square brackets fraction numerator left parenthesis 1 plus straight e right parenthesis straight m subscript 2 over denominator straight m subscript 1 plus straight m subscript 2 end fraction close square brackets straight u subscript 2
Substituting space straight u subscript 1 space equals space 2 space ms to the power of negative 1 end exponent comma space straight u subscript 2 space equals 0 comma space straight m subscript 1 equals straight m subscript 2 space and space straight m subscript 2 space equals space 2 straight m comma space straight e space equals space 0.5
we space get space space straight v subscript 1 space equals space open square brackets fraction numerator straight m minus straight m over denominator straight m plus 2 straight m end fraction close square brackets space straight x 2
similarly comma
straight v subscript 2 space equals open square brackets fraction numerator left parenthesis 1 plus straight e right parenthesis straight m subscript 1 over denominator straight m subscript 1 plus straight m subscript 2 end fraction close square brackets straight u subscript 1 space plus open square brackets fraction numerator straight m subscript 2 minus em subscript 1 over denominator straight m subscript 1 plus straight m subscript 2 end fraction close square brackets straight u subscript 2
equals space open square brackets fraction numerator 1.5 space straight x space straight m over denominator 3 straight m end fraction close square brackets space straight x space 2
space equals space 1 space ms to the power of negative 1 end exponent

Question
CBSEENPH11020699

A man of 50 kg mass standing in a gravity free space at height of 10 m above the floor. He throws a stone of 0.5 kg mass downwards with a speed 2 ms-1. When the stone reaches the floor, the distance of the man above the floor will be

  • 9.9 m

  • 10.1 

  • 10 m

  • 20 m

Solution

B.

10.1 

m r = constant
straight m subscript 1 straight r subscript 1 space equals straight m subscript 2 straight r subscript 2

straight r subscript 2 space fraction numerator straight m subscript 1 straight r subscript 1 over denominator straight m subscript 2 end fraction

equals space fraction numerator 0.5 space straight x space 10 over denominator 50 end fraction space equals space 0.1
The distance of the man above the floor (total height) = 10+0.1 = 10.1